Synergistic Effect of TiO2-Nanoparticles and Plant Growth-Promoting Microorganisms on the Physiological Parameters and Antioxidant Responses of Capsicum annum Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. Culture of PGPMs and Compatibility Assays
2.3.1. Culture of PGPMs
2.3.2. Compatibility Assay Between TiO2-NPs and Bs and Bt
2.3.3. Compatibility Assay Between TiO2-NPs and Th
2.4. Antioxidant Activity
2.5. Evaluation of the Toxicity of TiO2-NPs in A. salina Nauplii
2.6. Preparation of Plant Material: Physiological Evaluation and Antioxidant Responses Upon Treatment with TiO2-NPs and Inoculation with Bt and Th
2.6.1. Evaluation of Physiological Parameters
2.6.2. Analysis of Antioxidant Responses
2.6.3. Assessment of Chlorophyll a, b, and Total Chlorophyll
2.7. Statistical Analysis
3. Results
3.1. Characterization of TiO2-NPs
3.2. Compatibility of TiO2-NPs with PGPM
3.3. Antioxidant Activity and In Vivo Toxicity of TiO2-NPs
3.4. Effect of TiO2-NPs on Physiological Parameters of Chili Peppers
3.5. Biochemical Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATR-FTIR | Attenuated total reflection Fourier transform |
BET | The Brunauer–Emmett–Teller |
Bs | B. subtilis |
Bt | B. thuringiensis |
Ca | chlorophyll a |
CAT | catalase |
Cb | chlorophyll b |
CFU | Colony-forming units |
DNS | 3,5-dinitrosalicylic acid |
EDS | energy-dispersive X-ray spectroscopy |
Fe2O3 | iron oxide |
FESEM | field emission scanning electron microscopy |
MDA | malondialdehyde |
MIC | minimal inhibitory concentration |
Na+ | sodium |
nkat/g FW | nkat per gram of fresh weight |
NPs | nanoparticles |
PAL | phenylalanine ammonia lyase |
PDA | Potato dextrose agar |
PGPMs | plant growth-promoting microorganisms |
PHYVV | pepper huasteco yellow vein virus |
POX | peroxidases |
Qu | quercetin |
ROS | reactive oxygen species |
SBET | specific surface area The Brunauer–Emmett–Teller |
SEM | Scanning electron microscopy |
SOD | superoxide dismutase |
Th | T. harzianum |
TiO2-NPs | titanium dioxide nanoparticles |
TiO2 | titanium dioxide |
TMV | tobacco mosaic virus |
UA/g FW | unit of activity per gram of fresh weight |
UV | ultraviolet |
XRD | X-ray diffraction |
α-Fe2O3 | alpha iron(III) oxide |
β-1,3-G | β-1,3-Glucanase |
References
- Rohde, W.; Forni, F. Precision agriculture for iceberg lettuce: From spatial sensing to per plant decision making and control. Smart Agric. Technol. 2025, 10, 100797. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, X.; Liu, Y.; Zhang, A.; Song, W.; Li, L.; Zhao, J.; Pang, Q. Salt-alkali-tolerant growth-promoting Streptomyces sp. Jrh8-9 enhances alfalfa growth and resilience under saline-alkali stress through integrated modulation of photosynthesis, antioxidant defense, and hormone signaling. Microbiol. Res. 2025, 296, 128158. [Google Scholar] [CrossRef] [PubMed]
- Trinh, L.L.; Le, K.N.; Le Lam, H.A.; Nguyen, H.H. Cell-free supernatants from plant growth-promoting rhizobacteria Bacillus albus strains control Aspergillus flavus disease in peanut and maize seedlings. Beni-Suef Univ. J. Basic Appl. Sci. 2025, 14, 4. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, J.; Zhang, X.; Wang, F.; Qu, Z.; Gao, T.; Yao, Y.; Luo, Y. Trichoderma brevicompactum 6311: Prevention and Control of Phytophthora capsici and Its Growth-Promoting Effect. J. Fungi 2025, 11, 105. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Huang, L.; Luo, X.; Zhang, C.; Mao, Z.; Yang, H.; Wang, X. Zinc oxide nanoparticles alleviated Cd toxicity in Hibiscus syriacus L. by reducing Cd translocation and improving plant growth and root cellular ultrastructure. J. Hazard. Mater. 2025, 491, 137920. [Google Scholar] [CrossRef]
- Falsini, S.; Nieri, T.; Papini, A.; Salvatici, M.C.; Abou-Hassan, A.; Gonnelli, C.; Ristori, S. Efficiency of lignin nanocapsules for delivering neem oil and capsaicin against pest insects: Insights into the system Eruca sativa—Plutella xylostella. Environ. Sci. Nano 2025, 12, 1922–1929. [Google Scholar] [CrossRef]
