Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Bongkrekic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1713 KiB  
Article
Influence of Tariquidar, an ABC Transporter Inhibitor, on the Ca2+-Dependent Mitochondrial Permeability Transition Pore
by Tatiana A. Fedotcheva, Alexey G. Kruglov and Nadezhda I. Fedotcheva
Pharmaceuticals 2025, 18(6), 924; https://doi.org/10.3390/ph18060924 - 19 Jun 2025
Viewed by 389
Abstract
Background: Tariquidar (Tq) is an inhibitor of the multidrug resistance (MDR) proteins relevant to ATP-binding cassette transporters (ABC transporters), which suppresses the ATP-dependent efflux of a variety of hydrophilic and amphipathic compounds, including anticancer drugs. Tq is a representative of a new [...] Read more.
Background: Tariquidar (Tq) is an inhibitor of the multidrug resistance (MDR) proteins relevant to ATP-binding cassette transporters (ABC transporters), which suppresses the ATP-dependent efflux of a variety of hydrophilic and amphipathic compounds, including anticancer drugs. Tq is a representative of a new generation of MDR inhibitors with high affinity to ABC proteins. However, there are still no data on the possible effect of Tq on mitochondria as an important target in the regulation of cell death or survival. Methods: We investigated the influence of Tq on the Ca2+-dependent mitochondrial permeability transition pore (mPTP). The effect of Tq was assessed using several parameters, including the calcium load, membrane potential, and mitochondrial swelling. To evaluate the specific targets of Tq, selective inhibitors of components of the mitochondrial pore were used, including adenine nucleotides, carboxyatractylozide (Catr) and bongkrekic acid (BA), oligomycin, and cyclosporine A. Results: Tq decreased the calcium retention capacity, activated mitochondrial swelling, and lowered the influence of ADP and ATP, the inhibitors of the Ca2+-induced pore opening, at their low concentrations. These effects of Tq were observed in both calcium-load and swelling assays, thus mimicking the effect of Catr, a selective inhibitor of adenine nucleotide translocase (ANT). Tq also decreased the protective effect of BA, an inhibitor of ANT and mPTP, on the calcium retention capacity of mitochondria. Further, Tq dose-dependently decreased the inhibitory effect of a low ATP concentration but not of high concentrations, at which the effect of Tq was activated by oligomycin, an inhibitor of F-ATP synthase. Conclusions: The influence of Tq extends to mitochondria, specifically to the regulation of membrane permeability, promoting the activation of pore opening, probably through an interaction with ANT, a component of the pore-forming complex. The effect of Tq on the opening of mPTP is strongly dependent on the concentrations of adenine nucleotides and, consequently, on the functional state of mitochondria. The direct influence of Tq on mitochondria can be considered as a new activity that promotes the sensitization of cells to various treatments and stimuli. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

20 pages, 5467 KiB  
Article
Bongkrekic Acid and Its Novel Isomers: Separation, Identification, and Determination in Food Matrices
by Suhe Dong, Danli Liu, Runfeng Lin, Yingjie Zhu, Peihong Zhu, Xin Jiang, Jie Mao, Yanqing Cao, Jing Peng, Tianyue Zhao, Danning Shen, Tao Li, Kun He and Na Wang
Toxins 2025, 17(5), 223; https://doi.org/10.3390/toxins17050223 - 2 May 2025
Cited by 1 | Viewed by 682
Abstract
The toxicity associated with bongkrekic acid (BKA) is severe due to its chemical structure, which also facilitates high mortality rates; however, its isomer, isobongkrekic acid (iBKA), with only minor structural variance, demonstrates marked differences in toxicity. This discrepancy in structural properties and toxicity [...] Read more.
The toxicity associated with bongkrekic acid (BKA) is severe due to its chemical structure, which also facilitates high mortality rates; however, its isomer, isobongkrekic acid (iBKA), with only minor structural variance, demonstrates marked differences in toxicity. This discrepancy in structural properties and toxicity highlights that risks have been potentially underestimated within current detection standards for BKAs. In this study, a novel BKA trans isomer at the C8 and C9 double carbon bonds (E-configuration), termed iBKA-neo, was successfully separated and identified. Subsequently, the multiple reaction monitoring parameters and chromatographic conditions for three BKA isomers were optimized, enabling effective separation within 15 min via UHPLC-MS/MS, among which the ammonium positive adduct ions yielded significantly higher response intensities for all BKA isomers than traditional deprotonated molecules. Additionally, distinct differences in the ion ratios between iBKA-neo and BKA were utilized for preliminary screening. On this basis, the extraction and enrichment strategies for BKAs were optimized in food matrices and validated comprehensively with good linearity (0.25–500 μg/kg), a superior limit of quantification (0.25 μg/kg), acceptable recoveries (82.32–114.84%), and stable intraday and interday precision (an RSD less than 12.67%). These findings significantly contribute to ecotoxicology and the formulation of safety standards concerning BKAs. Full article
Show Figures

