Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = CCDC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 10887 KB  
Article
The Analysis of Transient Drilling Fluid Loss in Coupled Drill Pipe-Wellbore-Fracture System of Deep Fractured Reservoirs
by Zhichao Xie, Yili Kang, Xueqiang Wang, Chengyuan Xu and Chong Lin
Processes 2025, 13(10), 3100; https://doi.org/10.3390/pr13103100 - 28 Sep 2025
Viewed by 305
Abstract
Drilling fluid loss is a common and complex downhole problem that occurs during drilling in deep fractured formations, which has a significant negative impact on the exploration and development of oil and gas resources. Establishing a drilling fluid loss model for the quantitative [...] Read more.
Drilling fluid loss is a common and complex downhole problem that occurs during drilling in deep fractured formations, which has a significant negative impact on the exploration and development of oil and gas resources. Establishing a drilling fluid loss model for the quantitative analysis of drilling fluid loss is the most effective method for the diagnosis of drilling fluid loss, which provides a favorable basis for the formulation of drilling fluid loss control measures, including the information on thief zone location, loss type, and the size of loss channels. The previous loss model assumes that the drilling fluid is driven by constant flow or pressure at the fracture inlet. However, drilling fluid loss is a complex physical process in the coupled wellbore circulation system. The lost drilling fluid is driven by dynamic bottomhole pressure (BHP) during the drilling process. The use of a single-phase model to describe drilling fluids ignores the influence of solid-phase particles in the drilling fluid system on its rheological properties. This paper aims to model drilling fluid loss in the coupled wellbore–-fracture system based on the two-phase flow model. It focuses on the effects of well depth, drilling pumping rate, drilling fluid density, viscosity, fracture geometric parameters, and their morphology on loss during the drilling fluid circulation process. Numerical discrete equations are derived using the finite volume method and the “upwind” scheme. The correctness of the model is verified by published literature data and experimental data. The results show that the loss model without considering the circulation of drilling fluid underestimates the extent of drilling fluid loss. The presence of annular pressure loss in the circulation of drilling fluid will lead to an increase in BHP, resulting in more serious loss. Full article
Show Figures

Figure 1

10 pages, 1796 KB  
Article
Novel MAML2 Fusions in Human Malignancy
by Takefumi Komiya, Kieran Sweeney, Chao H. Huang, Anthony Crymes, Emmanuel S. Antonarakis, Andrew Elliott, Matthew J. Oberley and Mark G. Evans
Cancers 2025, 17(19), 3146; https://doi.org/10.3390/cancers17193146 - 27 Sep 2025
Viewed by 268
Abstract
Background: Oncogenic fusions of MAML2 with CRTC1, CRTC3, YAP1, and NR1D1 retain the MAML2 transactivating domain (TAD) and are believed to drive aberrant gene transcription. While the oncogenic roles of these known fusions have been established, we aimed to identify [...] Read more.
Background: Oncogenic fusions of MAML2 with CRTC1, CRTC3, YAP1, and NR1D1 retain the MAML2 transactivating domain (TAD) and are believed to drive aberrant gene transcription. While the oncogenic roles of these known fusions have been established, we aimed to identify novel MAML2 fusions across a range of human malignancies. Methods: DNA and RNA sequencing were performed on tumor samples submitted to Caris Life Sciences. MAML2 fusions were identified from RNA transcripts and filtered to include only known pathogenic fusions or recurrent, in-frame fusions containing a C-terminal MAML2 TAD. Fusion burden was defined as the number of unique fusion isoforms per sample. Results: Among 180,124 tumor samples, 143 specimens harbored MAML2 fusions with a MAML2 TAD: >50% of specimens harbored known fusions, but novel fusions with MTMR2 (31/143), SESN3 (11/143), CCDC82 (6/143), FAM76B (4/143), and ATXN3 (3/143) were also identified. Compared to the known fusions, the novel fusions generally had lower expressions (median: 8 vs. 13 junction reads/sample, p = 0.0064), higher fusion burdens (median: 6 vs. 2 unique fusion isoforms/sample, p < 0.0001), more frequent TP53 co-mutations (80% vs. 11.5%, p < 0.0001), and no clear association with the tissue of origin. Excluding ATXN3::MAML2, the novel fusion partners were located near MAML2 in the genome, likely arose from duplications or deletions, and occurred in samples harboring concurrent mutations. In contrast, ATXN3::MAML2 arose via interchromosomal translocation, occurred in samples with a low fusion burden, and was not associated with TP53 mutations. Conclusions: We identified novel MAML2 fusion partners, most of which likely represent passenger alterations, possibly arising from genomic instability or impaired p53 function. However, ATXN3::MAML2 fusions, previously reported in a pre-cancerous pancreatic disease case, may represent a pathogenic alteration warranting further investigation. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

