Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Bragg-edge imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3074 KiB  
Communication
Isotropic Two-Dimensional Differentiation Based on Dual Dynamic Volume Holograms
by Pin Wang, Houxin Fan, Yaping Zhang, Yongwei Yao, Bing Zhang, Wenlong Qin and Ting-Chung Poon
Photonics 2023, 10(7), 828; https://doi.org/10.3390/photonics10070828 - 17 Jul 2023
Cited by 1 | Viewed by 1309
Abstract
We study the use of two dynamic thick holograms to realize isotropic two-dimensional (2D) differentiation under Bragg diffraction. Acousto-optic modulators (AOMs) are used as dynamic volume holograms. Using a single volume hologram, we can accomplish a first-order derivative operation, corresponding to selective edge [...] Read more.
We study the use of two dynamic thick holograms to realize isotropic two-dimensional (2D) differentiation under Bragg diffraction. Acousto-optic modulators (AOMs) are used as dynamic volume holograms. Using a single volume hologram, we can accomplish a first-order derivative operation, corresponding to selective edge extraction of an image. Since the AOM is a 1D spatial light modulator, filtering of the image only occurs along the direction of the sound propagation. To achieve 2D image processing, two AOMs are used within a Mach–Zehnder interferometer (MZI). By aligning one AOM along the x-direction on the upper arm of the interferometer and another AOM along the y-direction on the lower arm, we accomplish the sum of two first-derivative operations, leading to isotropic edge extraction. We have performed both computer simulations and optical experiments to verify the proposed idea. The system provides additional operations in optical computing using AOMs as dynamic holograms. Full article
(This article belongs to the Special Issue Holographic Information Processing)
Show Figures

Figure 1

26 pages, 10784 KiB  
Article
Large-Scale Defect Clusters with Hexagonal Honeycomb-like Arrangement in Ammonothermal GaN Crystals
by Lutz Kirste, Thu Nhi Tran Thi Caliste, Jan L. Weyher, Julita Smalc-Koziorowska, Magdalena A. Zajac, Robert Kucharski, Tomasz Sochacki, Karolina Grabianska, Malgorzata Iwinska, Carsten Detlefs, Andreas N. Danilewsky, Michal Bockowski and José Baruchel
Materials 2022, 15(19), 6996; https://doi.org/10.3390/ma15196996 - 9 Oct 2022
Cited by 8 | Viewed by 2509
Abstract
In this paper, we investigate, using X-ray Bragg diffraction imaging and defect selective etching, a new type of extended defect that occurs in ammonothermally grown gallium nitride (GaN) single crystals. This hexagonal “honeycomb” shaped defect is composed of bundles of parallel threading edge [...] Read more.
In this paper, we investigate, using X-ray Bragg diffraction imaging and defect selective etching, a new type of extended defect that occurs in ammonothermally grown gallium nitride (GaN) single crystals. This hexagonal “honeycomb” shaped defect is composed of bundles of parallel threading edge dislocations located in the corners of the hexagon. The observed size of the honeycomb ranges from 0.05 mm to 2 mm and is clearly correlated with the number of dislocations located in each of the hexagon’s corners: typically ~5 to 200, respectively. These dislocations are either grouped in areas that exhibit “diameters” of 100–250 µm, or they show up as straight long chain alignments of the same size that behave like limited subgrain boundaries. The lattice distortions associated with these hexagonally arranged dislocation bundles are extensively measured on one of these honeycombs using rocking curve imaging, and the ensemble of the results is discussed with the aim of providing clues about the origin of these “honeycombs”. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 3529 KiB  
Article
Spectral-Free Double Light Detection of DNA Based on a Porous Silicon Bragg Mirror
by Shuangshuang Zhang, Miao Sun, Xinli Wang, Jiajia Wang, Zhenhong Jia, Xiaoyi Lv and Xiaohui Huang
Sensors 2022, 22(18), 7048; https://doi.org/10.3390/s22187048 - 17 Sep 2022
Cited by 7 | Viewed by 1922
Abstract
To improve the detection sensitivity of a porous silicon optical biosensor in the real-time detection of biomolecules, a non-spectral porous silicon optical biosensor technology, based on dual-signal light detection, is proposed. Double-light detection is a combination of refractive index change detection and fluorescence [...] Read more.
To improve the detection sensitivity of a porous silicon optical biosensor in the real-time detection of biomolecules, a non-spectral porous silicon optical biosensor technology, based on dual-signal light detection, is proposed. Double-light detection is a combination of refractive index change detection and fluorescence change detection. It uses quantum dots to label probe molecules to detect target molecules. In the double-signal-light detection method, the first detection-signal light is the detection light that is reflected from the surface of the porous silicon Bragg mirror. The wavelength of the detection light is the same as the wavelength of the photonic band gap edge of the porous silicon Bragg mirror. CdSe/ZnS quantum dots are used to label the probe DNA and hybridize it with the target DNA molecules in the pores of porous silicon to improve its effective refractive index and enhance the detection-reflection light. The second detection-signal light is fluorescence, which is generated by the quantum dots in the reactant that are excited by light of a certain wavelength. The Bragg mirror structure further enhances the fluorescence signal. A digital microscope is used to simultaneously receive the digital image of two kinds of signal light superimposed on the surface of porous silicon, and the corresponding algorithm is used to calculate the change in the average grey value before and after the hybridization reaction to calculate the concentration of the DNA molecules. The detection limit of the DNA molecules was 0.42 pM. This method can not only detect target DNA by hybridization, but also detect antigen by immune reaction or parallel biochip detection for a porous silicon biosensor. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

