Energy Resolved Neutron Imaging for Strain Reconstruction Using the Finite Element Method
Abstract
:1. Introduction
2. Longitudinal Ray Transform
3. Solution using Finite Element Basis Functions
4. Cantilevered Beam
5. Reconstruction of the Offset Ring-And-Plug
6. Tikhonov Regularisation
7. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kockelmann, W.; Minniti, T.; Pooley, D.E.; Burca, G.; Ramadhan, R.; Akeroyd, F.A.; Howells, G.D.; Moreton-Smith, C.; Keymer, D.P.; Kelleher, J.; et al. Time-of-flight neutron imaging on IMAT@ ISIS: A new user facility for materials science. J. Imaging 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Santisteban, J.; Edwards, L.; Fitzpatrick, M.; Steuwer, A.; Withers, P.; Daymond, M.; Johnson, M.; Rhodes, N.; Schooneveld, E. Strain Imaging by Bragg edge neutron transmission. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2002, 481, 765–768. [Google Scholar] [CrossRef]
- Woracek, R.; Santisteban, J.; Fedrigo, A.; Strobl, M. Diffraction in Neutron Imaging—A review. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2018, 878, 141–158. [Google Scholar] [CrossRef]
- Tremsin, A.; McPhate, J.; Kockelmann, W.; Vallerga, J.; Siegmund, O.; Feller, W. High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: proof of principle experiments with a neutron counting MCP detector. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2011, 633, 235–238. [Google Scholar] [CrossRef]
- Lu, L.; Wang, X.; Yang, Y.; Zhang, Z. Simulation study of a photoneutron source for Bragg edge transmission imaging. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2019, 954, 161793. [Google Scholar] [CrossRef]
- Song, G.; Lin, J.Y.; Bilheux, J.C.; Xie, Q.; Santodonato, L.J.; Molaison, J.J.; Skorpenske, H.D.; M Dos Santos, A.; Tulk, C.A.; An, K.; et al. Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source. J. Imaging 2017, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Song, G.; Gorti, S.; Stoica, A.D.; Radhakrishnan, B.; Bilheux, J.C.; Kirka, M.; Dehoff, R.; Bilheux, H.Z.; An, K. Applying neutron transmission physics and 3D statistical full-field model to understand 2D Bragg-edge imaging. J. Appl. Phys. 2018, 123, 074901. [Google Scholar] [CrossRef]
- Sato, H. Deriving quantitative crystallographic information from the wavelength-resolved neutron transmission analysis performed in imaging mode. J. Imaging 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Kisi, E.H.; Howard, C.J. Applications of Neutron Powder Diffraction; Oxford University Press: Oxford, UK, 2012; Volume 15. [Google Scholar]
- Fitzpatrick, M.E.; Lodini, A. Analysis of Residual Stress by Diffraction Using Neutron and Synchrotron Radiation; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Santisteban, J.; Edwards, L.; Fizpatrick, M.; Steuwer, A.; Withers, P. Engineering applications of Bragg-edge neutron transmission. Appl. Phys. A 2002, 74, 1433–1436. [Google Scholar] [CrossRef]
- Kardjilov, N.; Manke, I.; Woracek, R.; Hilger, A.; Banhart, J. Advances in Neutron Imaging. Mater. Today 2018, 21, 652–672. [Google Scholar] [CrossRef]
- Sato, H.; Iwase, K.; Kamiyama, T.; Kiyanagi, Y. Simultaneous Broadening Analysis of Multiple Bragg Edges Observed by Wavelength-resolved Neutron Transmission Imaging of Deformed Low-carbon Ferritic Steel. ISIJ Int. 2020. [Google Scholar] [CrossRef] [Green Version]
- Carminati, C.; Strobl, M.; Minniti, T.; Boillat, P.; Hovind, J.; Morgano, M.; Holm Rod, T.; Polatidis, E.; Valsecchi, J.; Mannes, D.; et al. Bragg-edge attenuation spectra at voxel level from 4D wavelength-resolved neutron tomography. J. Appl. Crystallogr. 2020, 53, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, T.; Kai, T.; Oikawa, K.; Segawa, M.; Harada, M.; Nakatani, T.; Ooi, M.; Aizawa, K.; Sato, H.; Kamiyama, T.; et al. Final design of the Energy-Resolved Neutron Imaging System RADEN at J-PARC. J. Phys. Conf. Ser. 2016, 746, 012007. [Google Scholar] [CrossRef]
- Shinohara, T.; Kai, T. Commissioning start of Energy-Resolved Neutron Imaging System, RADEN in J-PARC. Neutron News 2015, 26, 11–14. [Google Scholar] [CrossRef]
- Ramadhan, R.S.; Kockelmann, W.; Minniti, T.; Chen, B.; Parfitt, D.; Fitzpatrick, M.E.; Tremsin, A.S. Characterization and application of Bragg-edge transmission imaging for strain measurement and crystallographic analysis on the IMAT beamline. J. Appl. Crystallogr. 2019, 52, 351–368. [Google Scholar] [CrossRef] [Green Version]