15 pages, 2634 KB  
Article
A Novel Polyacrylamide Film-Forming Agent for Maintaining Wellbore Stability
by Guoyan Ma, Wenjing Wei, Yanzhe Yang, Chao Hao, Yaru Zhang and Guoqiang Xu
Molecules 2025, 30(19), 3877; https://doi.org/10.3390/molecules30193877 - 25 Sep 2025
Viewed by 266
Abstract
A polyacrylamide-based film-forming agent was synthesized via free-radical copolymerization. FT-IR spectroscopy confirmed complete monomer conversion with no detectable residual unsaturation. Systematic variation of acrylamide (AM), vinyl acetate (VAc) and cellulose content revealed that an AM mass fraction of 3.7 wt%, a VAc:AM molar [...] Read more.
A polyacrylamide-based film-forming agent was synthesized via free-radical copolymerization. FT-IR spectroscopy confirmed complete monomer conversion with no detectable residual unsaturation. Systematic variation of acrylamide (AM), vinyl acetate (VAc) and cellulose content revealed that an AM mass fraction of 3.7 wt%, a VAc:AM molar ratio of 1:3 and a cellulose content of 1.6 wt% yielded an emulsion of maximal colloidal stability. Under these conditions, the agent formed coherent, moisture-resistant films that effectively encapsulated sodium-bentonite pellets, indicating its potential as an efficient inhibitor for maintaining well-bore stability during drilling operations. Full article
Show Figures