- Jannesari, M.; Caslin, A.; English, N.J. Electric field-based air nanobubbles (EF-ANBs) irrigation on efficient crop cultivation with reduced fertilizer dependency. J. Environ. Manage. 2024, 362, 121228. [Google Scholar] [CrossRef]
- Chen, L.; Hu, G.; Cui, B.; Gao, J.; Gu, X.; Cui, H.; Zeng, Z. Development of a stable and efficient fluorescence nanosensor for in situ detection of MicroRNA in plant. Sens. Actuators B Chem. 2024, 404, 135244. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Mahmoud, Z.H.; Abdullaev, S.; Ali, F.K.; Ali Naeem, Y.; Mzahim Mizher, R.; Morad Karim, M.; Abdulwahid, A.S.; Ahmadi, Z.; Habibzadeh, S.; et al. Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Stud. Chem. Environ. Eng. 2024, 9, 100626. [Google Scholar] [CrossRef]
- Thakur, N.; Thakur, N.; Kumar, A.; Thakur, V.K.; Kalia, S.; Arya, V.; Kumar, A.; Kumar, S.; Kyzas, G.Z. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. Sci. Total Environ. 2024, 914, 169815. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; et al. Synthesis, modification and application of titanium dioxide nanoparticles: A review. Nanoscale 2022, 14, 6709–6734. [Google Scholar] [CrossRef] [PubMed]
- Skiba, E.; Pietrzak, M.; Michlewska, S.; Gruszka, J.; Malejko, J.; Godlewska-Zylkiewicz, B.; Wolf, W.M. Photosynthesis governed by nanoparticulate titanium dioxide. The Pisum sativum L. case study. Environ. Pollut. 2024, 340, 122735. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ji, L.; Rico, C.; He, C.; Shakoor, I.; Fakunle, M.; Lu, X.; Xia, Y.; Hou, Y.; Hong, J. Transcriptomics Reveals the Pathway for Increasing Brassica chinensis L. Yield under Foliar Application of Titanium Oxide Nanoparticles. J. Agric. Food Chem. 2024, 72, 18957–18970. [Google Scholar] [CrossRef]
- Tighe-Neira, R.; Reyes-Diaz, M.; Nunes-Nesi, A.; Lana-Costa, J.; Recio, G.; Carmona, E.R.; Acevedo, P.; Rengel, Z.; Inostroza-Blancheteau, C. Physiological and agronomical traits effects of titanium dioxide nanoparticles in seedlings of Solanum lycopersicum L. BMC Plant Biol. 2024, 24, 146. [Google Scholar] [CrossRef]
- Bhat, U.H.; Uddin, M.; Chishti, A.S.; Singh, S.; Singh, S.; Khan, M.M.A.; Mukarram, M. Enhancing growth, vitality, and aromatic richness: Unveiling the dual magic of silicon dioxide and titanium dioxide nanoparticles in Ocimum tenuiflorum L. Front. Plant Sci. 2024, 15, 1335965. [Google Scholar] [CrossRef]
- Chen, Z.; Han, M.; Guo, Z.; Feng, Y.; Guo, Y.; Yan, X. An integration of physiology, transcriptomics, and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanoparticles. J. Hazard. Mater. 2024, 474, 134851. [Google Scholar] [CrossRef]
- Alshegaihi, R.M.; Saleem, M.H.; Saleem, A.; Ali, B.; Aziz, H.; Fahad, S.; Alataway, A.; Dewidar, A.Z.; Elansary, H.O. Silicon and Titanium Dioxide Mitigate Copper Stress in Wheat (Triticum aestivum L.) Through Regulating Antioxidant Defense Mechanisms. J. Plant Growth Regul. 2023, 43, 1519–1535. [Google Scholar] [CrossRef]
- Shafiq, T.; Yasmin, H.; Shah, Z.A.; Nosheen, A.; Ahmad, P.; Kaushik, P.; Ahmad, A. Titanium Oxide and Zinc Oxide Nanoparticles in Combination with Cadmium Tolerant Bacillus pumilus Ameliorates the Cadmium Toxicity in Maize. Antioxidants 2025, 14, 316. [Google Scholar] [CrossRef]
- Metwally, R.A.; Soliman, S.A.; Abdalla, H.; Abdelhameed, R.E. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC Plant Biol. 2024, 24, 118. [Google Scholar] [CrossRef]
- Zhou, L.Q.; Liu, W.Z. Pollution of four heavy metal elements in dried chili peppers in Guizhou Province and its health risk assessment. Sci. Rep. 2024, 14, 17759. [Google Scholar] [CrossRef]
- Faliarizao, N.T.; Siddiq, M.; Dolan, K.D. Total phenolics, antioxidant, and physical properties of red chili peppers (Capsicum annum L.) as affected by drying methods. Int. J. Food Prop. 2025, 28, 2492823. [Google Scholar] [CrossRef]