15 pages, 5457 KiB  
Article
Intact, Commercial Lithium-Polymer Batteries: Spatially Resolved Grating-Based Interferometry Imaging, Bragg Edge Imaging, and Neutron Diffraction
by Adam J. Brooks, Daniel S. Hussey, Kyungmin Ham, David L. Jacobson, Ingo Manke, Nikolay Kardjilov and Leslie G. Butler
Appl. Sci. 2022, 12(3), 1281; https://doi.org/10.3390/app12031281 - 25 Jan 2022
Cited by 4 | Viewed by 3489
Abstract
We survey several neutron imaging and diffraction methods for non-destructive testing and evaluation of intact, commercial lithium-ion batteries. Specifically, far-field interferometry was explored as an option to probe a wide range of autocorrelation lengths within the batteries via neutron imaging. The dark-field interferometry [...] Read more.
We survey several neutron imaging and diffraction methods for non-destructive testing and evaluation of intact, commercial lithium-ion batteries. Specifically, far-field interferometry was explored as an option to probe a wide range of autocorrelation lengths within the batteries via neutron imaging. The dark-field interferometry images change remarkably from fresh to worn batteries, and from charged to discharged batteries. When attempting to search for visual evidence of battery degradation, neutron Talbot-Lau grating interferometry exposed battery layering and particle scattering through dark-field imaging. Bragg edge imaging also reveals battery wear and state of charge. Neutron diffraction observed chemical changes between fresh and worn, charged and discharged batteries. However, the utility of these methods, for commercial batteries, is dependent upon battery size and shape, with 19 to 43 mAh prismatic batteries proving most convenient for these experimental methods. This study reports some of the first spatially resolved, small angle scattering (dark-field) images showing battery degradation. Full article
(This article belongs to the Special Issue Neutron Dark-Field Imaging and Grating Interferometry)
Show Figures

Figure 1

9 pages, 1926 KiB  
Article
Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW
by Axel Griesche, Beate Pfretzschner, Ugur Alp Taparli and Nikolay Kardjilov
Appl. Sci. 2021, 11(22), 10886; https://doi.org/10.3390/app112210886 - 18 Nov 2021
Cited by 3 | Viewed by 2270
Abstract
Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and [...] Read more.
Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature Ms since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. Full article
(This article belongs to the Special Issue Novel Approaches for Nondestructive Testing and Evaluation)
Show Figures