Graphical abstract

25 pages, 9151 KB  
Article
Uncovering Genetic Diversity and Adaptive Candidate Genes in the Mugalzhar Horse Breed Using Whole-Genome Sequencing Data
by Shinara N. Kassymbekova, Zhanat Z. Bimenova, Kairat Z. Iskhan, Przemyslaw Sobiech, Jan P. Jastrzebski, Pawel Brym, Wiktor Babis, Assem S. Kalykova, Zhassulan M. Otebayev, Dinara I. Kabylbekova, Hasan Baneh and Michael N. Romanov
Animals 2025, 15(18), 2667; https://doi.org/10.3390/ani15182667 - 11 Sep 2025
Viewed by 407
Abstract
Mugalzhar horses are a relatively young native breed of Kazakhstan, prized for meat and milk production and adaptation. This study was conducted to investigate genetic diversity and pinpoint genomic regions associated with selection signatures in this breed using whole-genome sequence data. Variant calling [...] Read more.
Mugalzhar horses are a relatively young native breed of Kazakhstan, prized for meat and milk production and adaptation. This study was conducted to investigate genetic diversity and pinpoint genomic regions associated with selection signatures in this breed using whole-genome sequence data. Variant calling yielded a total of 21,722,393 high-quality variants, including 19,495,163 SNPs and 2,227,230 indels. Most variants were located in introns and intergenic regions, while only 1.94% were exonic. Estimates of genetic diversity were moderate, with expected and observed heterozygosity and nucleotide diversity of 0.2325, 0.2402, and 0.0021, respectively. We identified nine adaptive candidate genes (SCAPER, FHAD1, MMP15, ADGRE1, CMKLR1, MRPL15, ZNF667, CCDC66, and LOC100055310), harboring high-impact exonic variants in the homozygote state for an alternative allele. No deleterious segregating variants associated with Mendelian traits were found in this population, while seven variants linked to coat color and gaitedness were detected in a low frequency heterozygous state. Our findings suggest that there are certain genomic regions subjected to ancient selection footprints during the ancestor breed formation and adaptation. The outcome of this study serves as a foundation for future genomic-driven strategies, a broader utilization of this breed, and a reference for genomic studies on other horse breeds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1644 KB  
Article
Identification of Metabolic Pathways and Hub Genes Associated with Ultrasound Subcutaneous Fat and Muscle Depth of the Longissimus Muscle in Cull Beef Cows Using Gene Co-Expression Analysis
by Harshraj Shinde, Kyle R. McLeod and Jeffrey W. Lehmkuhler
Animals 2025, 15(17), 2636; https://doi.org/10.3390/ani15172636 - 8 Sep 2025
Viewed by 512
Abstract
Beef production is an important component of the world’s food supply, with production being near 59 million tons in 2023 (USDA, 2023). Enhancing our understanding of the factors influencing metabolism will lead to improvements in production efficiency. Using RNA-seq and WGCNA of longissimus [...] Read more.
Beef production is an important component of the world’s food supply, with production being near 59 million tons in 2023 (USDA, 2023). Enhancing our understanding of the factors influencing metabolism will lead to improvements in production efficiency. Using RNA-seq and WGCNA of longissimus muscle samples, gene expression and metabolic pathway analyses were performed to examine relationships with ultrasound and body mass variables. In this study, body weight (BW), ultrasound back fat (BF), ultrasound muscle depth (MD), and body condition score (BCS) were traits recorded for 18 cull beef cows. As expected, all production-related traits monitored (WT, BF, MD, and BCS) in this study exhibited a positive correlation with each other. Large-scale transcriptome analyses were performed using RNA extracted from longissimus dorsi muscles. Weighted correlation network analysis (WGCNA) was employed to associate changes in traits with gene expression. In WGCNA, the dark-green module demonstrated a positive correlation (cor) with all traits, with the highest observed for BF (cor = 0.45, p = 0.07) and MD (cor = 0.45, p = 0.07). Functional analysis of the dark-green module highlighted olfactory transduction (p = 0.03) and RNA processing as significantly correlated (p = 0.08) with production traits. Additionally, the hematopoietic cell lineage pathway was reported as the most significant negative correlation with muscle depth (cor = −0.71, p = 0.001). We identified four hub genes (i.e., SEPTIN9, NONO, CCDC88C, and CACNA2D3) showing relationships with the traits measured. These findings provide further understanding of the molecular mechanisms influencing muscle and fat accretion in cull beef cows. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 5195 KB  
Article
Long-Term Trajectory Analysis of Avocado Orchards in the Avocado Belt, Mexico
by Jonathan V. Solórzano, Jean François Mas, Diana Ramírez-Mejía and J. Alberto Gallardo-Cruz
Land 2025, 14(9), 1792; https://doi.org/10.3390/land14091792 - 3 Sep 2025
Viewed by 787
Abstract
Avocado orchards are among the most profitable and fastest-growing commodity crops in Mexico, especially in the area known as the “Avocado Belt”. Several efforts have been made to monitor their expansion; however, there is currently no method that can be easily updated to [...] Read more.
Avocado orchards are among the most profitable and fastest-growing commodity crops in Mexico, especially in the area known as the “Avocado Belt”. Several efforts have been made to monitor their expansion; however, there is currently no method that can be easily updated to track this expansion. The main objective of this study was to monitor the expansion of avocado orchards from 1993 to 2024, using the Continuous Change Detection and Classification (CCDC) algorithm and Landsat 5, 7, 8, and 9 imagery. Presence/absence maps of avocado orchards corresponding to 1 January of each year were used to perform a trajectory analysis, identifying eight possible change trajectories. Finally, maps from 2020 to 2023 were verified using reference data and very-high-resolution images. The maps showed a level of agreement = 0.97, while the intersection over union for the avocado orchard class was 0.62. The main results indicate that the area occupied by avocado orchards more than tripled from 1993 to 2024, from 64,304.28 ha to 200,938.32 ha, with the highest expansion occurring between 2014 and 2024. The trajectory analysis confirmed that land conversion to avocado orchards is generally permanent and happens only once (i.e., gain without alternation). The method proved to be a robust approach for monitoring avocado orchard expansion and could be an attractive alternative for regularly updating this information. Full article
Show Figures

