Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = C9orf72 hexanucleotide repeat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4906 KiB  
Review
Therapeutic Approaches for C9ORF72-Related ALS: Current Strategies and Future Horizons
by Marco Cattaneo, Eleonora Giagnorio, Giuseppe Lauria and Stefania Marcuzzo
Int. J. Mol. Sci. 2025, 26(13), 6268; https://doi.org/10.3390/ijms26136268 - 28 Jun 2025
Viewed by 705
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. One of its major genetic causes is C9ORF72, where mutations lead to hexanucleotide repeat expansions in the C9ORF72 gene. These expansions drive disease progression [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons. One of its major genetic causes is C9ORF72, where mutations lead to hexanucleotide repeat expansions in the C9ORF72 gene. These expansions drive disease progression through mechanisms, including the formation of toxic RNAs and the accumulation of damaged proteins such as dipeptide repeats (DPRs). This review highlights these pathogenic mechanisms, focusing on RNA foci formation and the accumulation of toxic DPRs, which contribute to neuronal damage. It also discusses promising targeted therapies, including small molecules and biological drugs, designed to counteract these specific molecular events. Small molecules such as G-quadruplex stabilizers, proteasome and autophagy modulators, and RNase-targeting chimeras show potential in reducing RNA foci and DPR accumulation. Furthermore, targeting enzymes involved in repeat-associated non-AUG (RAN) translation and nucleocytoplasmic transport, which are crucial for disease pathogenesis, opens new therapeutic avenues. Even some anti-viral drugs show encouraging results in preclinical studies. Biological drugs, such as antisense oligonucleotides and gene-editing technologies like CRISPR-Cas, were explored for their potential to specifically target C9ORF72 mutations and modify the disease’s molecular foundations. While preclinical and early clinical data show promise, challenges remain in optimizing delivery methods, ensuring long-term safety, and improving efficacy. This review concludes by emphasizing the importance of continued research and the potential for these therapies to alter the disease trajectory and improve patient outcomes. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

34 pages, 1647 KiB  
Review
Molecular Mechanisms of Protein Aggregation in ALS-FTD: Focus on TDP-43 and Cellular Protective Responses
by Enza Maria Verde, Valentina Secco, Andrea Ghezzi, Jessica Mandrioli and Serena Carra
Cells 2025, 14(10), 680; https://doi.org/10.3390/cells14100680 - 8 May 2025
Cited by 1 | Viewed by 2193
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share common genes and pathomechanisms and are referred to as the ALS-FTD spectrum. A hallmark of ALS-FTD pathology is the abnormal aggregation of proteins, including Cu/Zn superoxide dismutase (SOD1), transactive [...] Read more.
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share common genes and pathomechanisms and are referred to as the ALS-FTD spectrum. A hallmark of ALS-FTD pathology is the abnormal aggregation of proteins, including Cu/Zn superoxide dismutase (SOD1), transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and dipeptide repeat proteins resulting from C9orf72 hexanucleotide expansions. Genetic mutations linked to ALS-FTD disrupt protein stability, phase separation, and interaction networks, promoting misfolding and insolubility. This review explores the molecular mechanisms underlying protein aggregation in ALS-FTD, with a particular focus on TDP-43, as it represents the main aggregated species inside pathological inclusions and can also aggregate in its wild-type form. Moreover, this review describes the protective mechanisms activated by the cells to prevent protein aggregation, including molecular chaperones and post-translational modifications (PTMs). Understanding these regulatory pathways could offer new insights into targeted interventions aimed at mitigating cell toxicity and restoring cellular function. Full article
Show Figures