- Tremsin, A.; McPhate, J.; Steuwer, A.; Kockelmann, W.; Paradowska, A.M.; Kelleher, J.; Vallerga, J.; Siegmund, O.; Feller, W. High-resolution strain mapping through time-of-flight neutron transmission diffraction with a microchannel plate neutron counting detector. Strain 2012, 48, 296–305. [Google Scholar] [CrossRef]
- Kirkwood, H.J.; Zhang, S.Y.; Tremsin, A.S.; Korsunsky, A.M.; Baimpas, N.; Abbey, B. Neutron Strain Tomography using the Radon Transform. Mater. Today Proc. 2015, 2, S414–S423. [Google Scholar] [CrossRef]
- Gregg, A.; Hendriks, J.N.; Wensrich, C.; Meylan, M.H. Tomographic reconstruction of residual strain in axisymmetric systems from Bragg-edge neutron imaging. Mech. Res. Commun. 2017, 85, 96–103. [Google Scholar] [CrossRef]
- Lionheart, W.R.B.; Withers, P.J. Diffraction tomography of strain. Inverse Probl. 2015, 31, 045005. [Google Scholar] [CrossRef]
- Hendriks, J.N.; Gregg, A.W.T.; Wensrich, C.M.; Tremsin, A.S.; Shinohara, T.; Meylan, M.; Kisi, E.H.; Luzin, V.; Kirsten, O. Bragg-edge elastic strain tomography for in situ systems from energy-resolved neutron transmission imaging. Phys. Rev. Mater. 2017, 1, 053802. [Google Scholar] [CrossRef] [Green Version]
- Abbey, B.; Zhang, S.Y.; Vorster, W.; Korsunsky, A.M. Feasibility study of neutron strain tomography. Procedia Eng. 2009, 1, 185–188. [Google Scholar] [CrossRef]
- Gregg, A.; Hendriks, J.; Wensrich, C.; Wills, A.; Tremsin, A.; Luzin, V.; Shinohara, T.; Kirstein, O.; Meylan, M.; Kisi, E. Tomographic Reconstruction of Two-Dimensional Residual Strain Fields from Bragg-Edge Neutron Imaging. Phys. Rev. Appl. 2018, 10, 064034. [Google Scholar] [CrossRef] [Green Version]
- Jidling, C.; Hendriks, J.; Wahlström, N.; Gregg, A.; Schön, T.B.; Wensrich, C.; Wills, A. Probabilistic modelling and reconstruction of strain. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2018, 436, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Ramadhan, R.S.; Syed, A.K.; Tremsin, A.S.; Kockelmann, W.; Dalgliesh, R.; Chen, B.; Parfitt, D.; Fitzpatrick, M.E. Mapping residual strain induced by cold working and by laser shock peening using neutron transmission spectroscopy. Mater. Des. 2018, 143, 56–64. [Google Scholar] [CrossRef]
- Sharafutdinov, V.A. Integral Geometry of Tensor Fields; Walter de Gruyter: Berlin, Germany, 1994. [Google Scholar]
- Abbey, B.; Zhang, S.Y.; Vorster, W.; Korsunsky, A.M. Reconstruction of axisymmetric strain distributions via neutron strain tomography. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2012, 270, 28–35. [Google Scholar] [CrossRef]
- Wensrich, C.; Hendriks, J.; Meylan, M. Bragg edge neutron transmission strain tomography in granular systems. Strain 2016, 52, 80–87. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Wensrich, C.; Hendriks, J.; Gregg, A.; Meylan, M.; Luzin, V.; Tremsin, A. Bragg-edge neutron transmission strain tomography for in situ loadings. Nucl. Instrum. Methods Phys. Res. Sect. Beam Interact. Mater. Atoms 2016, 383, 52–58. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. Lsqr: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. (TOMS) 1982, 8, 43–71. [Google Scholar] [CrossRef]
- Beer, F.; Johnston, E.J.; DeWolf, J.; Mazurek, D. Mechanics of Materials; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Golub, G.H.; Hansen, P.C.; O’Leary, D.P. Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 1999, 21, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Wahba, G. Spline Models for Observational Data; Mathematical Reviews (MathSciNet): MR1045442 Zentralblatt MATH; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1990; Volume 813. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, R.; Meylan, M.H.; Lamichhane, B.P.; Wensrich, C.M. Energy Resolved Neutron Imaging for Strain Reconstruction Using the Finite Element Method. J. Imaging 2020, 6, 13. https://doi.org/10.3390/jimaging6030013
Aggarwal R, Meylan MH, Lamichhane BP, Wensrich CM. Energy Resolved Neutron Imaging for Strain Reconstruction Using the Finite Element Method. Journal of Imaging. 2020; 6(3):13. https://doi.org/10.3390/jimaging6030013
Chicago/Turabian StyleAggarwal, Riya, Michael H. Meylan, Bishnu P. Lamichhane, and Chris M. Wensrich. 2020. "Energy Resolved Neutron Imaging for Strain Reconstruction Using the Finite Element Method" Journal of Imaging 6, no. 3: 13. https://doi.org/10.3390/jimaging6030013
APA StyleAggarwal, R., Meylan, M. H., Lamichhane, B. P., & Wensrich, C. M. (2020). Energy Resolved Neutron Imaging for Strain Reconstruction Using the Finite Element Method. Journal of Imaging, 6(3), 13. https://doi.org/10.3390/jimaging6030013