Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = Bt-G033

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

11 pages, 1217 KiB  
Article
Spatial Anisotropy of Photoelasticity Determined by Path Difference in Ba3TaGa3Si2O14 Crystals
by Natalia Demyanyshyn, Oleh Buryy, Bohdan Mytsyk, Pavlo Solomenchuk, Oleksandr Lishchuk and Anatoliy Andrushchak
Crystals 2025, 15(8), 708; https://doi.org/10.3390/cryst15080708 - 31 Jul 2025
Viewed by 163
Abstract
The elastic and photoelastic coefficients of Ba3TaGa3Si2O14 (BTGS) crystals were determined by the quantum–mechanical calculation technique. Based on these data, extreme piezo-optic surfaces π′°km were constructed, which describe the change in the path difference [...] Read more.
The elastic and photoelastic coefficients of Ba3TaGa3Si2O14 (BTGS) crystals were determined by the quantum–mechanical calculation technique. Based on these data, extreme piezo-optic surfaces π′°km were constructed, which describe the change in the path difference in light beams in the crystal under the influence of mechanical stress. The results for BTGS crystals are compared with the ones for other crystals of the langasite group (La3Ga5SiO14, Ca3Ga2Ge4O14, Ca3TaGa3Si2O14 and Ca3NbGa3Si2O14). The global maxima of the π′°km surfaces for BTGS crystals significantly exceed the ones for the other crystals mentioned above and, accordingly, BTGS crystals can be suitable for use in polarization-optic light modulators and devices based on them. The acousto-optic efficiency of BTGS crystals was evaluated. The correlations between the magnitude of the piezo- and elasto-optic coefficients and the parameters of the unit cell of the studied crystals were determined. Full article
(This article belongs to the Special Issue Design and Synthesis of Functional Crystal Materials)
19 pages, 2232 KiB  
Article
Impact of Co-Substrates on the Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Burkholderia thailandensis E264
by Jonathan Uriel Hernández-Alonso, María Alejandra Pichardo-Sánchez, Sergio Huerta-Ochoa, Angélica Román-Guerrero, Oliverio Rodríguez-Fernández, Humberto Vázquez-Torres, Roberto Olayo-González, Roberto Olayo-Valles, Luis Víctor Rodríguez-Durán and Lilia Arely Prado-Barragán
Materials 2025, 18(15), 3577; https://doi.org/10.3390/ma18153577 - 30 Jul 2025
Viewed by 197
Abstract
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the [...] Read more.
The synthesis of bioplastics from renewable resources is essential for green living. PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) is a biodegradable and biocompatible material ideal for various industrial applications. The impact of levulinic (LA), valeric acids (VA), and sodium propionate (SPr) as co-substrates in biomass and the synthesis of 3-hydroxy valerate (3HV) and co-polymerization of PHBV by Burkholderia thailandensis E264 (BtE264) was assessed. Thermogravimetric, XRD, NMR, and mechanical characterization were performed on the homopolymer (PHB) and co-polymer (PHBV), and compared to the PHBV-STD. BtE264 produced the co-polymer PHBV when adding any of the three co-substrates. LA showed a higher positive effect on microbial growth (8.4 g∙L−1) and PHBV production (3.91 g∙L−1), representing 78 and 22 mol % of 3HB and 3HV, respectively. The PHBV obtained with LA had a melting temperature (Tm) lower than the PHB homopolymer and presented lower values for melting enthalpies (ΔHf); the degree of crystallization and TGA values indicated that PHBV had better thermal stability. Additionally, FTIR and NMR revealed that BtE264 synthesizes PHBV with an organization in monomeric units (3HB-3HV), suggesting differentiated incorporation of the monomers, improving 3.4 times the break elongation the co-polymer’s tensile properties. This study highlights the co-substrates’ relevance in PHBV synthesis using BtE264 for the first time. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