Graphical abstract

20 pages, 1858 KiB  
Review
Targeting Gene C9orf72 Pathogenesis for Amyotrophic Lateral Sclerosis
by Zhao Zhong Chong and Nizar Souayah
Int. J. Mol. Sci. 2025, 26(9), 4276; https://doi.org/10.3390/ijms26094276 - 30 Apr 2025
Viewed by 1096
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal adult neurodegenerative disorder. Since no cure has been found, finding effective therapeutic targets for ALS remains a major challenge. Gene C9orf72 mutations with the formation of hexanucleotide repeat (GGGGCC) expansion (HRE) have been considered the most common genetic pathogenesis of ALS. The literature review indicates that the C9orf72 HRE causes both the gain-of-function toxicity and loss of function of C9ORF72. The formation of RNA foci and dipeptide repeats (DPRs) resulting from HRE is responsible for toxic function gain. The RNA foci can interfere with RNA processing, while DPRs directly bind to and sequester associated proteins to disrupt processes of rRNA synthesis, mRNA translation, autophagy, and nucleocytoplasmic transport. The mutations of C9orf72 and HRE result in the loss of functional C9ORF72. Under physiological conditions, C9ORF72 binds to Smith–Magenis chromosome region 8 and WD repeat-containing protein and forms a protein complex. Loss of C9ORF72 leads to autophagic impairment, increased oxidative stress, nucleocytoplasmic transport impairment, and inflammatory response. The attempted treatments for ALS have been tried by targeting C9orf72 HRE; however, the outcomes are far from satisfactory yet. More studies should be performed on pharmacological and molecular modulators against C9orf72 HRE to evaluate their efficacy by targeting HRE. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

18 pages, 762 KiB  
Article
Next Generation Sequencing Analysis in Patients Affected by Parkinson’s Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases
by Andrea Pilotto, Mattia Carini, Roberto Bresciani, Eugenio Monti, Fabiana Ferrari, Maria Antonia De Francesco, Alessandro Padovani and Giorgio Biasiotto
Int. J. Mol. Sci. 2025, 26(6), 2397; https://doi.org/10.3390/ijms26062397 - 7 Mar 2025
Viewed by 1048
Abstract
Parkinson’s Disease (PD) is the most frequent movement disorder and is second only to Alzheimer’s Disease as the most frequent neurodegenerative pathology. Early onset Parkinson’s disease (EOPD) is less common and may be characterized by genetic predisposition. NGS testing might be useful in [...] Read more.
Parkinson’s Disease (PD) is the most frequent movement disorder and is second only to Alzheimer’s Disease as the most frequent neurodegenerative pathology. Early onset Parkinson’s disease (EOPD) is less common and may be characterized by genetic predisposition. NGS testing might be useful in the diagnostic assessment of these patients. A panel of eight genes (SNCA, PRKN, PINK1, DJ1, LRRK2, FBXO7, GBA1 and HFE) was validated and used as a diagnostic tool. A total of 38 in sequence EOPD patients of the Parkinson’s Disease Unit of our Hospital Institution were tested. In addition, the number of the hexanucleotide repeats of the C9ORF72 gene and the frequency of main HFE mutations were evaluated. Six patients were carriers of likely pathogenic mutations in heterozygosity in the analyzed genes, one of them presented mutations in association and another had a complex genetic background. Their clinical symptoms were correlated with their genotypes. In the cohort of patients, only the p.Cys282Tyr of HFE was significantly decreased in the dominant model and allele contrast comparison. Only one patient with one allele of C9ORF72 containing 10 repeats was identified and clinically described. The clinical signs of sporadic and monogenic PD are often very similar; for this reason, it is fundamental to correlate genotypes and phenotypes, as we tried to describe here, to better classify PD patients with the aim to deepen our knowledge in the molecular mechanisms involved and collaborate in reaching a personalized management and treatment. Full article
Show Figures

Figure 1

11 pages, 4353 KiB  
Review
G-Quadruplex Structures Formed by Human Telomere and C9orf72 GGGGCC Repeats
by Bing Yan, Monica Ching Suen, Naining Xu, Chao Lu, Changdong Liu and Guang Zhu
Int. J. Mol. Sci. 2025, 26(4), 1591; https://doi.org/10.3390/ijms26041591 - 13 Feb 2025
Viewed by 1699
Abstract
G-quadruplexes (G4s) are unique nucleic acid structures composed of guanine-rich (G-rich) sequences that can form diverse topologies based on the arrangement of their four strands. G4s have attracted attention for their potential roles in various biological processes and human diseases. In this review, [...] Read more.
G-quadruplexes (G4s) are unique nucleic acid structures composed of guanine-rich (G-rich) sequences that can form diverse topologies based on the arrangement of their four strands. G4s have attracted attention for their potential roles in various biological processes and human diseases. In this review, we focus on the G4 structures formed by human telomeric sequences, (GGGTTA)n, and the hexanucleotide repeat expansion, (GGGGCC)n, in the first intron region of the chromosome 9 open reading frame 72 (C9orf72) gene, highlighting their structural diversity and biological significance. Human telomeric G4s play crucial roles in telomere retention and gene regulation. In particular, we provide an in-depth summary of known telomeric G4s and focus on our recently discovered chair-type conformation, which exhibits distinct folding patterns. The chair-type G4s represent a novel folding pattern with unique characteristics, expanding our knowledge of telomeric G4 structural diversity and potential biological functions. Specifically, we emphasize the G4s formed by the (GGGGCC)n sequence of the C9orf72 gene, which represents the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The thorough structural analysis in this review advances our comprehension of the disease mechanism and provides valuable insights into developing targeted therapeutic strategies in ALS/FTD. Full article
Show Figures

