Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = CAD-CAM technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1231 KiB  
Interesting Images
A Personalized 3D-Printed CAD/CAM Functional Space Maintainer Following the Premature Loss of a Primary First Molar in a Five-Year-Old Child
by Rasa Mladenovic, Andrija Nedeljkovic, Ljiljana Vujacic, Marko Stevanovic, Vladan Djordjevic, Srbislav Pajic and Kristina Mladenovic
Reports 2025, 8(3), 125; https://doi.org/10.3390/reports8030125 - 29 Jul 2025
Viewed by 267
Abstract
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of [...] Read more.
Primary teeth play a crucial role in a child’s development, particularly in maintaining space for permanent teeth. The premature loss of a primary tooth can lead to orthodontic issues, making the use of space maintainers essential to ensure proper growth and development of permanent teeth. To preserve space, the fabrication of a space maintainer is necessary. Since conventional space maintainers do not restore masticatory function, this study presents an innovative solution for space preservation following the extraction of the first primary molar through the design of the functional space maintainer KOS&MET (Key Orthodontic System and Materials Enhanced Therapy). The space maintainer was designed using the 3Shape Dental Designer 2023 version software tool and manufactured via additive 3D printing, utilizing a metal alloy with high resistance to masticatory forces. The crown is supported by the primary canine, while an intraoral window is created to monitor the eruption of the successor tooth. This design does not interfere with occlusion and enables bilateral chewing. Masticatory performance was assessed using two-color chewing gum, and the results showed improvement after cementing the space maintainer. This innovative approach not only preserves space for permanent teeth but also enhances masticatory function, contributing to the proper growth and development of the jaws and teeth. Full article
(This article belongs to the Special Issue Oral Disorders in the Pediatric Population)
Show Figures

Figure 1

12 pages, 1313 KiB  
Article
Chair-Time During Polishing with Different Burs and Drills After Cement Customized Brackets Bonding: An In Vitro Comparative Study
by Javier Flores-Fraile, Alba Belanche Monterde, Oscar Alonso-Ezpeleta, Cosimo Galletti and Álvaro Zubizarreta-Macho
Dent. J. 2025, 13(8), 347; https://doi.org/10.3390/dj13080347 - 28 Jul 2025
Viewed by 231
Abstract
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares [...] Read more.
Introduction: Digital planning and evolution of technology is allowing dentistry to be more efficient in time than before. In orthodontics the main purpose is to obtain fewer patient visits and to reduce the bonding time. For that, indirect bonding planned with CAD-CAM softwares is used to obtain a shorter treatment period, in general, and less chair-time. This waste of chair-time should also be reduced in other fields of dentistry such as endodontics, surgery, prosthodontics, and aesthetics. Methods: A total of 504 teeth were embedded into epoxy resin models mounted as a dental arch. Customized lingual multibracket appliances were bonded by a current adhesion protocol. After that, they were debonded, the polishing of cement remnants was performed with three different burs and two drills. The polishing time of each group was recorded by an iPhone 14 chronometer. Results: Descriptive and comparative statistical analyses were performed with the different study groups. Statistical differences (p < 0.005) between diamond bur and tungsten carbide and white stone burs and turbine were obtained, with the first being the slowest of them. Discussion: Enamel roughness was widely studied in orthodontics polishing protocol as the main variable for protocols establishment. However, in lingual orthodontics, due the difficulty of the access to the enamel surfaces, the protocol is not clear and efficiency should be considered. It was observed that the tungsten carbide bur is the safest bur. It was also recommended that a two-step protocol of polishing by tungsten carbide bur be followed by polishers. Conclusions: A tungsten carbide bur mounted in a turbine was the most efficient protocol for polishing after lingual bracket debonding. Full article
(This article belongs to the Special Issue Malocclusion: Treatments and Rehabilitation)
Show Figures