11 pages, 246 KiB  
Article
Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study
by Elina Gianzina, Christos K. Yiannakopoulos, Elias Armenis and Efstathios Chronopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(3), 288; https://doi.org/10.3390/jfmk10030288 - 28 Jul 2025
Viewed by 267
Abstract
Background: Gait impairments are common in individuals with knee osteoarthritis awaiting total knee arthroplasty, affecting their mobility and quality of life. This study aimed to assess and compare biomechanical gait features between individuals awaiting total knee arthroplasty and healthy, non-arthritic controls, focusing on [...] Read more.
Background: Gait impairments are common in individuals with knee osteoarthritis awaiting total knee arthroplasty, affecting their mobility and quality of life. This study aimed to assess and compare biomechanical gait features between individuals awaiting total knee arthroplasty and healthy, non-arthritic controls, focusing on less-explored variables using sensor-based measurements. Methods: A cross-sectional observational study was conducted with 60 participants: 21 individuals awaiting total knee arthroplasty and 39 nonarthritic controls aged 64–85 years. Participants completed a standardized 14 m walk, and 17 biomechanical gait parameters were measured using the BTS G-Walk inertial sensor. Key variables, such as stride duration, cadence, symmetry indices, and pelvic angles, were analyzed for group differences. Results: The pre-total knee arthroplasty group exhibited significantly longer gait cycles and stride durations (p < 0.001), reduced cadence (p < 0.001), and lower gait cycle symmetry index (p < 0.001) than the control group. The pelvic angle symmetry indices for tilt (p = 0.014), rotation (p = 0.002), and obliquity (p < 0.001) were also lower. Additionally, the pre-total knee arthroplasty group had lower propulsion indices for both legs (p < 0.001) and a lower walking quality index on the right leg (p = 0.005). The number of elaborated steps was significantly greater in the pre-total knee arthroplasty group (left, p < 0.001, right: p < 0.001). No significant differences were observed in any other gait parameters. Conclusions: This study revealed significant gait impairment in individuals awaiting total knee arthroplasty. Although direct evidence for prehabilitation is lacking, future research should explore whether targeted approaches, such as strengthening exercises or gait retraining, can improve gait and functional outcomes before surgery. Full article
31 pages, 2314 KiB  
Review
Innovative Peptide Therapeutics in the Pipeline: Transforming Cancer Detection and Treatment
by Yanyamba Nsereko, Amy Armstrong, Fleur Coburn and Othman Al Musaimi
Int. J. Mol. Sci. 2025, 26(14), 6815; https://doi.org/10.3390/ijms26146815 - 16 Jul 2025
Viewed by 789
Abstract
Cancer remains a leading global health burden, profoundly affecting patient survival and quality of life. Current treatments—including chemotherapy, radiotherapy, immunotherapy, and surgery—are often limited by toxicity or insufficient specificity. Conventional chemotherapy, for instance, indiscriminately attacks rapidly dividing cells, causing severe side effects. In [...] Read more.
Cancer remains a leading global health burden, profoundly affecting patient survival and quality of life. Current treatments—including chemotherapy, radiotherapy, immunotherapy, and surgery—are often limited by toxicity or insufficient specificity. Conventional chemotherapy, for instance, indiscriminately attacks rapidly dividing cells, causing severe side effects. In contrast, peptide-based therapeutics offer a paradigm shift, combining high tumour-targeting precision with minimal off-target effects. Their low immunogenicity, multi-pathway modulation capabilities, and adaptability for diagnostics and therapy make them ideal candidates for advancing oncology care. Innovative peptide platforms now enable three transformative applications: (1) precision molecular diagnostics (e.g., 18F-PSMA-1007 for prostate cancer detection), (2) targeted therapies (e.g., BT5528 and SAR408701 targeting tumour-specific antigens), and (3) theranostic systems (e.g., RAYZ-8009 and 177Lu-FAP-2286 integrating imaging and radiotherapy). Despite their promise, peptides face challenges like metabolic instability and short half-lives. Recent advances in structural engineering (e.g., cyclization and D-amino acid incorporation) and delivery systems (e.g., nanoparticles and PEGylation) have significantly enhanced their clinical potential. This review highlights peptide-based agents in development, showcasing their ability to improve early cancer detection, reduce metastasis, and enhance therapeutic efficacy with fewer adverse effects. Examples like CLP002 underscore their role in personalised medicine. By overcoming current limitations, peptide drugs are poised to redefine cancer management, offering safer, more effective alternatives to conventional therapies. Their integration into clinical practice could mark a critical milestone in achieving precision oncology. Full article
(This article belongs to the Special Issue Peptides as Biochemical Tools and Modulators of Biological Activity)
Show Figures