- Gyalai, I.M.; Helyes, L.; Daood, H.G.; Kovács, F.; Szarvas, A.; Lantos, F. Genetic and Seasonal Factors Influence Pungent Pepper Capsaicinoid and Vitamin C Content. Hortic. 2025, 11, 286. [Google Scholar] [CrossRef]
- Bhuyan, S.; Yadav, M.; Giri, S.J.; Begum, S.; Das, S.; Phukan, A.; Priyadarshani, P.; Sarkar, S.; Jayswal, A.; Kabyashree, K.; et al. Microliter spotting and micro-colony observation: A rapid and simple approach for counting bacterial colony forming units. J. Microbiol. Methods 2023, 207, 106707. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Arigela, R.; Thyagarajan, S.; Raghunathan, R. Comparison and evaluation of enumeration methods for measurement of fungal spore emission. J. Aerosol Sci. 2022, 165, 106033. [Google Scholar] [CrossRef]
- Kong, I.C.; Ko, K.S.; Koh, D.C. Comparisons of the Effect of Different Metal Oxide Nanoparticles on the Root and Shoot Growth under Shaking and Non-Shaking Incubation, Different Plants, and Binary Mixture Conditions. Nanomaterials 2021, 11, 1653. [Google Scholar] [CrossRef]
- Huang, W.; Ratkowsky, D.A.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef]
- Im, B. Role of Antioxidant Enzymes, Hydrogen Peroxide and PRProteins in the Compatible and Incompatible Interactions of Cowpea (Vigna unguiculata) Genotypes with the Fungus Colletotrichum gloeosporioides. J. Plant Physiol. Pathol. 2014, 2. [Google Scholar] [CrossRef]
- Perez, M.; Dominguez-Lopez, I.; Lamuela-Raventos, R.M. The Chemistry Behind the Folin-Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Vatankhah, A.; Aliniaeifard, S.; Moosavi-Nezhad, M.; Abdi, S.; Mokhtarpour, Z.; Reezi, S.; Tsaniklidis, G.; Fanourakis, D. Plants exposed to titanium dioxide nanoparticles acquired contrasting photosynthetic and morphological strategies depending on the growing light intensity: A case study in radish. Sci. Rep. 2023, 13, 5873. [Google Scholar] [CrossRef]
- Tahmaz, H.; Yüksel Küskü, D. Investigation of some physiological and chemical changes in shoots and leaves caused by UV-C radiation as an abiotic stress source in grapevine cuttings. Sci. Hortic. 2024, 336, 113383. [Google Scholar] [CrossRef]
- Landi, S.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Jubu, P.R.; Obaseki, O.S.; Nathan-Abutu, A.; Yam, F.K.; Yusof, Y.; Ochang, M.B. Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data. Results Opt. 2022, 9, 100273. [Google Scholar] [CrossRef]
- Shen, M.; Liu, S.; Jiang, C.; Zhang, T.; Chen, W. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco Environ. Health 2023, 2, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Baldovino-Medrano, V.G.; Niño-Celis, V.; Isaacs Giraldo, R. Systematic Analysis of the Nitrogen Adsorption–Desorption Isotherms Recorded for a Series of Materials Based on Microporous–Mesoporous Amorphous Aluminosilicates Using Classical Methods. J. Chem. Eng. Data 2023, 68, 2512–2528. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Milbrandt, N.B.; Prado, R.C.; Ponce, N.B.; Alam, M.M.; Qiu, S.R.; Yu, X.; Burda, C.; Kim, T.K.J.; Samia, A.C.S. Effect of Nitrogen Doping on the Photocatalytic Properties and Antibiofilm Efficacy of Reduced TiO(2) Nanoparticles. ACS Appl. Bio Mater. 2024, 7, 4580–4592. [Google Scholar] [CrossRef]
- Chavan, S.; Sarangdhar, V.; Nadanathangam, V. Toxicological effects of TiO2 nanoparticles on plant growth promoting soil bacteria. Emerg. Contam. 2020, 6, 87–92. [Google Scholar] [CrossRef]
- Bilesky-José, N.; Maruyama, C.; Germano-Costa, T.; Campos, E.; Carvalho, L.; Grillo, R.; Fraceto, L.F.; de Lima, R. Biogenic α-Fe2O3 Nanoparticles Enhance the Biological Activity of Trichoderma against the Plant Pathogen Sclerotinia sclerotiorum. ACS Sustain. Chem. Eng. 2021, 9, 1669–1683. [Google Scholar] [CrossRef]