Figure 1

12 pages, 6846 KiB  
Case Report
A Second Chance: Managing Late Implant Failure from Peri-Implantitis with Computer-Guided Bone Regeneration—A Clinical Case Report
by Marco Tallarico, Silvio Mario Meloni, Carlotta Cacciò, Francesco Mattia Ceruso and Aurea Immacolata Lumbau
Reports 2025, 8(3), 118; https://doi.org/10.3390/reports8030118 - 22 Jul 2025
Viewed by 330
Abstract
Background and Clinical Significance: The retreatment of failed dental implants remains a challenging clinical scenario, particularly when complicated by peri-implantitis and as sociated bone loss. Successful management requires a comprehensive and predictable approach that addresses both hard and soft tissue deficiencies. Case [...] Read more.
Background and Clinical Significance: The retreatment of failed dental implants remains a challenging clinical scenario, particularly when complicated by peri-implantitis and as sociated bone loss. Successful management requires a comprehensive and predictable approach that addresses both hard and soft tissue deficiencies. Case Presentation: This case report illustrates a fully digital, prosthetically driven workflow for the rehabilitation of a posterior mandibular site following implant failure. A 44-year-old female patient underwent removal of a failing implant and adjacent tooth due to advanced peri-implantitis and periodontitis. After healing, a digital workflow—including intraoral scanning, cone-beam computed tomography (CBCT), and virtual planning—was employed to design and fabricate a customized CAD/CAM titanium mesh for vertical guided bone regeneration. The grafting procedure utilized a composite mixture of autogenous bone and anorganic bovine bone (A-Oss). After nine months of healing, two implants with a hydrophilic surface (SOI) were placed using a fully guided surgical protocol (OneGuide system). Subsequent soft tissue grafting and final prosthetic rehabilitation with monolithic zirconia restorations resulted in stable functional and aesthetic outcomes. Conclusions: This case highlights how the integration of modern digital technologies with advanced regenerative procedures and innovative implant surfaces can enhance the predictability and long-term success of implant retreatment in compromised posterior sites. Full article
(This article belongs to the Section Dentistry/Oral Medicine)
Show Figures

Figure 1

16 pages, 6475 KiB  
Review
Fully Digital Workflow in Full-Arch Implant Rehabilitation: A Descriptive Methodological Review
by Chantal Auduc, Thomas Douillard, Emmanuel Nicolas and Nada El Osta
Prosthesis 2025, 7(4), 85; https://doi.org/10.3390/prosthesis7040085 - 16 Jul 2025
Viewed by 503
Abstract
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains [...] Read more.
Background. Digital dentistry continues to evolve, offering improved accuracy, efficiency, and patient experience across various prosthodontic procedures. Many previous reviews have focused on digital applications in prosthodontics. But the use of a fully digital workflow for full-arch implant-supported prostheses in edentulous patients remains an emerging and underexplored area in the literature. Objective. This article presents a comprehensive methodological review of the digital workflow in full-arch implant-supported rehabilitation. It follows a structured literature exploration and synthesizes relevant technological processes from patient assessment to prosthetic delivery. Methods. The relevant literature was retrieved from the PubMed database on 20 June 2024, to identify the most recent and relevant studies. A total of 22 articles met the eligibility criteria and were included in the review. The majority included case and technical reports. Results. The review illustrates the integration and application of digital tools in implant dentistry, including cone-beam computed tomography (CBCT) exposure, intraoral scanning, digital smile design, virtual patients, guided surgery, and digital scanning. The key findings demonstrate multiple advantages of a fully digital workflow, such as reduced treatment time and cost, increased patient satisfaction, and improved interdisciplinary communication. Conclusions. Despite these benefits, limitations persist due to the low level of evidence, technological challenges, and the lack of standardized protocols. Further randomized controlled trials and long-term clinical evaluations are essential to validate the effectiveness and feasibility of a fully digital workflow for full-arch implant-supported rehabilitation. Full article
Show Figures

