Identification of Metabolic Pathways and Hub Genes Associated with Ultrasound Subcutaneous Fat and Muscle Depth of the Longissimus Muscle in Cull Beef Cows Using Gene Co-Expression Analysis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Beef Production Related Trait Analysis
2.3. Longissimus Dorsi Muscle Biopsy
2.4. RNA Extraction, Library Preparation and Sequencing
2.5. RNA Sequencing Data Analysis
2.6. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.7. Functional Enrichment Analysis
3. Results
3.1. Trait Relationship Analysis
3.2. RNA Sequencing
3.3. Weighted Gene Co-Expression Network Analysis (WGCNA)
3.4. Functional Enrichment Analysis
3.5. Hub Gene Identification
4. Discussion
4.1. Overview of Transcriptomics and Gene Co-Expression Analysis
4.2. Functional Insights from the Dark-Green Module
4.3. Role of RNA Processing in Muscle Development
4.4. Functional Roles of Magenta and Turquoise Modules
4.5. Hub Genes in the Dark-Green Module
4.6. Hub Genes in Magenta and Turquoise Modules
4.7. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pighin, D.; Pazos, A.; Chamorro, V.; Paschetta, F.; Cunzolo, S.; Godoy, F.; Messina, V.; Pordomingo, A.; Grigioni, G. A Contribution of Beef to Human Health: A Review of the Role of the Animal Production Systems. Sci. World J. 2016, 2016, 8681491. [Google Scholar] [CrossRef]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, F.W.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Kinobe, R.T.; Malau-Aduli, A.E.O. Diet and genetics influence beef cattle performance and meat quality characteristics. Foods 2019, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Sakowski, T.; Grodkowski, G.; Gołebiewski, M.; Slósarz, J.; Kostusiak, P.; Solarczyk, P.; Puppel, K. Genetic and Environmental Determinants of Beef Quality—A Review. Front. Vet. Sci. 2022, 9, 819605. [Google Scholar] [CrossRef] [PubMed]
- da Costa, A.S.H.; Pires, V.M.R.; Fontes, C.M.G.A.; Mestre Prates, J.A. Expression of genes controlling fat deposition in two genetically diverse beef cattle breeds fed high or low silage diets. BMC Vet. Res. 2013, 9, 118. [Google Scholar] [CrossRef]
- Grigoletto, L.; Ferraz, J.B.S.; Oliveira, H.R.; Eler, J.P.; Bussiman, F.O.; Abreu Silva, B.C.; Baldi, F.; Brito, L.F. Genetic Architecture of Carcass and Meat Quality Traits in Montana Tropical® Composite Beef Cattle. Front. Genet. 2020, 11, 123. [Google Scholar] [CrossRef]
- Utsunomiya, Y.T.; Milanesi, M.; Utsunomiya, A.T.H.; Torrecilha, R.B.P.; Kim, E.S.; Costa, M.S.; Aguiar, T.S.; Schroeder, S.; Do Carmo, A.S.; Carvalheiro, R.; et al. A PLAG1 mutation contributed to stature recovery in modern cattle. Sci. Rep. 2017, 7, 17140. [Google Scholar] [CrossRef]
- Sharma, A.; Park, J.-E.; Chai, H.-H.; Jang, G.-W.; Lee, S.-H.; Lim, D. Next generation sequencing in livestock species—A Review. J. Anim. Breed. Genom. 2017, 1, 23–30. [Google Scholar]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Sood, T.J.; Lagah, S.V.; Mukesh, M.; Singla, S.K.; Chauhan, M.S.; Manik, R.S.; Palta, P. RNA sequencing and transcriptome analysis of buffalo (Bubalus bubalis) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol. Reprod. Dev. 2019, 86, 1149–1167. [Google Scholar] [CrossRef]
- Chopra-Dewasthaly, R.; Korb, M.; Brunthaler, R.; Ertl, R. Comprehensive RNA-Seq profiling to evaluate the sheep mammary gland transcriptome in response to experimental mycoplasma agalactiae infection. PLoS ONE 2017, 12, e0170015. [Google Scholar] [CrossRef][Green Version]
- Capomaccio, S.; Vitulo, N.; Verini-Supplizi, A.; Barcaccia, G.; Albiero, A.; D’Angelo, M.; Campagna, D.; Valle, G.; Felicetti, M.; Silvestrelli, M.; et al. RNA sequencing of the exercise transcriptome in equine athletes. PLoS ONE 2013, 8, e83504. [Google Scholar][Green Version]