Figure 1

15 pages, 3594 KB  
Systematic Review
Single-Nucleotide Polymorphisms Related to Glioblastoma Risk and Worldwide Epidemiology: A Systematic Review and Meta-Analysis
by Giovanna Gilioli da Costa Nunes, Francisco Cezar Aquino de Moraes, Rita de Cássia Calderaro Coelho, Marianne Rodrigues Fernandes, Sidney Emanuel Batista dos Santos and Ney Pereira Carneiro dos Santos
J. Pers. Med. 2025, 15(9), 401; https://doi.org/10.3390/jpm15090401 - 1 Sep 2025
Viewed by 524
Abstract
Background/Objectives: Glioblastomas are a part of adult-type diffuse gliomas, the most common and most aggressive primary brain tumors in adults (glioblastoma, IDH-wildtype). The identification of the genetic factors associated with glioblastoma could be an important contribution to the diagnosis and early prevention [...] Read more.
Background/Objectives: Glioblastomas are a part of adult-type diffuse gliomas, the most common and most aggressive primary brain tumors in adults (glioblastoma, IDH-wildtype). The identification of the genetic factors associated with glioblastoma could be an important contribution to the diagnosis and early prevention of this disease. We compiled data from the global literature and analyzed clinically relevant variants implicated in glioblastoma risk. Methods: PubMed, Web of Science, and Scopus were used as databases. Associations between the SNPs and glioblastoma risk were calculated as a measure of pooled odds ratios (ORs) and 95% confidence intervals. Pearson’s analysis was used for epidemiological correlation (only p-values less than 0.05 were statistically significant), and data were obtained from the World Health Organization platform and the 1000 Genomes Project. Statistical analysis was performed using Review Manager (RevMan) 5.4 and BioEstat 5.0. Results: CCDC26 rs891835 G/T, G/G, and G/T-G/G genotypes were analyzed and determined to increase glioblastoma risk (G/T OR = 1.96, 95% CI: 1.38–2.77, p = 0.0002, I2 = 0%; G/G OR = 1.33, 95% CI: 0.46–3.85, p = 0.60, I2 = 0%; G/T − G/G OR = 1.96, 95% CI: 1.39–2.76, p = 0.0001, I2 = 0%). Epidemiological correlation also demonstrated that the higher the frequency of the CCDC26 rs891835 variant, the higher the incidence of that variant in the European population. Conclusions: CCDC26 rs891835 may serve as a predictive biomarker for glioblastoma, IDH-wildtype risk and may influence higher glioblastoma incidence rates in the European population. Full article
(This article belongs to the Section Disease Biomarkers)
Show Figures