Graphical abstract

16 pages, 3957 KiB  
Article
4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes
by Ralf F. Ziesche, Anton S. Tremsin, Chun Huang, Chun Tan, Patrick S. Grant, Malte Storm, Dan J. L. Brett, Paul R. Shearing and Winfried Kockelmann
J. Imaging 2020, 6(12), 136; https://doi.org/10.3390/jimaging6120136 - 11 Dec 2020
Cited by 12 | Viewed by 3965
Abstract
Bragg edge tomography was carried out on novel, ultra-thick, directional ice templated graphite electrodes for Li-ion battery cells to visualise the distribution of graphite and stable lithiation phases, namely LiC12 and LiC6. The four-dimensional Bragg edge, wavelength-resolved neutron tomography technique [...] Read more.
Bragg edge tomography was carried out on novel, ultra-thick, directional ice templated graphite electrodes for Li-ion battery cells to visualise the distribution of graphite and stable lithiation phases, namely LiC12 and LiC6. The four-dimensional Bragg edge, wavelength-resolved neutron tomography technique allowed the investigation of the crystallographic lithiation states and comparison with the electrode state of charge. The tomographic imaging technique provided insight into the crystallographic changes during de-/lithiation over the electrode thickness by mapping the attenuation curves and Bragg edge parameters with a spatial resolution of approximately 300 µm. This feasibility study was performed on the IMAT beamline at the ISIS pulsed neutron spallation source, UK, and was the first time the 4D Bragg edge tomography method was applied to Li-ion battery electrodes. The utility of the technique was further enhanced by correlation with corresponding X-ray tomography data obtained at the Diamond Light Source, UK. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
Neutron Diffraction and Diffraction Contrast Imaging for Mapping the TRIP Effect under Load Path Change
by Efthymios Polatidis, Manuel Morgano, Florencia Malamud, Michael Bacak, Tobias Panzner, Helena Van Swygenhoven and Markus Strobl
Materials 2020, 13(6), 1450; https://doi.org/10.3390/ma13061450 - 23 Mar 2020
Cited by 19 | Viewed by 3696
Abstract
The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additionally, the spatial distribution of the TRIP effect [...] Read more.
The transformation induced plasticity (TRIP) effect is investigated during a load path change using a cruciform sample. The transformation properties are followed by in-situ neutron diffraction derived from the central area of the cruciform sample. Additionally, the spatial distribution of the TRIP effect triggered by stress concentrations is visualized using neutron Bragg edge imaging including, e.g., weak positions of the cruciform geometry. The results demonstrate that neutron diffraction contrast imaging offers the possibility to capture the TRIP effect in objects with complex geometries under complex stress states. Full article
Show Figures

Figure 1

13 pages, 4000 KiB  
Article
Energy Resolved Neutron Imaging for Strain Reconstruction Using the Finite Element Method
by Riya Aggarwal, Michael H. Meylan, Bishnu P. Lamichhane and Chris M. Wensrich
J. Imaging 2020, 6(3), 13; https://doi.org/10.3390/jimaging6030013 - 22 Mar 2020
Cited by 3 | Viewed by 5299
Abstract
A novel pulsed neutron imaging technique based on the finite element method is used to reconstruct the residual strain within a polycrystalline material from Bragg edge strain images. This technique offers the possibility of a nondestructive analysis of strain fields with a high [...] Read more.
A novel pulsed neutron imaging technique based on the finite element method is used to reconstruct the residual strain within a polycrystalline material from Bragg edge strain images. This technique offers the possibility of a nondestructive analysis of strain fields with a high spatial resolution. The finite element approach used to reconstruct the strain uses the least square method constrained by the conditions of equilibrium. This inclusion of equilibrium makes the problem well-posed. The procedure is developed and verified by validating for a cantilevered beam problem. It is subsequently demonstrated by reconstructing the strain from experimental data for a ring-and-plug sample, measured at the spallation neutron source RADEN at J-PARC in Japan. The reconstruction is validated by comparison with conventional constant wavelength strain measurements on the KOWARI diffractometer at ANSTO in Australia. It is also shown that the addition of a Tikhonov regularisation scheme further improves the reconstruction. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