Figure 1

19 pages, 1293 KiB  
Review
Customized 3D-Printed Scaffolds for Alveolar Ridge Augmentation: A Scoping Review of Workflows, Technology, and Materials
by Saeed A. Elrefaei, Lucrezia Parma-Benfenati, Rana Dabaja, Paolo Nava, Hom-Lay Wang and Muhammad H. A. Saleh
Medicina 2025, 61(7), 1269; https://doi.org/10.3390/medicina61071269 - 14 Jul 2025
Viewed by 338
Abstract
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development [...] Read more.
Background and Objectives: Bone regeneration (BR) is a cornerstone technique in reconstructive dental surgery, traditionally using either barrier membranes, titanium meshes, or perforated non-resorbable membranes to facilitate bone regeneration. Recent advancements in 3D technology, including CAD/CAM and additive manufacturing, have enabled the development of customized scaffolds tailored to patient needs, potentially overcoming the limitations of conventional methods. Materials and Methods: A scoping review was conducted according to the PRISMA guidelines. Electronic searches were performed in MEDLINE (PubMed), the Cochrane Library, Scopus, and Web of Science up to January 2025 to identify studies on digital technologies applied to bone augmentation. Eligible studies encompassed randomized controlled trials, cohort studies, case series, and case reports, all published in English. Data regarding digital workflows, software, materials, printing techniques, and sterilization methods were extracted from 23 studies published between 2015 and 2024. Results: The review highlights a diverse range of digital workflows, beginning with CBCT-based DICOM to STL conversion using software such as Mimics and Btk-3D®. Customized titanium meshes and other meshes like Poly Ether-Ether Ketone (PEEK) meshes were produced via techniques including direct metal laser sintering (DMLS), selective laser melting (SLM), and five-axis milling. Although titanium remained the predominant material, studies reported variations in mesh design, thickness, and sterilization protocols. The findings underscore that digital customization enhances surgical precision and efficiency in BR, with several studies demonstrating improved bone gain and reduced operative time compared to conventional approaches. Conclusions: This scoping review confirms that 3D techniques represent a promising advancement in BR. Customized digital workflows provide superior accuracy and support for BR procedures, yet variability in protocols and limited high-quality trials underscore the need for further clinical research to standardize techniques and validate long-term outcomes. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

20 pages, 3348 KiB  
Article
Influence of the Processing Method on the Nano-Mechanical Properties and Porosity of Dental Acrylic Resins Fabricated by Heat-Curing, 3D Printing and Milling Techniques
by Marina Imre, Veaceslav Șaramet, Lucian Toma Ciocan, Vlad-Gabriel Vasilescu, Elena Iuliana Biru, Jana Ghitman, Mihaela Pantea, Alexandra Ripszky, Adriana Lucia Celebidache and Horia Iovu
Dent. J. 2025, 13(7), 311; https://doi.org/10.3390/dj13070311 - 10 Jul 2025
Viewed by 335
Abstract
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, [...] Read more.
Background: Acrylic resin-based materials are a versatile category used extensively in various dental applications. Processed by current modern technologies, such as CAD/CAM technologies or 3D printing, these materials have revolutionized the field of dentistry for the efficient creation of dental devices. However, despite their extensive use, a limited number of comparative studies exist that investigate how different processing methods—such as traditional techniques, 3D printing, and CAD/CAM milling—impact the nano-mechanical behavior and internal porosity of these materials, which are critical for their long-term clinical performance. Objectives: The purpose of this study is to evaluate the nanomechanical properties (hardness, elasticity, and stiffness) and micro-porosity of acrylic resin-based materials indicated for temporary prosthodontic appliances manufactured by new technologies (milling, 3D printing) compared to traditional methods. Methods: The hardness, elasticity, and stiffness measurements were performed by the nano-metric indentation method (nanoindentation), and the quantitative morphological characterization of the porosity of the acrylic resin samples obtained by 3D printing and CAD/CAM milling was performed by micro-computed tomography. Results: According to nanomechanical investigations, CAD/CAM milling restorative specimens exhibited the greatest mechanical performances (E~5.233 GPa and H~0.315 GPa), followed by 3D printed samples, while the lowest mechanical properties were registered for the specimen fabricated by the traditional method (E~3.552 GPa, H~0.142 GPa). At the same time, the results of porosity studies (micro-CT) suggested that 3D printed specimens demonstrated a superior degree of porosity (temporary crown—22.93% and splints—8.94%) compared to CAD/CAM milling restorative samples (5.73%). Conclusions: The comparative analysis of these results allows for the optimal selection of the processing method in order to ensure the specific requirements of the various clinical applications. Full article
Show Figures