- Ceballos-Sanchez, O.; Navarro-Lopez, D.E.; Mejia-Mendez, J.L.; Sanchez-Ante, G.; Rodriguez-Gonzalez, V.; Sanchez-Lopez, A.L.; Sanchez-Martinez, A.; Duron-Torres, S.M.; Juarez-Moreno, K.; Tiwari, N.; et al. Enhancing antioxidant properties of CeO2 nanoparticles with Nd3+ doping: Structural, biological, and machine learning insights. Biomater. Sci. 2024, 12, 2108–2120. [Google Scholar] [CrossRef]
- Abdalla, H.; Adarosy, M.H.; Hegazy, H.S.; Abdelhameed, R.E. Potential of green synthesized titanium dioxide nanoparticles for enhancing seedling emergence, vigor and tolerance indices and DPPH free radical scavenging in two varieties of soybean under salinity stress. BMC Plant Biol. 2022, 22, 560. [Google Scholar] [CrossRef]
- Mbenga, Y.; Adeyemi, J.O.; Mthiyane, D.M.N.; Singh, M.; Onwudiwe, D.C. Green synthesis, antioxidant and anticancer activities of TiO2 nanoparticles using aqueous extract of Tulbhagia violacea. Results Chem. 2023, 6, 101007. [Google Scholar] [CrossRef]
- Behzadi Tayemeh, M.; Abaei, H.; Golokhvast, K.; Salari Joo, H.; Pikula, K.; Johari, S.A.; Mansouri, B. Individual and binary exposure to nanoscales of silver, titanium dioxide, and silicon dioxide alters viability, growth, and reproductive system: Hidden indices to re-establish artemia as a toxicological model in saline waters. Environ. Pollut. 2023, 331, 121923. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tovar, M.R.; Carvajal-Valenzuela, I.A.; Godínez-Mendoza, P.L.; Rivera-Bustamante, R.F.; Saavedra-Trejo, D.L.; Guevara-González, R.G.; Torres-Pacheco, I. Protective effects of titanium dioxide nanoparticles in Jalapeño chili pepper (Capsicum annuum L.) in a viral single and mixed infection study model. Physiol. Mol. Plant Pathol. 2025, 136, 102560. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Hayat, R.; Yasmin, H.; Noureldeen, A.; Ahmad, P. Synergistic effects of plant growth promoting rhizobacteria and silicon dioxide nano-particles for amelioration of drought stress in wheat. Plant Physiol. Biochem. 2021, 166, 160–176. [Google Scholar] [CrossRef]
Sample | DPPH | ABTS | H2O2 |
---|---|---|---|
TiO2-NPs | 52.39 | 48.66 | 109.94 |
Qu | 3.57 | 3.04 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, A.; Sanchez-Martinez, A.; Sanchez-Ante, G.; Jacobo-Velázquez, D.A.; Qui-Zapata, J.A.; Mahmoud, S.S.; Channa, G.M.; Lozano, L.M.; Mejía-Méndez, J.L.; López-Mena, E.R.; et al. Synergistic Effect of TiO2-Nanoparticles and Plant Growth-Promoting Microorganisms on the Physiological Parameters and Antioxidant Responses of Capsicum annum Cultivars. Antioxidants 2025, 14, 707. https://doi.org/10.3390/antiox14060707
Bhatti A, Sanchez-Martinez A, Sanchez-Ante G, Jacobo-Velázquez DA, Qui-Zapata JA, Mahmoud SS, Channa GM, Lozano LM, Mejía-Méndez JL, López-Mena ER, et al. Synergistic Effect of TiO2-Nanoparticles and Plant Growth-Promoting Microorganisms on the Physiological Parameters and Antioxidant Responses of Capsicum annum Cultivars. Antioxidants. 2025; 14(6):707. https://doi.org/10.3390/antiox14060707
Chicago/Turabian StyleBhatti, Atiya, Araceli Sanchez-Martinez, Gildardo Sanchez-Ante, Daniel A. Jacobo-Velázquez, Joaquín Alejandro Qui-Zapata, Soheil S. Mahmoud, Ghulam Mustafa Channa, Luis Marcelo Lozano, Jorge L. Mejía-Méndez, Edgar R. López-Mena, and et al. 2025. "Synergistic Effect of TiO2-Nanoparticles and Plant Growth-Promoting Microorganisms on the Physiological Parameters and Antioxidant Responses of Capsicum annum Cultivars" Antioxidants 14, no. 6: 707. https://doi.org/10.3390/antiox14060707
APA StyleBhatti, A., Sanchez-Martinez, A., Sanchez-Ante, G., Jacobo-Velázquez, D. A., Qui-Zapata, J. A., Mahmoud, S. S., Channa, G. M., Lozano, L. M., Mejía-Méndez, J. L., López-Mena, E. R., & Navarro-López, D. E. (2025). Synergistic Effect of TiO2-Nanoparticles and Plant Growth-Promoting Microorganisms on the Physiological Parameters and Antioxidant Responses of Capsicum annum Cultivars. Antioxidants, 14(6), 707. https://doi.org/10.3390/antiox14060707