Figure 1

17 pages, 2826 KiB  
Article
Fine Mapping and Genetic Effect Analysis of Rf21(t) for the Fertility Restoration of Chinsurah-Boro-II-Type Cytoplasmic Male Sterile Oryza sativa (ssp. japonica) Lines
by Yuanyue Du, Liying Fan, Yunhua Gu, Chen Wang, Kai Shi, Yebin Qin, Zhejun Li, Qiaoquan Liu, Shuzhu Tang, Honggen Zhang and Zuopeng Xu
Agronomy 2025, 15(7), 1690; https://doi.org/10.3390/agronomy15071690 - 12 Jul 2025
Viewed by 290
Abstract
The combination of Chinsurah Boro II (BT)-type cytoplasmic male sterility (CMS) and Rf1, the main fertility restorer gene (Rf) for CMS-BT, has been extensively utilized for the production of three-line commercial japonica hybrid seeds. The identification of new Rf genes [...] Read more.
The combination of Chinsurah Boro II (BT)-type cytoplasmic male sterility (CMS) and Rf1, the main fertility restorer gene (Rf) for CMS-BT, has been extensively utilized for the production of three-line commercial japonica hybrid seeds. The identification of new Rf genes holds significance for the breeding of BT-type restorer lines, aiming to enhance the heterosis level of BT-type japonica hybrids. In the present study, ‘02428’, a wide-compatibility japonica variety, was observed to partially restore fertility to BT-type CMS lines. Genetic analysis revealed that ‘02428’ carries a dominant Rf gene, Rf21(t), responsible for the fertility restoration of BT-type CMS lines. Leveraging bulked segregant analysis (BSA) resequencing technology and molecular markers, the Rf21(t) locus was identified, and mapped within a candidate interval of 6–12.5 Mb on chromosome 2. Using the iso-cytoplasmic restorer populations, Rf21(t) was ultimately mapped to an interval of approximately 77 kb, encompassing 12 predicted genes, including LOC_Os02g17360, encoding a PPR-domain-containing protein and LOC_Os02g17380 (Rf2), a cloned Rf for Lead-rice-type CMS. A comparative sequence analysis, gene expression profiling and gene knockout experiments confirmed that LOC_Os02g17360 and LOC_Os02g17380 are the most likely candidates of Rf21(t). Furthermore, Rf21(t) showed the dosage effect on the fertility restoration of BT-type CMS lines. This newly identified Rf21(t) represents a valuable genetic resource for the breeding of BT-type japonica restorer lines. Our findings offer practical insights for breeders interested in advancing BT-type japonica hybrid development. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