Figure 1

12 pages, 677 KiB  
Systematic Review
Quality of Life Outcomes Following Total Temporomandibular Joint Replacement: A Systematic Review of Long-Term Efficacy, Functional Improvements, and Complication Rates Across Prosthesis Types
by Luis Eduardo Almeida, Samuel Zammuto and Louis G. Mercuri
J. Clin. Med. 2025, 14(14), 4859; https://doi.org/10.3390/jcm14144859 - 9 Jul 2025
Viewed by 514
Abstract
Introduction: Total temporomandibular joint replacement (TMJR) is a well-established surgical solution for patients with severe TMJ disorders. It aims to relieve chronic pain, restore jaw mobility, and significantly enhance quality of life. This systematic review evaluates QoL outcomes following TMJR, analyzes complication profiles, [...] Read more.
Introduction: Total temporomandibular joint replacement (TMJR) is a well-established surgical solution for patients with severe TMJ disorders. It aims to relieve chronic pain, restore jaw mobility, and significantly enhance quality of life. This systematic review evaluates QoL outcomes following TMJR, analyzes complication profiles, compares custom versus stock prostheses, explores pediatric applications, and highlights technological innovations shaping the future of TMJ reconstruction. Methods: A systematic search of PubMed, Embase, and the Cochrane Library was conducted throughout April 2025 in accordance with PRISMA 2020 guidelines. Sixty-four studies were included, comprising 2387 patients. Results: Primary outcomes assessed were QoL improvement, pain reduction, and functional gains such as maximum interincisal opening (MIO). Secondary outcomes included complication rates and technological integration. TMJR consistently led to significant pain reduction (75–87%), average MIO increases of 26–36 mm, and measurable QoL improvements across physical, social, and psychological domains. Custom prostheses were particularly beneficial in anatomically complex or revision cases, while stock devices generally performed well for standard anatomical conditions. Pediatric TMJR demonstrated functional and airway benefits with no clear evidence of growth inhibition over short- to medium-term follow-up. Complications such as heterotopic ossification (~20%, reduced to <5% with fat grafting), infection (3–4.9%), and chronic postoperative pain (~20–30%) were reported but were largely preventable or manageable. Recent advancements, including CAD/CAM planning, 3D-printed prostheses, augmented-reality-assisted surgery, and biofilm-resistant materials, are enhancing personalization, precision, and implant longevity. Conclusions: TMJR is a safe and transformative treatment that consistently improves QoL in patients with end-stage TMJ disease. Future directions include long-term registry tracking, growth-accommodating prosthesis design, and biologically integrated smart implants. Full article
Show Figures

Figure 1

17 pages, 452 KiB  
Systematic Review
Comparative Cost-Effectiveness of Resin 3D Printing Protocols in Dental Prosthodontics: A Systematic Review
by Mircea Popescu, Viorel Stefan Perieanu, Mihai Burlibașa, Andrei Vorovenci, Mădălina Adriana Malița, Diana-Cristina Petri, Andreea Angela Ștețiu, Radu Cătălin Costea, Raluca Mariana Costea, Andrei Burlibașa, Andi Ciprian Drăguș, Maria Antonia Ștețiu and Liliana Burlibașa
Prosthesis 2025, 7(4), 78; https://doi.org/10.3390/prosthesis7040078 - 4 Jul 2025
Viewed by 439
Abstract
Objectives: This systematic review aimed to evaluate the cost, production time, clinical performance, and patient satisfaction of 3D printing workflows in prosthodontics compared to conventional and subtractive methods. Methods: Following PRISMA guidelines, a systematic search of electronic databases was performed to identify studies [...] Read more.
Objectives: This systematic review aimed to evaluate the cost, production time, clinical performance, and patient satisfaction of 3D printing workflows in prosthodontics compared to conventional and subtractive methods. Methods: Following PRISMA guidelines, a systematic search of electronic databases was performed to identify studies published between 2015 and 2025 that directly compared digital additive workflows with analogue or subtractive workflows. Studies were eligible if they included prosthodontic treatments such as dentures, crowns, or implant-supported prostheses and reported at least one relevant outcome. The primary outcomes were cost, time efficiency, clinical accuracy (e.g., marginal adaptation, fit), and patient satisfaction. Included studies were methodologically evaluated using MINORS scale and the risk of bias was assessed using ROBINS-I and RoB 2 tools. Results: Seven studies met the inclusion criteria. Overall, 3D printing workflows demonstrated reduced production time and cost in comparison to conventional or subtractive methods. Clinical outcomes were generally comparable or superior, particularly regarding adaptation and fit. Patient satisfaction was favourable in most studies, although reporting varied. Long-term follow-up was limited, which constrains the interpretation of sustained clinical performance. Conclusions: These findings suggest that 3D printing can serve as an efficient and cost-effective alternative in prosthodontic fabrication, with clinical results comparable to those already established. Further research is needed to assess long-term clinical performance and cost-effectiveness in various clinical scenarios. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