- Yan, Z.; Huang, H.; Freebern, E.; Santos, D.J.A.; Dai, D.; Si, J.; Ma, C.; Cao, J.; Guo, G.; Liu, G.E.; et al. Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle. BMC Genom. 2020, 21, 489. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Salleh, S.M.; Mazzoni, G.; Løvendahl, P.; Kadarmideen, H.N. Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency. BMC Bioinform. 2018, 19, 513. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2 Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Su, C.Y.; Menuz, K.; Carlson, J.R. Olfactory Perception: Receptors, Cells, and Circuits. Cell 2009, 139, 45–59. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I.; Zulet, M.A.; Santos, J.L.; Martinez, J.A.; MENA project. Associations between olfactory pathway gene methylation marks, obesity features and dietary intakes. Genes Nutr. 2019, 14, 11. [Google Scholar] [CrossRef]
- Riera, C.E.; Tsaousidou, E.; Halloran, J.; Follett, P.; Hahn, O.; Pereira, M.M.A.; Ruud, L.E.; Alber, J.; Tharp, K.; Anderson, C.M.; et al. The Sense of Smell Impacts Metabolic Health and Obesity. Cell Metab. 2017, 26, 198–211. [Google Scholar] [CrossRef]
- Do, D.N.; Strathe, A.B.; Ostersen, T.; Pant, S.D.; Kadarmideen, H.N. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Front. Genet. 2014, 5, 307. [Google Scholar] [CrossRef]
- Seabury, C.M.; Oldeschulte, D.L.; Saatchi, M.; Beever, J.E.; Decker, J.E.; Halley, Y.A.; Bhattarai, E.K.; Molaei, M.; Freetly, H.C.; Hansen, S.L.; et al. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genom. 2017, 18, 386. [Google Scholar] [CrossRef] [PubMed]
- Watt, K.I.; Goodman, C.A.; Hornberger, T.A.; Gregorevic, P. The Hippo Signaling Pathway in the Regulation of Skeletal Muscle Mass and Function. Exerc. Sport Sci. Rev. 2018, 46, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, E.R.; Wiedner, H.J.; Black, A.J.; Giudice, J. RNA processing in skeletal muscle biology and disease. Transcription 2019, 10, 1–20. [Google Scholar] [CrossRef]
- Shi, D.L.; Grifone, R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front. Cell Dev. Biol. 2021, 9, 738978. [Google Scholar] [CrossRef]
- Bland, C.S.; Wang, E.T.; Vu, A.; David, M.P.; Castle, J.C.; Johnson, J.M.; Burge, C.B.; Cooper, T.A. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 2010, 38, 7651–7664. [Google Scholar] [CrossRef]
- Brinegar, A.E.; Xia, Z.; Loehr, J.A.; Li, W.; Rodney, G.G.; Cooper, T.A. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. Elife 2017, 6, e27192. [Google Scholar] [CrossRef]
- Apponi, L.H.; Corbett, A.H.; Pavlath, G.K. RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol. Sci. 2011, 32, 652–658. [Google Scholar] [CrossRef]
- Smith, J.A.; Curry, E.G.; Eric Blue, R.; Roden, C.; Dundon, S.E.R.; Rodríguez-Vargas, A.; Jordan, D.C.; Chen, X.; Lyons, S.M.; Crutchley, J.; et al. FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. J. Cell Biol. 2020, 219, e201911129. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, S.H. Hematopoietic stem cells and their roles in tissue regeneration. Int. J. Stem. Cells 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Wilson, D.F. Oxidative phosphorylation: Regulation and role in cellular and tissue metabolism. J. Physiol. 2017, 595, 7023–7038. [Google Scholar] [CrossRef]
- Wang, S.; Yang, C.; Pan, C.; Feng, X.; Lei, Z.; Huang, J.; Wei, X.; Ma, Y. Identification of key genes and functional enrichment pathways involved in fat deposition in Xinyang buffalo by WGCNA. Gene 2022, 818, 146225. [Google Scholar] [CrossRef]
- Frezarim, G.B.; Mota, L.F.M.; Fonseca, L.F.S.; Salatta, B.M.; Arikawa, L.M.; Schmidt, P.I.; Silva, D.B.; Albuquerque, L.G. Multi-omics integration identifies molecular markers and biological pathways for carcass and meat quality traits in Nellore cattle. Sci. Rep. 2025, 15, 10467. [Google Scholar] [CrossRef] [PubMed]
- Santri, I.N.; Irham, L.M.; Djalilah, G.N.; Perwitasari, D.A.; Wardani, Y.; Phiri, Y.V.A.; Adikusuma, W. Identification of Hub Genes and Potential Biomarkers for Childhood Asthma by Utilizing an Established Bioinformatic Analysis Approach. Biomedicines 2022, 10, 2311. [Google Scholar] [CrossRef] [PubMed]