11 pages, 1969 KiB  
Article
Two New Strains of Microcystis Cyanobacteria from Lake Baikal, Russia: Ecology and Toxigenic Potential
by Ekaterina Sorokovikova, Irina Tikhonova, Galina Fedorova, Nadezhda Chebunina, Anton Kuzmin, Maria Suslova, Yanzhima Naidanova, Sergey Potapov, Andrey Krasnopeev, Anna Gladkikh and Olga Belykh
Limnol. Rev. 2025, 25(3), 31; https://doi.org/10.3390/limnolrev25030031 - 10 Jul 2025
Viewed by 262
Abstract
Microcystis, a potentially toxigenic cyanobacterium known to form extensive blooms in eutrophic lakes globally, was investigated in the cold oligotrophic Lake Baikal. We report the isolation of two Microcystis strains, Microcystis aeruginosa and M. novacekii, and document the presence of the [...] Read more.
Microcystis, a potentially toxigenic cyanobacterium known to form extensive blooms in eutrophic lakes globally, was investigated in the cold oligotrophic Lake Baikal. We report the isolation of two Microcystis strains, Microcystis aeruginosa and M. novacekii, and document the presence of the latter species in Lake Baikal for the first time. In M. aeruginosa strain BN23, we detected the microcystin synthetase gene mcyE. Liquid chromatography-mass spectrometry revealed the presence of two microcystin variants in BN23, with microcystin-LR, a highly potent toxin, being the dominant form. The concentration of MC-LR reached 540 µg/g dry weight. In contrast, M. novacekii strain BT23 lacked both microcystin synthesis genes and detectable toxins. The habitat waters were characterized as oligotrophic with minor elements of mesotrophy, exhibiting low phytoplankton biomass dominated by the chrysophyte Dinobryon cylindricum (76–77% of biomass), with cyanobacteria contributing 8–10%. The contribution of Microcystis spp. to the total phytoplankton biomass could not be quantified as they were exclusively found in net samples. The water temperature at both sampling stations was ~19 °C, which is considerably lower than optimal for Microcystis spp. and potentially conducive to enhanced microcystin production in toxigenic genotypes. Full article
(This article belongs to the Special Issue Trends in the Trophic State of Freshwater Ecosystems)
Show Figures

Figure 1

21 pages, 2189 KiB  
Article
Smart Watch Sensors for Tremor Assessment in Parkinson’s Disease—Algorithm Development and Measurement Properties Analysis
by Giulia Palermo Schifino, Maira Jaqueline da Cunha, Ritchele Redivo Marchese, Vinicius Mabília, Luis Henrique Amoedo Vian, Francisca dos Santos Pereira, Veronica Cimolin and Aline Souza Pagnussat
Sensors 2025, 25(14), 4313; https://doi.org/10.3390/s25144313 - 10 Jul 2025
Viewed by 383
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder commonly marked by upper limb tremors that interfere with daily activities. Wearable devices, such as smartwatches, represent a promising solution for continuous and objective monitoring in PD. This study aimed to develop and validate a tremor-detection [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder commonly marked by upper limb tremors that interfere with daily activities. Wearable devices, such as smartwatches, represent a promising solution for continuous and objective monitoring in PD. This study aimed to develop and validate a tremor-detection algorithm using smartwatch sensors. Data were collected from 21 individuals with PD and 27 healthy controls using both a commercial inertial measurement unit (G-Sensor, BTS Bioengineering, Italy) and a smartwatch (Apple Watch Series 3). Participants performed standardized arm movements while sensor signals were synchronized and processed to extract relevant features. Statistical analyses assessed discriminant and concurrent validity, reliability, and accuracy. The algorithm demonstrated moderate to strong correlations between smartwatch and commercial IMU data, effectively distinguishing individuals with PD from healthy controls showing associations with clinical measures, such as the MDS-UPDRS III. Reliability analysis demonstrated agreement between repeated measurements, although a proportional bias was noted. Power spectral density (PSD) analysis of accelerometer and gyroscope data along the x-axis successfully detected the presence of tremors. These findings support the use of smartwatches as a tool for detecting tremors in PD. However, further studies involving larger and more clinically impaired samples are needed to confirm the robustness and generalizability of these results. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