Figure 1

13 pages, 3095 KiB  
Article
Overexpression of Toxic Poly(Glycine-Alanine) Aggregates in Primary Neuronal Cultures Induces Time-Dependent Autophagic and Synaptic Alterations but Subtle Activity Impairments
by Christina Steffke, Shreya Agarwal, Edor Kabashi and Alberto Catanese
Cells 2024, 13(15), 1300; https://doi.org/10.3390/cells13151300 - 3 Aug 2024
Cited by 2 | Viewed by 1622
Abstract
The pathogenic expansion of the intronic GGGGCC hexanucleotide located in the non-coding region of the C9orf72 gene represents the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation leads to the accumulation of toxic RNA foci and [...] Read more.
The pathogenic expansion of the intronic GGGGCC hexanucleotide located in the non-coding region of the C9orf72 gene represents the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This mutation leads to the accumulation of toxic RNA foci and dipeptide repeats (DPRs), as well as reduced levels of the C9orf72 protein. Thus, both gain and loss of function are coexisting pathogenic aspects linked to C9orf72-ALS/FTD. Synaptic alterations have been largely described in C9orf72 models, but it is still not clear which aspect of the pathology mostly contributes to these impairments. To address this question, we investigated the dynamic changes occurring over time at the synapse upon accumulation of poly(GA), the most abundant DPR. Overexpression of this toxic form induced a drastic loss of synaptic proteins in primary neuron cultures, anticipating autophagic defects. Surprisingly, the dramatic impairment characterizing the synaptic proteome was not fully matched by changes in network properties. In fact, high-density multi-electrode array analysis highlighted only minor reductions in the spike number and firing rate of poly(GA) neurons. Our data show that the toxic gain of function linked to C9orf72 affects the synaptic proteome but exerts only minor effects on the network activity. Full article
Show Figures

Figure 1

25 pages, 5035 KiB  
Article
Limbic Network and Papez Circuit Involvement in ALS: Imaging and Clinical Profiles in GGGGCC Hexanucleotide Carriers in C9orf72 and C9orf72-Negative Patients
by Foteini Christidi, Jana Kleinerova, Ee Ling Tan, Siobhan Delaney, Asya Tacheva, Jennifer C. Hengeveld, Mark A. Doherty, Russell L. McLaughlin, Orla Hardiman, We Fong Siah, Kai Ming Chang, Jasmin Lope and Peter Bede
Biology 2024, 13(7), 504; https://doi.org/10.3390/biology13070504 - 6 Jul 2024
Cited by 5 | Viewed by 2979
Abstract
Background: While frontotemporal involvement is increasingly recognized in Amyotrophic lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition. Methods: A prospective neuroimaging study was conducted [...] Read more.
Background: While frontotemporal involvement is increasingly recognized in Amyotrophic lateral sclerosis (ALS), the degeneration of limbic networks remains poorly characterized, despite growing evidence of amnestic deficits, impaired emotional processing and deficits in social cognition. Methods: A prospective neuroimaging study was conducted with 204 individuals with ALS and 111 healthy controls. Patients were stratified for hexanucleotide expansion status in C9orf72. A deep-learning-based segmentation approach was implemented to segment the nucleus accumbens, hypothalamus, fornix, mammillary body, basal forebrain and septal nuclei. The cortical, subcortical and white matter components of the Papez circuit were also systematically evaluated. Results: Hexanucleotide repeat expansion carriers exhibited bilateral amygdala, hypothalamus and nucleus accumbens atrophy, and C9orf72 negative patients showed bilateral basal forebrain volume reductions compared to controls. Both patient groups showed left rostral anterior cingulate atrophy, left entorhinal cortex thinning and cingulum and fornix alterations, irrespective of the genotype. Fornix, cingulum, posterior cingulate, nucleus accumbens, amygdala and hypothalamus degeneration was more marked in C9orf72-positive ALS patients. Conclusions: Our results highlighted that mesial temporal and parasagittal subcortical degeneration is not unique to C9orf72 carriers. Our radiological findings were consistent with neuropsychological observations and highlighted the importance of comprehensive neuropsychological testing in ALS, irrespective of the underlying genotype. Full article
(This article belongs to the Special Issue New Insights in Neurogenetics)
Show Figures