Graphical abstract

18 pages, 1883 KB  
Article
Research on Hole-Cleaning Technology Coupled with Prevention and Removal of Cuttings Bed
by Dong Yang, Xin Song, Yingjian Xie, Jianli Liu, Hu Han, Qiao Deng and Hao Geng
Processes 2025, 13(8), 2604; https://doi.org/10.3390/pr13082604 - 18 Aug 2025
Viewed by 513
Abstract
To address the critical challenges of severe fragmentation in cuttings, persistent cuttings bed accumulation, and abrupt friction torque increases during horizontal well drilling of Jurassic continental shale oil formations in J Block, Sichuan Basin—rooted in the unique high clay content that induces colloidal [...] Read more.
To address the critical challenges of severe fragmentation in cuttings, persistent cuttings bed accumulation, and abrupt friction torque increases during horizontal well drilling of Jurassic continental shale oil formations in J Block, Sichuan Basin—rooted in the unique high clay content that induces colloidal stability of fine cuttings and resistance to conventional cleaning—this study innovatively proposes a coupled prevention–removal hole-cleaning technology. The core methodology integrates three synergistic components: (1) orthogonal numerical simulations to optimize drilling parameters, reducing the cuttings input rate by 43.48% through “hydraulic carrying + mechanical agitation” synergy; (2) a modified Moore model with horizontal section correction factors to quantify slip velocity of cuttings, lowering the prediction error from ±20% to ±5%; and (3) a helical groove cutting removal sub with 60 m optimal spacing, enhancing local turbulence intensity by 42% to disrupt residual cuttings bed. Field validation in Well J110-8-1H demonstrated remarkable improvements: a 50% reduction in sliding friction, a 25% decrease in rotational torque, and 40% shortening of the drilling cycle. This integrated technology fills the gap in addressing the “fragmentation–colloidal stability” dilemma in shale with high clay contents, providing a quantifiable solution for safe and efficient drilling in similar continental formations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 1647 KB  
Article
A Modified Nonlinear Mohr–Coulomb Failure Criterion for Rocks Under High-Temperature and High-Pressure Conditions
by Zhuzheng Li, Hongxi Li, Qiangui Zhang, Jiahui Wang, Cheng Meng, Xiangyu Fan and Pengfei Zhao
Appl. Sci. 2025, 15(14), 8048; https://doi.org/10.3390/app15148048 - 19 Jul 2025
Viewed by 600
Abstract
In deep, geologically complex environments characterized by high in situ stress and elevated formation temperatures, the mechanical behavior of rocks often transitions from brittle to ductile, differing significantly from that of shallow formations. Traditional rock failure criteria frequently fail to accurately assess the [...] Read more.
In deep, geologically complex environments characterized by high in situ stress and elevated formation temperatures, the mechanical behavior of rocks often transitions from brittle to ductile, differing significantly from that of shallow formations. Traditional rock failure criteria frequently fail to accurately assess the strength of rocks under such deep conditions. To address this, a novel failure criterion suitable for high-temperature and high-pressure conditions has been developed by modifying the Mohr–Coulomb criterion. This criterion incorporates a quadratic function of confining pressure to account for the attenuation rate of strength increase under high confining pressure and a linear function of temperature to reflect the linear degradation of strength at elevated temperatures. This criterion has been used to predict the strength of granite, shale, and carbonate rocks, yielding results that align well with the experimental data. The average coefficient of determination (R2) reached 97.1%, and the mean relative error (MRE) was 5.25%. Compared with the Hoek–Brown and Bieniawski criteria, the criterion proposed in this study more accurately captures the strength characteristics of rocks under high-temperature and high-pressure conditions, with a prediction accuracy improvement of 1.70–4.09%, showing the best performance in the case of carbonate rock. A sensitivity analysis of the criterion parameters n and B revealed notable differences in how various rock types respond to these parameters. Among the three rock types studied, granite exhibited the lowest sensitivity to both parameters, indicating the highest stability in the prediction results. Additionally, the predictive outcomes were generally more sensitive to changes in parameter B than in n. These findings contribute to a deeper understanding of rock mechanical behavior under extreme conditions and offer valuable theoretical support for drilling, completion, and stimulation operations in deep hydrocarbon reservoirs. Full article
Show Figures

Figure 1

24 pages, 22401 KB  
Article
Comparative Global Assessment and Optimization of LandTrendr, CCDC, and BFAST Algorithms for Enhanced Urban Land Cover Change Detection Using Landsat Time Series
by Taku Murakami and Narumasa Tsutsumida
Remote Sens. 2025, 17(14), 2402; https://doi.org/10.3390/rs17142402 - 11 Jul 2025
Viewed by 994
Abstract
The rapid expansion of urban areas necessitates effective monitoring systems for sustainable development planning. Time-series change detection algorithms applied to satellite imagery offer promising solutions, but their comparative effectiveness specifically for urban land cover monitoring remains poorly understood. This study aims to systematically [...] Read more.
The rapid expansion of urban areas necessitates effective monitoring systems for sustainable development planning. Time-series change detection algorithms applied to satellite imagery offer promising solutions, but their comparative effectiveness specifically for urban land cover monitoring remains poorly understood. This study aims to systematically evaluate and optimize three widely used algorithms—LandTrendr, CCDC, and BFAST—selected for their proven capabilities in different land cover change contexts and distinct algorithmic approaches. Using Landsat 5/7/8 (TM/ETM+/OLI) time-series data from 2000 to 2020 and a globally distributed dataset of 200 sample locations spanning six continents, we assess these algorithms across multiple spectral bands and parameter settings for land cover change detection in urban areas. Our analysis reveals that CCDC achieves the highest accuracy (78.14% F1 score) when utilizing complete spectral information (bands B1–B7), outperforming both BFAST (74.32% F1 score with NDVI) and LandTrendr (71.29% F1 score with B1). We demonstrated that, contrary to conventional approaches that prioritize vegetation indices, visible light bands—particularly B1 and B2—achieve higher performance across multiple algorithms. For instance, in LandTrendr, B1 yielded an F1 score of 71.29%, whereas NDVI and EVI produced 56.19% and 53.16%, respectively. Similarly, in CCDC, B2 achieved an F1 score of 72.19%, while NDVI and EVI resulted in 68.57% and 65.33%, respectively. Our findings underscore that parameter optimization and band selection significantly impact detection accuracy, with variations up to 30% observed across different configurations. This comprehensive evaluation provides critical methodological guidance for satellite-based urban expansion monitoring and identifies specific optimization strategies to enhance the application of existing algorithms for urban land cover change detection. Full article
Show Figures