13 pages, 3586 KiB  
Article
Effects of Different Types of Pot-Mat Trays on the Growth of Densely Sown Seedlings and Root Morphology of Machine-Transplanted Rice
by Yuhang Shang, Peng Zhang, Xinling Ma, Xiang Wu, Yulin Chen, Huizhe Chen, Yuping Zhang, Jing Xiang, Yaliang Wang, Zhigang Wang, Yiwen Xu, Xuzhu Zhang and Yikai Zhang
Agronomy 2025, 15(7), 1616; https://doi.org/10.3390/agronomy15071616 - 2 Jul 2025
Viewed by 319
Abstract
Weak seedlings and poor growth uniformity affect the mechanical transplanting of densely sown rice seedlings. To address these issues, seedlings of the conventional japonica rice “Zhehexiang 2” were grown in a traditional flat tray (control), pot-mat tray (26 × 52 bowls; BT(26)), and [...] Read more.
Weak seedlings and poor growth uniformity affect the mechanical transplanting of densely sown rice seedlings. To address these issues, seedlings of the conventional japonica rice “Zhehexiang 2” were grown in a traditional flat tray (control), pot-mat tray (26 × 52 bowls; BT(26)), and pot-mat tray (30 × 58 bowls; BT(30)) to compare the effects of different specifications of pot-mat trays (BTs) on the growth and quality of mechanical transplanting of densely sown rice seedlings with 250 g/tray. The BT-raised seedlings showed improved seedling quality, with increases in the shoot and root dry weights by 7.44% and 20.11%, respectively, compared to the flat tray. Under the dense sowing rate, the plant height uniformity of the BT(26) and BT(30) treatments was significantly increased by 6.95% and 3.43%, and the root entwining force of the seedlings was 14.28% and 10.21% higher, respectively, compared with those of the control. The missing hill rate for BT-raised seedlings after mechanical transplanting was significantly reduced by 53.15%. The loss of roots during mechanical transplanting was reduced. Compared with the control, the root length, root surface area, and root number were increased, and a greater number of large roots were retained, which promoted the early development of seedlings after mechanical transplanting. The proportion of holes with two to five seedlings was higher after mechanical transplanting. The pot-mat tray divided the root growth area of seedlings, promoted the growth of the seedlings, and reduced the root loss and missing hill rate under the high sowing rate. Thus, the quality of mechanical transplanting of densely sown seedlings was improved. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