4 pages, 160 KiB  
Editorial
Ceramic Dental Restorations—From Materials Sciences to Applications
by Han Chao Chang and Satoshi Yamaguchi
Materials 2025, 18(13), 3116; https://doi.org/10.3390/ma18133116 - 1 Jul 2025
Viewed by 283
Abstract
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives [...] Read more.
In response to the growing demand from patients for enhanced oral aesthetics, as well as improved chewing and occlusion, coupled with advancements in CAD/CAM technology, a variety of dental ceramic materials have been developed over the past two decades to serve as alternatives to traditional alloys and pure metals [...] Full article
(This article belongs to the Special Issue Ceramic Dental Restorations: From Materials Sciences to Applications)
15 pages, 567 KiB  
Article
Patient Satisfaction and Perception with Digital Complete Dentures Compared to Conventional Complete Dentures—A Pilot Study
by Andrea Bors, Melinda Szekely, Liana Beresescu, Alexandra Maier and Felicia Beresescu
Dent. J. 2025, 13(7), 291; https://doi.org/10.3390/dj13070291 - 27 Jun 2025
Viewed by 563
Abstract
Background: Patient satisfaction is a critical outcome in the rehabilitation of edentulous patients. While conventional fabrication methods are widely used, digital workflows are emerging as viable alternatives. However, direct comparative evidence from the patient’s perspective remains limited. Objective: To compare patient satisfaction between [...] Read more.
Background: Patient satisfaction is a critical outcome in the rehabilitation of edentulous patients. While conventional fabrication methods are widely used, digital workflows are emerging as viable alternatives. However, direct comparative evidence from the patient’s perspective remains limited. Objective: To compare patient satisfaction between conventional complete dentures (C-CD) and digital complete dentures (D-CD) in maxillary edentulous patients, including changes in perceptions over time and final prosthesis preference. Methods: A prospective, randomized crossover clinical trial was conducted in 2023–2024 involving 40 completely maxillary edentulous patients meeting specific inclusion criteria. Participants were randomly allocated into two sequence groups: Group 1 (n = 20) received C-CD first, and Group 2 (n = 20) received D-CD first, each for 6 months (T1), followed by crossover to the alternate denture for another 6 months (T2). Patient satisfaction was measured using a 10-item questionnaire at 6 and 12 months. Statistical analysis: Wilcoxon signed-rank tests were used for within-subject comparisons of denture types, and Mann–Whitney U tests for between-group comparisons, with significance set at p ≤ 0.05. Results: Using the paired crossover analysis, D-CD showed significantly better comfort than C-CD (p < 0.05). D-CD scored significantly higher than C-CD in most satisfaction domains, including comfort, retention, speech, esthetics, and need for adjustments (p ≤ 0.05). Median scores for retention, speech, esthetics, and other domains were slightly higher with D-CD but did not reach statistical significance (p > 0.05). Additionally, the D-CD required fewer post-insertion adjustment visits than the C-CD (p < 0.05). By the end of the trial, 28 patients (70%) preferred the digital denture as their final prosthesis, whereas 12 patients (30%) preferred the conventional denture. Conclusions: Incorporating digital technology in the fabrication of complete dentures significantly enhances patient satisfaction compared to conventional methods. This study highlights the clinical relevance of modern dental prosthesis technology and supports the wider integration of digital workflows. Within the limitations of this pilot study, digitally fabricated complete dentures provided overall patient satisfaction comparable to conventional dentures, with the D-CD offering a notable improvement in comfort. The majority of patients ultimately favored the digital denture, supporting the clinical viability of CAD/CAM workflows. Full article
(This article belongs to the Special Issue Digital Dentures: 2nd Edition)
Show Figures