Figure 1

24 pages, 4271 KB  
Article
Proteomic Profiling Reveals Novel Molecular Insights into Dysregulated Proteins in Established Cases of Rheumatoid Arthritis
by Afshan Masood, Hicham Benabdelkamel, Assim A. Alfadda, Abdurhman S. Alarfaj, Amina Fallata, Salini Scaria Joy, Maha Al Mogren, Anas M. Abdel Rahman and Mohamed Siaj
Proteomes 2025, 13(3), 32; https://doi.org/10.3390/proteomes13030032 - 4 Jul 2025
Cited by 1 | Viewed by 1267
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder that predominantly affects synovial joints, leading to inflammation, pain, and progressive joint damage. Despite therapeutic advancements, the molecular basis of established RA remains poorly defined. Methods: In this study, we conducted an untargeted [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder that predominantly affects synovial joints, leading to inflammation, pain, and progressive joint damage. Despite therapeutic advancements, the molecular basis of established RA remains poorly defined. Methods: In this study, we conducted an untargeted plasma proteomic analysis using two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in samples from RA patients and healthy controls in the discovery phase. Results: Significantly (ANOVA, p ≤ 0.05, fold change > 1.5) differentially abundant proteins (DAPs) were identified. Notably, upregulated proteins included mitochondrial dicarboxylate carrier, hemopexin, and 28S ribosomal protein S18c, while CCDC124, osteocalcin, apolipoproteins A-I and A-IV, and haptoglobin were downregulated. Receiver operating characteristic (ROC) analysis identified CCDC124, osteocalcin, and metallothionein-2 with high diagnostic potential (AUC = 0.98). Proteins with the highest selected frequency were quantitatively verified by multiple reaction monitoring (MRM) analysis in the validation cohort. Bioinformatic analysis using Ingenuity Pathway Analysis (IPA) revealed the underlying molecular pathways and key interaction networks involved STAT1, TNF, and CD40. These central nodes were associated with immune regulation, cell-to-cell signaling, and hematological system development. Conclusions: Our combined proteomic and bioinformatic approaches underscore the involvement of dysregulated immune pathways in RA pathogenesis and highlight potential diagnostic biomarkers. The utility of these markers needs to be evaluated in further studies and in a larger cohort of patients. Full article
(This article belongs to the Special Issue Proteomics in Chronic Diseases: Issues and Challenges)
Show Figures