13 pages, 6370 KiB  
Review
Neutron Imaging at Compact Accelerator-Driven Neutron Sources in Japan
by Yoshiaki Kiyanagi
J. Imaging 2018, 4(4), 55; https://doi.org/10.3390/jimaging4040055 - 27 Mar 2018
Cited by 28 | Viewed by 8978
Abstract
Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron [...] Read more.
Neutron imaging has been recognized to be very useful to investigate inside of materials and products that cannot be seen by X-ray. New imaging methods using the pulsed structure of neutron sources based on accelerators has been developed also at compact accelerator-driven neutron sources and opened new application fields in neutron imaging. The world’s first dedicated imaging instrument at pulsed neutron sources was constructed at J-PARC in Japan owing to the development of such new methods. Then, usefulness of the compact accelerator-driven neutron sources in neutron science was recognized and such facilities were newly constructed in Japan. Now, existing and new sources have been used for neutron imaging. Traditional imaging and newly developed pulsed neutron imaging such as Bragg edge transmission have been applied to various fields by using compact and large neutron facilities. Here, compact accelerator-driven neutron sources used for imaging in Japan are introduced and some of their activities are presented. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

12 pages, 5923 KiB  
Article
Energy-Resolved Neutron Imaging for Reconstruction of Strain Introduced by Cold Working
by Anton S. Tremsin, Winfried Kockelmann, Joe F. Kelleher, Anna M. Paradowska, Ranggi S. Ramadhan and Michael E. Fitzpatrick
J. Imaging 2018, 4(3), 48; https://doi.org/10.3390/jimaging4030048 - 28 Feb 2018
Cited by 7 | Viewed by 5455
Abstract
Energy-resolved neutron transmission imaging is used to reconstruct maps of residual strains in drilled and cold-expanded holes in 5-mm and 6.4-mm-thick aluminum plates. The possibility of measuring the positions of Bragg edges in the transmission spectrum in each 55 × 55 µm2 [...] Read more.
Energy-resolved neutron transmission imaging is used to reconstruct maps of residual strains in drilled and cold-expanded holes in 5-mm and 6.4-mm-thick aluminum plates. The possibility of measuring the positions of Bragg edges in the transmission spectrum in each 55 × 55 µm2 pixel is utilized in the reconstruction of the strain distribution within the entire imaged area of the sample, all from a single measurement. Although the reconstructed strain is averaged through the sample thickness, this technique reveals strain asymmetries within the sample and thus provides information complementary to other well-established non-destructive testing methods. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

22 pages, 12666 KiB  
Article
Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science
by Winfried Kockelmann, Triestino Minniti, Daniel E. Pooley, Genoveva Burca, Ranggi Ramadhan, Freddie A. Akeroyd, Gareth D. Howells, Chris Moreton-Smith, David P. Keymer, Joe Kelleher, Saurabh Kabra, Tung Lik Lee, Ralf Ziesche, Anthony Reid, Giuseppe Vitucci, Giuseppe Gorini, Davide Micieli, Raffaele G. Agostino, Vincenzo Formoso, Francesco Aliotta, Rosa Ponterio, Sebastiano Trusso, Gabriele Salvato, Cirino Vasi, Francesco Grazzi, Kenichi Watanabe, Jason W. L. Lee, Anton S. Tremsin, Jason B. McPhate, Daniel Nixon, Nick Draper, William Halcrow and Jim Nightingaleadd Show full author list remove Hide full author list
J. Imaging 2018, 4(3), 47; https://doi.org/10.3390/jimaging4030047 - 28 Feb 2018
Cited by 61 | Viewed by 12211
Abstract
The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on [...] Read more.
The cold neutron imaging and diffraction instrument IMAT at the second target station of the pulsed neutron source ISIS is currently being commissioned and prepared for user operation. IMAT will enable white-beam neutron radiography and tomography. One of the benefits of operating on a pulsed source is to determine the neutron energy via a time of flight measurement, thus enabling energy-selective and energy-dispersive neutron imaging, for maximizing image contrasts between given materials and for mapping structure and microstructure properties. We survey the hardware and software components for data collection and image analysis on IMAT, and provide a step-by-step procedure for operating the instrument for energy-dispersive imaging using a two-phase metal test object as an example. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