Figure 1

15 pages, 5462 KiB  
Article
Contemporary Magnetic Removable Partial Denture Utilizing a Novel Ultra-Thin Magnetic Attachment System
by Adityakrisna Yoshi Putra Wigianto, Yuichi Ishida, Kohei Kamoi, Takaharu Goto, Kazumitsu Sekine, Megumi Watanabe and Tetsuo Ichikawa
Dent. J. 2025, 13(7), 278; https://doi.org/10.3390/dj13070278 - 20 Jun 2025
Viewed by 482
Abstract
Background/Objectives: Recently, a novel magnetic attachment system was introduced to improve performance. Using the same technology, a new ultra-thin magnetic attachment (UTMA) was possible to produce. This study aimed to evaluate the feasibility of a magnet-retained telescopic partial denture (MTPD) utilizing the new [...] Read more.
Background/Objectives: Recently, a novel magnetic attachment system was introduced to improve performance. Using the same technology, a new ultra-thin magnetic attachment (UTMA) was possible to produce. This study aimed to evaluate the feasibility of a magnet-retained telescopic partial denture (MTPD) utilizing the new UTMA. Methods: This in vitro study was performed using a titanium master model representing prepared lower first-premolar and second-molar abutment teeth. The inner crowns (ICs) (h: 4 mm, 4° taper) and four-unit MTPDs were fabricated via computer-aided design/computer-aided manufacturing (CAD/CAM) using zirconia. A Ø4 mm UTMA system (magnet assembly and keeper thickness: 0.6 mm and 0.4 mm, respectively) was cemented into the MTPD and the ICs using dual-cure resin cement. A load of 100 N was applied along with 10,000 insertion–removal cycles. The MTPD retentive force was measured before and after every set of 1000 cycles. Stability tests and surface morphology evaluations were conducted before and after cycling. A paired t-test (α = 0.05) was used to observe statistical differences. Results: The average retentive force of the MTPD was 6.86 ± 0.63 N and did not change significantly (p > 0.05) following the load cycles (6.66 ± 0.79 N). The MTPD demonstrated adequate stability under the occlusal load. Minimal deformations were observed on the magnet assemblies, keepers, ICs, and MTPD surfaces after the load tests. Conclusions: Considering the limitations of this study, an MTPD utilizing novel UTMAs fabricated through a digital workflow demonstrated adequate retentive force, stability, and durability for clinical use. Full article
(This article belongs to the Special Issue Digital Dentures: 2nd Edition)
Show Figures