14 pages, 271 KiB  
Communication
Novel Genetic Variants Associated with Diabetic Neuropathy Risk in Type 2 Diabetes: A Whole-Exome Sequencing Approach
by Noémi Hajdú, Dóra Zsuzsanna Tordai, Ramóna Rácz, Zsófia Ludvig, Ildikó Istenes, Magdolna Békeffy, Orsolya Erzsébet Vági, Anna Erzsébet Körei, Bálint Tóbiás, Anett Illés, Henriett Pikó, János P. Kósa, Kristóf Árvai, Péter András Lakatos, Péter Kempler and Zsuzsanna Putz
Int. J. Mol. Sci. 2025, 26(13), 6239; https://doi.org/10.3390/ijms26136239 - 28 Jun 2025
Viewed by 364
Abstract
The pathogenesis of diabetic neuropathy involves complex interactions between metabolic and genetic factors. This study aimed to identify novel genetic variants associated with neuropathy risk in type 2 diabetes through reanalysis of whole-exome sequencing data. We identified seven new SNPs with significant associations, [...] Read more.
The pathogenesis of diabetic neuropathy involves complex interactions between metabolic and genetic factors. This study aimed to identify novel genetic variants associated with neuropathy risk in type 2 diabetes through reanalysis of whole-exome sequencing data. We identified seven new SNPs with significant associations, including intronic variants in TTN, PLCB1, CCNI, and CDC34 and a 5′-upstream variant in BTG2. These variants are implicated in muscle elasticity, neurotransmission, endothelial regeneration, and apoptosis resistance, suggesting multifaceted genetic contributions to neuropathy development. These findings enhance our understanding of diabetic neuropathy and may support future advances in risk stratification and therapy development. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases: 2nd Edition)
35 pages, 2010 KiB  
Article
Intelligent Transmission Control Scheme for 5G mmWave Networks Employing Hybrid Beamforming
by Hazem (Moh’d Said) Hatamleh, As’ad Mahmoud As’ad Alnaser, Roba Mahmoud Ali Aloglah, Tomader Jamil Bani Ata, Awad Mohamed Ramadan and Omar Radhi Aqeel Alzoubi
Future Internet 2025, 17(7), 277; https://doi.org/10.3390/fi17070277 - 24 Jun 2025
Viewed by 339
Abstract
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is [...] Read more.
Hybrid beamforming plays a critical role in evaluating wireless communication technology, particularly for millimeter-wave (mmWave) multiple-input multiple-out (MIMO) communication. Several hybrid beamforming systems are investigated for millimeter-wave multiple-input multiple-output (MIMO) communication. The deployment of huge grant-free transmission in the millimeter-wave (mmWave) band is required due to the growing demands for spectrum resources in upcoming enormous machine-type communication applications. Ultra-high data speed, reduced latency, and improved connection are all promised by the development of 5G mmWave networks. Yet, due to severe route loss and directional communication requirements, there are substantial obstacles to transmission reliability and energy efficiency. To address this limitation in this research we present an intelligent transmission control scheme tailored to 5G mmWave networks. Transport control protocol (TCP) performance over mmWave links can be enhanced for network protocols by utilizing the mmWave scalable (mmS)-TCP. To ensure that users have the stronger average power, we suggest a novel method called row compression two-stage learning-based accurate multi-path processing network with received signal strength indicator-based association strategy (RCTS-AMP-RSSI-AS) for an estimate of both the direct and indirect channels. To change user scenarios and maintain effective communication constantly, we utilize the innovative method known as multi-user scenario-based MATD3 (Mu-MATD3). To improve performance, we introduce the novel method of “digital and analog beam training with long-short term memory (DAH-BT-LSTM)”. Finally, as optimizing network performance requires bottleneck-aware congestion reduction, the low-latency congestion control schemes (LLCCS) are proposed. The overall proposed method improves the performance of 5G mmWave networks. Full article
(This article belongs to the Special Issue Advances in Wireless and Mobile Networking—2nd Edition)
Show Figures

Figure 1

15 pages, 686 KiB  
Article
Acute Effects of Whole-Body Vibration on Gait Kinematics in Individuals with Parkinson’s Disease
by Francesco Pio Oranges, Francesca Greco, Maria Grazia Tarsitano, Federico Quinzi, Andrea Quattrone, Aldo Quattrone and Gian Pietro Emerenziani
Appl. Sci. 2025, 15(13), 7055; https://doi.org/10.3390/app15137055 - 23 Jun 2025
Viewed by 354
Abstract
Background: Whole-body vibration (WBV) favors central integration and elaboration of proprioceptive stimuli, enhancing gait performance in individuals with Parkinson’s disease (PD). However, the effect of WBV on spatiotemporal gait kinematics in PD has been neglecting so far. This study aims to examine how [...] Read more.
Background: Whole-body vibration (WBV) favors central integration and elaboration of proprioceptive stimuli, enhancing gait performance in individuals with Parkinson’s disease (PD). However, the effect of WBV on spatiotemporal gait kinematics in PD has been neglecting so far. This study aims to examine how exposure to WBV could influence kinematic parameters in PD. Methods: Gait kinematic parameters of 26 mild-stage PD participants (age: 66.7 ± 1.63 years) were measured using BTS G-Walk sensor during a 10 m walk test under three conditions—WBV, half squat without vibration (HS), and control condition (CC)—in a crossover randomized design. Results: Walking time was significantly slower (p < 0.01) in CC compared to WBV and HS, while no significant differences were observed between WBV and HS. Right leg propulsion was significantly lower in CC compared to HS (p < 0.01), with no significant differences between CC and WBV. Left leg propulsion was significantly lower in CC and WBV compared to HS (p < 0.01 and p < 0.05, respectively). Pelvic tilt was significantly lower (p < 0.05) in CC compared to WBV and HS, but no significant difference was observed between WBV and HS. Cadence was significantly lower (p < 0.05) in CC and WBV than HS. Conclusions: WBV shows promising effects on functional mobility and postural control in PD, with HS offering greater benefits. Exercise modalities should be carefully selected to enhance different gait parameters. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