Figure 1

20 pages, 5106 KB  
Article
Investigating the Sexual Dimorphism of Waist-to-Hip Ratio and Its Associations with Complex Traits
by Haochang Li, Shirong Hui, Xuehong Cai, Ran He, Meijie Yu, Yihao Li, Rongbin Yu and Peng Huang
Genes 2025, 16(6), 711; https://doi.org/10.3390/genes16060711 - 16 Jun 2025
Viewed by 993
Abstract
Background: Obesity significantly impacts disease burden, with waist-to-hip ratio (WHR) as a key obesity indicator, but the genetic and biological pathways underlying WHR, particularly its sex-specific differences, remain poorly understood. Methods: This study explored WHR’s sexual dimorphism and its links to complex traits [...] Read more.
Background: Obesity significantly impacts disease burden, with waist-to-hip ratio (WHR) as a key obesity indicator, but the genetic and biological pathways underlying WHR, particularly its sex-specific differences, remain poorly understood. Methods: This study explored WHR’s sexual dimorphism and its links to complex traits using cross-sectional surveys and genetic data from Giant and UK Biobank (UKB). We analyzed WHR heritability, performed tissue-specific transcriptome-wide association studies (TWAS) using FUSION, and conducted genetic correlation analyses with linkage disequilibrium score regression (LDSC) and Local Analysis of [co]Variant Association (LAVA). Polygenic scores (PGS) for WHR were constructed using the clumping and thresholding method (CT), and associations with complex traits were assessed via logistic or linear models. Results: The genetic analysis showed sex-specific heritability for WHR, with TWAS identifying female-specific (e.g., CCDC92) and male-specific (e.g., UQCC1) genes. Global genetic correlation analysis revealed sex-specific associations between WHR and 23 traits, while local analysis identified eight sex-specific loci across five diseases. Regression analysis highlighted sex-specific associations for 70 traits with WHR and 45 traits with WHR PGS, with stronger effects in females. Predictive models also performed better in females. Conclusions: This study underscores WHR’s sexual dimorphism and its distinct associations with complex traits, offering insights into sex-specific biological differences, health management, and clinical advancements. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2841 KB  
Article
Temporary-Plugging-Driven Balanced Fracturing: A Novel Strategy to Achieve Uniform Reservoir Stimulation in Sichuan Shale Oil Horizontal Wells
by Yang Wang, Qingyun Yuan, Weihua Chen, Jie Yan, Xiangfei Zhang and Song Li
Processes 2025, 13(6), 1846; https://doi.org/10.3390/pr13061846 - 11 Jun 2025
Viewed by 543
Abstract
The shale oil reservoirs in the Liang Gaoshan area of the Sichuan Basin exhibit extremely low porosity and permeability, as well as significant heterogeneity. Consequently, hydraulic fracturing of horizontal wells is critical for achieving effective production enhancement. Early diagnostic monitoring revealed substantial variations [...] Read more.
The shale oil reservoirs in the Liang Gaoshan area of the Sichuan Basin exhibit extremely low porosity and permeability, as well as significant heterogeneity. Consequently, hydraulic fracturing of horizontal wells is critical for achieving effective production enhancement. Early diagnostic monitoring revealed substantial variations in fracture propagation. Some hydraulic fractures extended beyond the target layer into adjacent river sandstone, leading to increased fracturing costs and reduced reserve utilization rates. To address these challenges, temporary plugging fracturing (TPF) was implemented to optimize fluid distribution among fracture clusters. However, previous TPF operations in this basin relied heavily on empirical methods, resulting in a relatively low sealing success rate of approximately 70%. This study proposes a fracture propagation model that incorporates stress interference dynamics induced by temporary plugging fracturing agents. Additionally, through laboratory experiments, a high-pressure (30.2 MPa) degradable temporary-plugging agent was selected for use in horizontal well fracturing. Key process parameters, including the insertion timing, dosage, and distribution strategy of the temporary-plugging agent, were optimized using a numerical simulation system. The results indicate that injecting 50% of the fracturing fluid followed by the simultaneous deployment of 12 temporary blocking nodes ensures uniform fracture cluster extension while maximizing the reconstruction volume. Furthermore, deploying all temporary blocking nodes at once reduces the fracturing operation time by approximately 20%. These findings were validated via field applications at Well NC1. Microseismic monitoring during fracturing confirmed the accuracy of the research outcomes presented in this paper. After temporary plugging, the extension uniformity of each fracture cluster significantly improved, with the stimulated reservoir volume (SRV) of a single section reaching 530,000 cubic meters. These results provide a foundation for optimizing horizontal well fracturing in Liang Gaoshan shale oil reservoirs within the Sichuan Basin, facilitating efficient and economical fracturing operations. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