- Keogh, K.; Kenny, D.A.; Waters, S.M. Gene co-expression networks contributing to the expression of compensatory growth in metabolically active tissues in cattle. Sci. Rep. 2019, 9, 6093. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, A.; Reverter, A.; DeAtley, K.L.; Ashley, R.L.; Colgrave, M.L.; Fortes, M.R.S.; Islas-Trejo, A.; Lehnert, S.; Porto-Neto, L.; Rincón, G.; et al. Multi-tissue omics analyses reveal molecular regulatory networks for puberty in composite beef cattle. PLoS ONE 2014, 9, e102551. [Google Scholar] [CrossRef] [PubMed]
- Miklos, A.C.; Li, C.; Sorrell, C.D.; Lyon, L.A.; Pielak, G.J. An upper limit for macromolecular crowding effects. BMC Biophys. 2011, 4, 13. [Google Scholar] [CrossRef]
- Gu, Q.; Nagaraj, S.H.; Hudson, N.J.; Dalrymple, B.P.; Reverter, A. Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle. BMC Genom. 2011, 12, 23. [Google Scholar] [CrossRef]
- Hudson, N.J.; Reverter, A.; Wang, Y.H.; Greenwood, P.L.; Dalrymple, B.P. Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks. PLoS ONE 2009, 4, e7249. [Google Scholar] [CrossRef]
- Fernández-Quintero, M.L.; El Ghaleb, Y.; Tuluc, P.; Campiglio, M.; Liedl, K.R.; Flucher, B.E. Structural determinants of voltage-gating properties in calcium channels. Elife 2021, 10, e64087. [Google Scholar] [CrossRef]
- Flucher, B.E.; Tuluc, P. How and why are calcium currents curtailed in the skeletal muscle voltage-gated calcium channels? J. Physiol. 2017, 595, 1451–1463. [Google Scholar] [CrossRef]
- Gönczi, M.; Dienes, B.; Dobrosi, N.; Fodor, J.; Balogh, N.; Oláh, T.; Csernoch, L. Septins, a cytoskeletal protein family, with emerging role in striated muscle. J. Muscle. Res. Cell Motil. 2021, 42, 251–265. [Google Scholar] [CrossRef]
- Wang, X.; Fei, F.; Qu, J.; Li, C.; Li, Y.; Zhang, S. The role of septin 7 in physiology and pathological disease: A systematic review of current status. J. Cell. Mol. Med. 2018, 22, 3298–3307. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, D.; Huang, M.; Zheng, Y.; Zheng, B.; Chen, L.; Chen, Q. NONO regulates B-cell development and B-cell receptor signaling. FASEB J. 2023, 37, e22862. [Google Scholar] [CrossRef]
Cow_Id | Weight (WT), Kg | Backfat (BF), cm | Muscle Depth (md), cm | Body Condition Score (bcs) |
---|---|---|---|---|
C2 | 535 | 0.62 | 5.02 | 4 |
C3 | 509 | 0.42 | 5.32 | 5 |
C4 | 584 | 0.82 | 3.96 | 6 |
C6 | 555 | 0.3 | 3.29 | 4 |
C7 | 652 | 0.99 | 5.45 | 6 |
C9 | 463 | 0.4 | 4.08 | 5 |
C10 | 585 | 0.63 | 5.05 | 5 |
C11 | 540 | 0.72 | 5.05 | 5 |
C12 | 483 | 0.37 | 3.34 | 4 |
C13 | 513 | 0.4 | 4.53 | 4 |
C14 | 575 | 0.69 | 4.83 | 5 |
C15 | 415 | 0.25 | 4.93 | 4 |
C16 | 599 | 1.04 | 6.41 | 6 |
C20 | 508 | 0.55 | 3.74 | 5 |
C572 | 612 | 0.89 | 6.44 | 6 |
C573 | 478 | 0.47 | 5.12 | 5 |
C574 | 599 | 0.22 | 4.68 | 4 |
C575 | 482 | 0.37 | 4.14 | 4 |
Average | 538.16 | 0.56 | 4.74 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinde, H.; McLeod, K.R.; Lehmkuhler, J.W. Identification of Metabolic Pathways and Hub Genes Associated with Ultrasound Subcutaneous Fat and Muscle Depth of the Longissimus Muscle in Cull Beef Cows Using Gene Co-Expression Analysis. Animals 2025, 15, 2636. https://doi.org/10.3390/ani15172636
Shinde H, McLeod KR, Lehmkuhler JW. Identification of Metabolic Pathways and Hub Genes Associated with Ultrasound Subcutaneous Fat and Muscle Depth of the Longissimus Muscle in Cull Beef Cows Using Gene Co-Expression Analysis. Animals. 2025; 15(17):2636. https://doi.org/10.3390/ani15172636
Chicago/Turabian StyleShinde, Harshraj, Kyle R. McLeod, and Jeffrey W. Lehmkuhler. 2025. "Identification of Metabolic Pathways and Hub Genes Associated with Ultrasound Subcutaneous Fat and Muscle Depth of the Longissimus Muscle in Cull Beef Cows Using Gene Co-Expression Analysis" Animals 15, no. 17: 2636. https://doi.org/10.3390/ani15172636
APA StyleShinde, H., McLeod, K. R., & Lehmkuhler, J. W. (2025). Identification of Metabolic Pathways and Hub Genes Associated with Ultrasound Subcutaneous Fat and Muscle Depth of the Longissimus Muscle in Cull Beef Cows Using Gene Co-Expression Analysis. Animals, 15(17), 2636. https://doi.org/10.3390/ani15172636