15 pages, 1870 KiB  
Article
Post-Harvest Evaluation of Logging-Induced Compacted Soils and the Role of Caucasian Alder (Alnus subcordata C.A.Mey) Fine-Root Growth in Soil Recovery
by Zahra Rahmani Haftkhani, Mehrdad Nikooy, Ali Salehi, Farzam Tavankar and Petros A. Tsioras
Forests 2025, 16(7), 1044; https://doi.org/10.3390/f16071044 - 21 Jun 2025
Viewed by 287
Abstract
Accelerating the recovery of compacted soils caused by logging machinery using bioengineering techniques is a key goal of Sustainable Forest Management. This research was conducted on an abandoned skid trail with a uniform 15% slope and a history of heavy traffic, located in [...] Read more.
Accelerating the recovery of compacted soils caused by logging machinery using bioengineering techniques is a key goal of Sustainable Forest Management. This research was conducted on an abandoned skid trail with a uniform 15% slope and a history of heavy traffic, located in the Nav forest compartment of northern Iran. The main objectives were to assess (a) soil physical properties 35 years after skidding by a tracked bulldozer, (b) the impact of natural alder regeneration on soil recovery, and (c) the contribution of alder fine-root development to the restoration of compacted soils in beech stands. Soil physical properties and fine root biomass were analyzed across three depth classes (0–10 cm, 10–20 cm, 20–30 cm) and five locations (left wheel track (LT), between wheel tracks (BT), right wheel track (RT)) all with alder trees, and additionally control points inside the trail without alder trees (CPWA), as well as outside control points with alder trees (CPA). Sampling points near alder trees (RT, LT, BT) were compared to CPWA and CPA. CPA had the lowest soil bulk density, followed by LT, BT, RT, and CPWA. Bulk density was highest (1.35 ± 0.07 g cm−3) at the 0–10 cm depth and lowest (1.08 ± 0.4 g cm−3) at 20–30 cm. The fine root biomass at 0–10 cm depth (0.23 ± 0.21 g dm−3) was significantly higher than at deeper levels. Skid trail sampling points showed higher fine root biomass than CPWA but lower than CPA, by several orders of magnitude. Alder tree growth significantly reduced soil bulk density, aiding soil recovery in the study area. However, achieving optimal conditions will require additional time. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 1768 KiB  
Article
Effects of Bt Rice Straw Extract on Seed Germination and Plant Growth of Pakchoi: Novel Variables of Cropping System
by Chenning Zhang, Wenfang Suo, Yongfang Pan and Yuanjiao Feng
Plants 2025, 14(12), 1797; https://doi.org/10.3390/plants14121797 - 12 Jun 2025
Viewed by 675
Abstract
The incorporation of Bacillus thuringiensis (Bt) rice straw into fields may influence the growth of subsequent crops, but its ecological risks for winter vegetables remain largely unreported. Investigating the effects of Bt rice straw extracts on the seed germination and plant growth of [...] Read more.
The incorporation of Bacillus thuringiensis (Bt) rice straw into fields may influence the growth of subsequent crops, but its ecological risks for winter vegetables remain largely unreported. Investigating the effects of Bt rice straw extracts on the seed germination and plant growth of pakchoi (Brassica campestris L. ssp. Chinensis Makino var. communis Tsen et Lee) can provide a theoretical foundation for ecological risk assessments. In this study, straw extracts from non-Bt rice (Tianyouhuazhan), homozygous Bt rice (T775), and heterozygous Bt rice (F1 of T775 hybrid) were used as experimental materials at concentrations of 10, 20, and 40 g·L−1. Results showed that, compared to non-Bt extract, 40 g·L−1 homozygous Bt extract increased seedling height and leaf peroxidase (POD) activity but inhibited catalase (CAT) and root superoxide dismutase (SOD) activities. The 20 g·L−1 extract boosted root CAT activity yet suppressed leaf CAT and POD activities. The 10 g·L−1 extract enhanced root length but reduced leaf CAT and POD activities. The 40 g·L−1 heterozygous Bt extract increased leaf and root POD activity but inhibited germination rate and leaf SOD activity. The 10 g·L−1 extract promoted root length and seedling POD activity but suppressed leaf POD activity. In plant growth assessments, the 10 g·L−1 homozygous Bt extract reduced underground dry weight, and the 10 g·L−1 heterozygous Bt extract inhibited both above and underground dry weight, while the 20 g·L−1 heterozygous Bt extract increased aboveground dry weight. In conclusion, the effects of homozygous and heterozygous Bt rice straw extracts on pakchoi varied with concentration and physiological indices, showing no clear pattern. Optimizing straw return concentrations based on Bt rice variety differences is essential to mitigate ecological risks. Full article
Show Figures