12 pages, 540 KB  
Article
The Genomic Landscape of Romanian Non-Small Cell Lung Cancer Patients: The Insights from Routine NGS Testing with the Oncomine Dx Target Panel at the PATHOS Molecular Pathology Laboratory
by Orsolya I. Gaal, Andrei Ungureanu, Bogdan Pop, Andreea Tomescu, Andreea Cătană, Milena Man, Ruxandra Mioara Râjnoveanu, Emanuel Palade, Marioara Simon, Stefan Dan Luchian, Milan Paul Kubelac, Annamaria Fulop, Zsolt Fekete, Tudor Eliade Ciuleanu, Ion Jentimir, Bogdan Popovici, Calin Cainap, Alexandra Cristina Preda, Cosmina Magdau, Andrei Lesan and Bogdan Feticaadd Show full author list remove Hide full author list
Cancers 2025, 17(12), 1947; https://doi.org/10.3390/cancers17121947 - 11 Jun 2025
Viewed by 1393
Abstract
Background: Comprehensive molecular profiling is essential for precision oncology in non-small cell lung cancer (NSCLC). However, genomic data from Eastern European populations, including Romania, remain limited. Methods: We analyzed 398 consecutive NSCLC cases tested at the PATHOS Molecular Pathology Laboratory (Cluj-Napoca, Romania) between [...] Read more.
Background: Comprehensive molecular profiling is essential for precision oncology in non-small cell lung cancer (NSCLC). However, genomic data from Eastern European populations, including Romania, remain limited. Methods: We analyzed 398 consecutive NSCLC cases tested at the PATHOS Molecular Pathology Laboratory (Cluj-Napoca, Romania) between April 2024 and February 2025 using the Ion Torrent™ Genexus™ System and the Oncomine™ Dx Target Test, which evaluates SNVs/indels in 46 genes, fusions in 23 genes, and CNVs in 19 genes from FFPE samples. Results: The cohort was predominantly male (66%) with a median age of 67 years. Adenocarcinoma represented 70% of cases with known histology. Genomic profiling revealed a high frequency of actionable alterations. KRAS mutations were the most common (29.1%), with p.G12C detected in 10.3% of all the cases. EGFR mutations were present in 14.3% of patients, mostly exon 19 deletions and L858R substitutions. BRAF alterations (5.3%) included both V600E and non-V600E variants. RET alterations were detected as eight missense mutations, two canonical fusions (KIF5BRET, CCDC6RET), one amplification, and three transcript imbalances. EML4-ALK fusions (1.77%), ERBB2 mutations/amplifications (3.0%), and FGFR1/FGFR3 amplifications were also observed. Conclusions: This study provides the first large-scale molecular snapshot of NSCLC in Romania. While the overall genomic profiles align with Western populations, the higher frequency of KRAS p.G12C and FGFR amplifications highlights the value of region-specific data to support targeted therapies in Eastern Europe. Full article
Show Figures

Figure 1

13 pages, 2079 KB  
Article
Mechanistic Analysis and Multi-Factor Coupling Optimization of Temporary Plugging Fracturing in Shale Oil Horizontal Wells: A Case Study from the Sichuan Basin, China
by Yang Wang, Jian Yang, Qingyun Yuan, Weihua Chen, Yiguo He, Zhe Liu, Zefei Lv, Zhengyong Li, Jinming Fan, Tao Wang, Wei Chen and Xinyuan Tang
Processes 2025, 13(4), 1134; https://doi.org/10.3390/pr13041134 - 9 Apr 2025
Viewed by 591
Abstract
Horizontal well fracturing is a pivotal technology for enhancing the efficiency of shale oil and gas development. Shale reservoirs exhibit significant heterogeneity and intricate fracture propagation patterns, often resulting in uneven multiple fractures caused by horizontal well fracturing. Temporary plugging technology plays a [...] Read more.
Horizontal well fracturing is a pivotal technology for enhancing the efficiency of shale oil and gas development. Shale reservoirs exhibit significant heterogeneity and intricate fracture propagation patterns, often resulting in uneven multiple fractures caused by horizontal well fracturing. Temporary plugging technology plays a critical role in optimizing fracture propagation patterns; however, there is currently limited research on its optimization. Based on a hydraulic fracturing fracture propagation simulation, an optimization study was conducted on temporary plugging technology for horizontal well fracturing in shale oil reservoirs. Numerical simulation results demonstrate that the uniformity of hydraulic fracture propagation during horizontal well fracturing in shale oil reservoirs is maximized when 30 perforations are plugged. The most uniform fracture propagation pattern is achieved by adding temporary plugging agents after pumping a total volume of 30% fracturing fluid. Furthermore, a comparison between one-time plugging with temporary plugging balls and multiple plugging was made to evaluate differences in fracture propagation. It was observed that performing temporary plugging once significantly improves the uniformity of fracture propagation compared to multiple temporary plugging. These research findings have been successfully validated through the practical application of hydraulic fracturing techniques, as indicated by substantial improvements in both the mode and uniformity of fracture propagation following temporary plugging. Full article
Show Figures

Figure 1

Back to TopTop