Figure 1

14 pages, 287 KiB  
Review
From Conventional to Smart Prosthetics: Redefining Complete Denture Therapy Through Technology and Regenerative Science
by Andrea Bors, Simona Mucenic, Adriana Monea, Alina Ormenisan and Gabriela Beresescu
Medicina 2025, 61(6), 1104; https://doi.org/10.3390/medicina61061104 - 18 Jun 2025
Viewed by 698
Abstract
Background and Objectives: Complete dentures remain a primary solution for oral rehabilitation in aging and medically compromised populations. The integration of digital workflows, regenerative materials, and smart technologies is propelling prosthodontics towards a new era, transcending the limitations of traditional static prostheses. Materials [...] Read more.
Background and Objectives: Complete dentures remain a primary solution for oral rehabilitation in aging and medically compromised populations. The integration of digital workflows, regenerative materials, and smart technologies is propelling prosthodontics towards a new era, transcending the limitations of traditional static prostheses. Materials and Methods: This narrative review synthesizes historical developments, current practices, and future innovations in complete denture therapy. A comprehensive review of literature from PubMed, Scopus, and Web of Science (2000–2025) was conducted, with a focus on materials science, digital design, patient-centered care, artificial intelligence (AI), and sustainable fabrication. Results: Innovations in the field include high-performance polymers, CAD–CAM systems, digital impressions, smart sensors, and bioactive liners. Recent trends in the field include the development of self-monitoring prostheses, artificial intelligence (AI)-driven design platforms, and bioprinted regenerative bases. These advances have been shown to enhance customization, durability, hygiene, and patient satisfaction. However, challenges persist in terms of accessibility, clinician training, regulatory validation, and ethical integration of digital data. Conclusions: The field of complete denture therapy is undergoing a transition toward a new paradigm of prosthetics that are personalized, intelligent, and sustainable. To ensure the integration of these technologies into standard care, ongoing interdisciplinary research, clinical validation, and equitable implementation are imperative. Full article
(This article belongs to the Topic Advances in Dental Materials)
22 pages, 6009 KiB  
Article
Teaching Bioinspired Design for Assistive Technologies Using Additive Manufacturing: A Collaborative Experience
by Maria Elizete Kunkel, Alexander Sauer, Carlos Isaacs, Thabata Alcântara Ferreira Ganga, Leonardo Henrique Fazan and Eduardo Keller Rorato
Biomimetics 2025, 10(6), 391; https://doi.org/10.3390/biomimetics10060391 - 11 Jun 2025
Viewed by 575
Abstract
Integrating bioinspired design and additive manufacturing into engineering education fosters innovation to meet the growing demand for accessible, personalized assistive technologies. This paper presents the outcomes of an international course, “3D Prosthetics and Orthotics”, offered to undergraduate students in the Biomimetic program at [...] Read more.
Integrating bioinspired design and additive manufacturing into engineering education fosters innovation to meet the growing demand for accessible, personalized assistive technologies. This paper presents the outcomes of an international course, “3D Prosthetics and Orthotics”, offered to undergraduate students in the Biomimetic program at Westfälische Hochschule (Germany), in collaboration with the 3D Orthotics and Prosthetics Laboratory at the Federal University of São Paulo—UNIFESP (Brazil). The course combined theoretical and hands-on modules covering digital modeling (CAD), simulation (CAE), and fabrication (CAM), enabling students to develop bioinspired assistive devices through a Project-based learning approach. Working in interdisciplinary teams, students addressed real-world rehabilitation challenges by translating biological mechanisms into engineered solutions using additive manufacturing. Resulting prototypes included a hand prosthesis based on the Fin Ray effect, a modular finger prosthesis inspired by tendon–muscle antagonism, and a cervical orthosis designed based on stingray morphology. Each device was digitally modeled, mechanically analyzed, and physically fabricated using open-source and low-cost methods. This initiative illustrates how biomimetic mechanisms and design can be integrated into education to generate functional outcomes and socially impactful health technologies. Grounded in the Mao3D open-source methodology, this experience demonstrates the value of combining nature-inspired principles, digital fabrication, Design Thinking, and international collaboration to advance inclusive, low-cost innovations in assistive technology. Full article
Show Figures