Figure 1

19 pages, 4005 KiB  
Article
Synergistic Effect of TiO2-Nanoparticles and Plant Growth-Promoting Microorganisms on the Physiological Parameters and Antioxidant Responses of Capsicum annum Cultivars
by Atiya Bhatti, Araceli Sanchez-Martinez, Gildardo Sanchez-Ante, Daniel A. Jacobo-Velázquez, Joaquín Alejandro Qui-Zapata, Soheil S. Mahmoud, Ghulam Mustafa Channa, Luis Marcelo Lozano, Jorge L. Mejía-Méndez, Edgar R. López-Mena and Diego E. Navarro-López
Antioxidants 2025, 14(6), 707; https://doi.org/10.3390/antiox14060707 - 10 Jun 2025
Viewed by 745
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) were synthesized using the molten salt method and systematically characterized. TiO2-NPs were evaluated for their capacity to promote the growth of Capsicum annuum cultivars together with the plant growth-promoting microorganisms (PGPMs) Bacillus thuringiensis (Bt) and [...] Read more.
Titanium dioxide nanoparticles (TiO2-NPs) were synthesized using the molten salt method and systematically characterized. TiO2-NPs were evaluated for their capacity to promote the growth of Capsicum annuum cultivars together with the plant growth-promoting microorganisms (PGPMs) Bacillus thuringiensis (Bt) and Trichoderma harzianum (Th). The variables analyzed included physiological parameters and antioxidant responses. The capacity of TiO2-NPs to scavenge free radicals was also investigated, along with their biocompatibility, using Artemia salina as an in vivo model. The results demonstrated that TiO2-NPs exhibited a nanocuboid-type morphology, negative surface charge, and small surface area. It was noted that TiO2-NPs enhanced the CFU and spore production of Bt (1.56–2.92 × 108 CFU/mL) and Th (2.50–3.90 × 108 spores/mL), respectively. It was observed that TiO2-NPs could scavenge DPPH, ABTS, and H2O2 radicals (IC50 48.66–109.94 μg/mL), while not compromising the viability of A. salina at 50–300 μg/mL. TiO2-NPs were determined to enhance the root length and fresh and dry weights of chili peppers. Similarly, TiO2-NPs in synergy with Bt and Th increased the activity of β-1,3-Glucanase (2.45 nkat/g FW) and peroxidase (69.90 UA/g FW) enzyme activity, and increased the TPC (29.50 GA/g FW). The synergy of TiO2-NPs with the PGPMs consortium also upregulated the total chlorophyll content: 210.8 ± 11.4 mg/mg FW. The evidence from this study unveils the beneficial application of TiO2-NPs with Bt and Th as an efficient approach to promote the physiology and antioxidant responses of chili peppers. Full article
Show Figures

Figure 1

Back to TopTop