Figure 1

14 pages, 1645 KiB  
Article
Investigating Repeat Expansions in NIPA1, NOP56, and NOTCH2NLC Genes: A Closer Look at Amyotrophic Lateral Sclerosis Patients from Southern Italy
by Paola Ruffo, Francesca De Amicis, Vincenzo La Bella and Francesca Luisa Conforti
Cells 2024, 13(8), 677; https://doi.org/10.3390/cells13080677 - 14 Apr 2024
Viewed by 1693
Abstract
The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences [...] Read more.
The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences in the human genome play a significant role in ALS pathophysiology. Investigating the frequency of repeat expansions in ALS in different populations and ethnic groups is therefore of great importance. Based on these premises, this study aimed to define the frequency of REs in the NIPA1, NOP56, and NOTCH2NLC genes and the possible associations between phenotypes and the size of REs in the Italian population. Using repeat-primed-PCR and PCR-fragment analyses, we screened 302 El-Escorial-diagnosed ALS patients and compared the RE distribution to 167 age-, gender-, and ethnicity-matched healthy controls. While the REs distribution was similar between the ALS and control groups, a moderate association was observed between longer RE lengths and clinical features such as age at onset, gender, site of onset, and family history. In conclusion, this is the first study to screen ALS patients from southern Italy for REs in NIPA1, NOP56, and NOTCH2NLC genes, contributing to our understanding of ALS genetics. Our results highlighted that the extremely rare pathogenic REs in these genes do not allow an association with the disease. Full article
(This article belongs to the Collection Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

25 pages, 6338 KiB  
Article
Glycine-Alanine Dipeptide Repeat Protein from C9-ALS Interacts with Sulfide Quinone Oxidoreductase (SQOR) to Induce the Activity of the NLRP3 Inflammasome in HMC3 Microglia: Irisflorentin Reverses This Interaction
by Ru-Huei Fu, Hui-Jye Chen and Syuan-Yu Hong
Antioxidants 2023, 12(10), 1896; https://doi.org/10.3390/antiox12101896 - 23 Oct 2023
Cited by 6 | Viewed by 2723
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal rare disease of progressive degeneration of motor neurons. The most common genetic mutation in ALS is the hexanucleotide repeat expansion (HRE) located in the first intron of the C9orf72 gene (C9-ALS). HRE can produce dipeptide repeat [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a fatal rare disease of progressive degeneration of motor neurons. The most common genetic mutation in ALS is the hexanucleotide repeat expansion (HRE) located in the first intron of the C9orf72 gene (C9-ALS). HRE can produce dipeptide repeat proteins (DPRs) such as poly glycine-alanine (GA) in a repeat-associated non-ATG (RAN) translation. GA-DPR has been shown to be toxic to motor neurons in various biological models. However, its effects on microglia involved in C9-ALS have not been reported. Here, we show that GA-DPR (GA50) activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in a human HMC3 microglia model. MCC950 (specific inhibitor of the NLRP3) treatment can abrogate this activity. Next, using yeast two-hybrid screening, we identified sulfide quinone oxidoreductase (SQOR) as a GA50 interacting protein. SQOR knockdown in HMC3 cells can significantly induce the activity of the NLRP3 inflammasome by upregulating the level of intracellular reactive oxygen species and the cytoplasmic escape of mitochondrial DNA. Furthermore, we obtained irisflorentin as an effective blocker of the interaction between SQOR and GA50, thus inhibiting NLRP3 inflammasome activity in GA50-expressing HMC3 cells. These results imply the association of GA-DPR, SQOR, and NLRP3 inflammasomes in microglia and establish a treatment strategy for C9-ALS with irisflorentin. Full article
Show Figures