Graphical abstract

12 pages, 9150 KiB  
Case Report
Guided Bone Regeneration Using a Modified Occlusive Barrier with a Window: A Case Report
by Luis Leiva-Gea, Alfonso Lendínez-Jurado, Paulino Sánchez-Palomino, Bendición Delgado-Ramos, María Daniela Corte-Torres, Isabel Leiva-Gea and Antonio Leiva-Gea
Biomimetics 2025, 10(6), 386; https://doi.org/10.3390/biomimetics10060386 - 10 Jun 2025
Viewed by 473
Abstract
Background: Bone resorption following tooth loss poses significant challenges for dental implant success. Guided bone regeneration (GBR) techniques, particularly in vertically deficient ridges, often require complex procedures and soft tissue management. This case report introduces a modified occlusive barrier with a window, combined [...] Read more.
Background: Bone resorption following tooth loss poses significant challenges for dental implant success. Guided bone regeneration (GBR) techniques, particularly in vertically deficient ridges, often require complex procedures and soft tissue management. This case report introduces a modified occlusive barrier with a window, combined with tricalcium phosphate, to address these challenges. Methods: A 26-year-old female with significant bone loss in the mandibular anterior region underwent GBR using a digitally designed titanium occlusive barrier. The barrier was fabricated using CAD/CAM technology and secured with screws. A blood clot mixed with tricalcium phosphate was used to promote bone regeneration. Postoperative care included regular irrigation, de-epithelialization, and follow-up over six months. Implant placement and histological analysis were performed to evaluate outcomes. Case Presentation: The patient achieved 8.8 mm of vertical and 7.6 mm of horizontal bone regeneration. Histological analysis confirmed the presence of mature, mineralized bone, and keratinized gingiva. The implant was successfully placed, and a fixed prosthesis was restored after four months, with stable results at a three-year follow-up. Conclusion: This technique demonstrates effective bone and soft tissue regeneration in a single procedure, eliminating the need for autologous bone grafts and secondary surgeries. The use of a digitally designed occlusive barrier offers precision, reduces morbidity, and simplifies the surgical process, suggesting a promising advancement in GBR. Further studies are needed to validate these findings. Full article
Show Figures

Figure 1

18 pages, 555 KiB  
Article
Evaluation of Undergraduate Dental Students’ Opinions on the Use of Digital Versus Conventional Design in Prosthodontics
by Lucian Toma Ciocan, Mihaela Pantea, Vlad Gabriel Vasilescu, Ana Maria Cristina Țâncu, Ruxandra Sfeatcu, Andreea Cristiana Didilescu, Alexandra Ripszky, Alexandra Popa, Silviu Mirel Pițuru and Marina Imre
Dent. J. 2025, 13(6), 242; https://doi.org/10.3390/dj13060242 - 29 May 2025
Viewed by 419
Abstract
Background/Objectives: The integration of digital technologies into dental education is becoming increasingly important, particularly in prosthodontics, where digital design tools offer enhanced precision and efficiency. This study aimed to evaluate second-year dental students’ perceptions regarding conventional versus digital design in prosthodontics, assessing [...] Read more.
Background/Objectives: The integration of digital technologies into dental education is becoming increasingly important, particularly in prosthodontics, where digital design tools offer enhanced precision and efficiency. This study aimed to evaluate second-year dental students’ perceptions regarding conventional versus digital design in prosthodontics, assessing their theoretical knowledge, practical skills, and attitudes toward these approaches. Methods: A total of 141 dental students enrolled in Faculty of Dentistry from “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania, participated in an online survey consisting of 19 questions evaluating their understanding, preferences, attitudes, and expectations regarding digital and conventional prosthodontic workflows. Additionally, students’ practical exam grades and task completion times for both conventional and digital design methods were evaluated. Results: Participating students reported sufficient understanding of theoretical concepts in both conventional (92.9%) and digital design (91.5%). A significant proportion (78.7%) felt confident in their practical skills for conventional design, while 78% expressed the same for digital design. Statistically significant correlations indicated that students who believed digital design could replace conventional methods associated digital design with greater accuracy (p = 0.020), predictability (p = 0.048), and sustainability (p = 0.032). Students who believed they had acquired enough skills in digital design responded more frequently that the time allocation for digital design by the university was sufficient (p < 0.001). Moreover, students scored significantly higher in digital design practical exams compared to conventional design (p < 0.001). Task completion times were also shorter for digital workflows, further supporting their efficiency. Conclusions: The findings suggest that students are highly receptive to digital technologies in prosthodontics, favoring digital workflows over conventional techniques. These results highlight the need for continued integration of digital tools into dental curricula to enhance students’ competency and prepare them for modern clinical practice. Full article
(This article belongs to the Special Issue Dental Education: Innovation and Challenge)
Show Figures

Figure 1

Back to TopTop