25 pages, 10393 KiB  
Review
Deriving Quantitative Crystallographic Information from the Wavelength-Resolved Neutron Transmission Analysis Performed in Imaging Mode
by Hirotaka Sato
J. Imaging 2018, 4(1), 7; https://doi.org/10.3390/jimaging4010007 - 28 Dec 2017
Cited by 35 | Viewed by 8211
Abstract
Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm) with high spatial resolution (~100 μm). Furthermore, by using suitable spectrum analysis methods [...] Read more.
Current status of Bragg-edge/dip neutron transmission analysis/imaging methods is presented. The method can visualize real-space distributions of bulk crystallographic information in a crystalline material over a large area (~10 cm) with high spatial resolution (~100 μm). Furthermore, by using suitable spectrum analysis methods for wavelength-dependent neutron transmission data, quantitative visualization of the crystallographic information can be achieved. For example, crystallographic texture imaging, crystallite size imaging and crystalline phase imaging with texture/extinction corrections are carried out by the Rietveld-type (wide wavelength bandwidth) profile fitting analysis code, RITS (Rietveld Imaging of Transmission Spectra). By using the single Bragg-edge analysis mode of RITS, evaluations of crystal lattice plane spacing (d-spacing) relating to macro-strain and d-spacing distribution’s FWHM (full width at half maximum) relating to micro-strain can be achieved. Macro-strain tomography is performed by a new conceptual CT (computed tomography) image reconstruction algorithm, the tensor CT method. Crystalline grains and their orientations are visualized by a fast determination method of grain orientation for Bragg-dip neutron transmission spectrum. In this paper, these imaging examples with the spectrum analysis methods and the reliabilities evaluated by optical/electron microscope and X-ray/neutron diffraction, are presented. In addition, the status at compact accelerator driven pulsed neutron sources is also presented. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

17 pages, 7910 KiB  
Article
Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source
by Gian Song, Jiao Y. Y. Lin, Jean C. Bilheux, Qingge Xie, Louis J. Santodonato, Jamie J. Molaison, Harley D. Skorpenske, Antonio M. Dos Santos, Chris A. Tulk, Ke An, Alexandru D. Stoica, Michael M. Kirka, Ryan R. Dehoff, Anton S. Tremsin, Jeffrey Bunn, Lindsay M. Sochalski-Kolbus and Hassina Z. Bilheux
J. Imaging 2017, 3(4), 65; https://doi.org/10.3390/jimaging3040065 - 20 Dec 2017
Cited by 37 | Viewed by 9328
Abstract
Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to [...] Read more.
Over the past decade, wavelength-dependent neutron radiography, also known as Bragg-edge imaging, has been employed as a non-destructive bulk characterization method due to its sensitivity to coherent elastic neutron scattering that is associated with crystalline structures. Several analysis approaches have been developed to quantitatively determine crystalline orientation, lattice strain, and phase distribution. In this study, we report a systematic investigation of the crystal structures of metallic materials (such as selected textureless powder samples and additively manufactured (AM) Inconel 718 samples), using Bragg-edge imaging at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS). Firstly, we have implemented a phenomenological Gaussian-based fitting in a Python-based computer called iBeatles. Secondly, we have developed a model-based approach to analyze Bragg-edge transmission spectra, which allows quantitative determination of the crystallographic attributes. Moreover, neutron diffraction measurements were carried out to validate the Bragg-edge analytical methods. These results demonstrate that the microstructural complexity (in this case, texture) plays a key role in determining the crystallographic parameters (lattice constant or interplanar spacing), which implies that the Bragg-edge image analysis methods must be carefully selected based on the material structures. Full article
(This article belongs to the Special Issue Neutron Imaging)
Show Figures

Figure 1

Back to TopTop