Graphical abstract

16 pages, 2329 KiB  
Article
C9ORF72 Gene GGGGCC Hexanucleotide Expansion: A High Clinical Variability from Amyotrophic Lateral Sclerosis to Frontotemporal Dementia
by Izaro Kortazar-Zubizarreta, Africa Manero-Azua, Juan Afonso-Agüera and Guiomar Perez de Nanclares
J. Pers. Med. 2023, 13(9), 1396; https://doi.org/10.3390/jpm13091396 - 19 Sep 2023
Cited by 2 | Viewed by 2954
Abstract
The expanded GGGGCC hexanucleotide repeat (HRE) in the non-coding region of the C9ORF72 gene (C9ORF72-HRE) is the most common genetic cause of familial forms of amyotrophic lateral sclerosis (ALS), FTD, and concurrent ALS and FTD (ALS-FTD), in addition to contributing to the sporadic [...] Read more.
The expanded GGGGCC hexanucleotide repeat (HRE) in the non-coding region of the C9ORF72 gene (C9ORF72-HRE) is the most common genetic cause of familial forms of amyotrophic lateral sclerosis (ALS), FTD, and concurrent ALS and FTD (ALS-FTD), in addition to contributing to the sporadic forms of these diseases. Both syndromes overlap not only genetically, but also sharing similar clinical and neuropathological findings, being considered as a spectrum. In this paper we describe the clinical-genetic findings in a Basque family with different manifestations within the spectrum, our difficulties in reaching the diagnosis, and a narrative review, carried out as a consequence, of the main features associated with C9ORF72-HRE. Family members underwent a detailed clinical assessment, neurological examination, and genetic analysis by repeat-primed PCR. We studied 10 relatives of a symptomatic carrier of the C9ORF72-HRE expansion. Two of them presented the expansion in the pathological range, one of them was symptomatic whereas the other one remained asymptomatic at 72 years. Given the great intrafamilial clinical variability of C9ORF72-HRE, the characterization of patients and family members with particular clinical and genetic subgroups within ALS and FTD becomes a bottleneck for medication development, in particular for genetically focused medicines for ALS and FTD. Full article
(This article belongs to the Section Mechanisms of Diseases)
Show Figures

Figure 1

19 pages, 2725 KiB  
Article
Insight into Tetramolecular DNA G-Quadruplexes Associated with ALS and FTLD: Cation Interactions and Formation of Higher-Ordered Structure
by Matja Zalar, Baifan Wang, Janez Plavec and Primož Šket
Int. J. Mol. Sci. 2023, 24(17), 13437; https://doi.org/10.3390/ijms241713437 - 30 Aug 2023
Cited by 2 | Viewed by 2702
Abstract
The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play [...] Read more.
The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5′-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5′-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5′-end G-quartets, leading to the formation of stable higher-ordered species. Full article
(This article belongs to the Special Issue Amyotrophic Lateral Sclerosis as a Systemic Disease 2.0)
Show Figures

Figure 1

19 pages, 2766 KiB  
Article
Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis
by Ella Dunn, Joern R. Steinert, Aelfwin Stone, Virender Sahota, Robin S. B. Williams, Stuart Snowden and Hrvoje Augustin
Cells 2023, 12(17), 2163; https://doi.org/10.3390/cells12172163 - 28 Aug 2023
Cited by 2 | Viewed by 3002
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known [...] Read more.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS. Full article
Show Figures

Figure 1

19 pages, 5298 KiB  
Article
C9orf72 Toxic Species Affect ArfGAP-1 Function
by Simona Rossi, Michela Di Salvio, Marilisa Balì, Assia De Simone, Savina Apolloni, Nadia D’Ambrosi, Ivan Arisi, Francesca Cipressa, Mauro Cozzolino and Gianluca Cestra
Cells 2023, 12(15), 2007; https://doi.org/10.3390/cells12152007 - 5 Aug 2023
Cited by 2 | Viewed by 2058
Abstract
Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in C9orf72, the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates [...] Read more.
Compelling evidence indicates that defects in nucleocytoplasmic transport contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS). In particular, hexanucleotide (G4C2) repeat expansions in C9orf72, the most common cause of genetic ALS, have a widespread impact on the transport machinery that regulates the nucleocytoplasmic distribution of proteins and RNAs. We previously reported that the expression of G4C2 hexanucleotide repeats in cultured human and mouse cells caused a marked accumulation of poly(A) mRNAs in the cell nuclei. To further characterize the process, we set out to systematically identify the specific mRNAs that are altered in their nucleocytoplasmic distribution in the presence of C9orf72-ALS RNA repeats. Interestingly, pathway analysis showed that the mRNAs involved in membrane trafficking are particularly enriched among the identified mRNAs. Most importantly, functional studies in cultured cells and Drosophila indicated that C9orf72 toxic species affect the membrane trafficking route regulated by ADP-Ribosylation Factor 1 GTPase Activating Protein (ArfGAP-1), which exerts its GTPase-activating function on the small GTPase ADP-ribosylation factor 1 to dissociate coat proteins from Golgi-derived vesicles. We demonstrate that the function of ArfGAP-1 is specifically affected by expanded C9orf72 RNA repeats, as well as by C9orf72-related dipeptide repeat proteins (C9-DPRs), indicating the retrograde Golgi-to-ER vesicle-mediated transport as a target of C9orf72 toxicity. Full article
Show Figures

Figure 1

19 pages, 3941 KiB  
Review
Advances in the Structure of GGGGCC Repeat RNA Sequence and Its Interaction with Small Molecules and Protein Partners
by Xiaole Liu, Xinyue Zhao, Jinhan He, Sishi Wang, Xinfei Shen, Qingfeng Liu and Shenlin Wang
Molecules 2023, 28(15), 5801; https://doi.org/10.3390/molecules28155801 - 1 Aug 2023
Cited by 4 | Viewed by 3064
Abstract
The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding [...] Read more.
The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA–protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA. Full article
Show Figures

Figure 1

9 pages, 505 KiB  
Communication
No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort
by Theresa König, Fritz Leutmezer, Thomas Berger, Alexander Zimprich, Christiane Schmied, Elisabeth Stögmann and Tobias Zrzavy
Int. J. Mol. Sci. 2023, 24(14), 11254; https://doi.org/10.3390/ijms241411254 - 9 Jul 2023
Viewed by 1497
Abstract
Multiple Sclerosis (MS) is a common immune-mediated disorder of the central nervous system that affects young adults and is characterized by demyelination and neurodegeneration. Recent studies have associated C9orf72 intermediate repeat expansions with MS. The objective of this study was to investigate whether [...] Read more.
Multiple Sclerosis (MS) is a common immune-mediated disorder of the central nervous system that affects young adults and is characterized by demyelination and neurodegeneration. Recent studies have associated C9orf72 intermediate repeat expansions with MS. The objective of this study was to investigate whether C9orf72 repeat length is associated with MS or with a specific disease course in a monocentric Austrian MS cohort. Genotyping of 382 MS patients and 643 non-neurological controls for C9orf72 repeat expansions was performed. The study did not find a difference in the distribution of repeat numbers between controls and MS cases (median repeat units = 2; p = 0.39). Additionally, sub-analysis did not establish a link between intermediate repeats and MS (p = 0.23) and none of the patients with progressive disease course carried an intermediate allele (20–30 repeat units). Exploratory analysis for different cut-offs (of ≥7, ≥17, and ≥24) did not reveal any significant differences in allele frequencies between MS and controls. However, the study did identify a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing behavioral variant frontotemporal dementia (bvFTD) in a retrospective chart review. In conclusion, this study did not find evidence supporting an association between C9orf72 repeat length and MS or a specific disease course in the Austrian MS cohort. However, the identification of a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing with FTD highlights the complexity and challenges involved in recognizing distinct neurodegenerative diseases that may co-occur in MS patients. Full article
Show Figures

Figure 1

Back to TopTop