Graphical abstract

24 pages, 4225 KiB  
Article
Prediction of the Ecological Behavior of Burkholderia gladiolus in Fresh Wet Rice Noodles at Different Temperatures and Its Correlation with Quality Changes
by Mengmeng Li, Ke Xiong, Wen Jin and Yumeng Hu
Foods 2025, 14(8), 1291; https://doi.org/10.3390/foods14081291 - 8 Apr 2025
Viewed by 539
Abstract
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production [...] Read more.
Burkholderia gladioli pathovar cocovenenans (BGC) is a highly lethal foodborne pathogen responsible for outbreaks of food poisoning with the highest recorded mortality rates among bacterial foodborne illnesses in China. In this study, the ecological behavior of BGC and its Bongkrekic Acid (BA) production dynamics in fresh wet rice noodles (FWRN) were investigated under isothermal conditions ranging from 4 °C to 37 °C. Growth kinetics were modeled using the Huang, Baranyi, and modified Gompertz primary models, with secondary models (Huang square root model and Ratkowsky square root model) describing the influence of temperature on growth parameters. Among these, the Huang–Huang model combination exhibited the best performance, with a root mean square error (RMSE) of 0.009 and bias factor (Bf) and accuracy factor (Af) values close to 1. Additionally, we examined the impact of BGC contamination on the quality attributes of FWRN, including pH, color (L*, a*, b*), hardness, and moisture content. The results indicated that BGC growth significantly increased pH and yellowing (b*) values, while changes in texture and moisture were less pronounced. A probabilistic model was further developed to predict BA production under various temperature scenarios, revealing that BA formation was most likely to occur between 24 °C and 30 °C. While this study provides valuable predictive tools for microbial risk assessment and quality control of FWRN, limitations include the exclusion of additional environmental factors such as oxygen and relative humidity, as well as the lack of direct investigation into the degradation behavior of BA. Future research will expand model parameters and include sensory evaluations and advanced microbiological analyses to enhance applicability under real-world storage and transportation conditions. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 4966 KiB  
Article
Exploring Metabolic Shifts in Kidney Cancer and Non-Cancer Cells Under Pro- and Anti-Apoptotic Treatments Using NMR Metabolomics
by Lucia Trisolini, Biagia Musio, Beatriz Teixeira, Maria Noemi Sgobba, Anna Lucia Francavilla, Mariateresa Volpicella, Lorenzo Guerra, Anna De Grassi, Vito Gallo, Iola F. Duarte and Ciro Leonardo Pierri
Cells 2025, 14(5), 367; https://doi.org/10.3390/cells14050367 - 2 Mar 2025
Cited by 1 | Viewed by 1178
Abstract
This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using 1H NMR metabolomics to [...] Read more.
This study investigates the metabolic responses of cancerous (RCC) and non-cancerous (HK2) kidney cells to treatment with Staurosporine (STAU), which has a pro-apoptotic effect, and Bongkrekic acid (BKA), which has an anti-apoptotic effect, individually and in combination, using 1H NMR metabolomics to identify metabolite markers linked to mitochondrial apoptotic pathways. BKA had minimal metabolic effects in RCC cells, suggesting its role in preserving mitochondrial function without significantly altering metabolic pathways. In contrast, STAU induced substantial metabolic reprogramming in RCC cells, disrupting energy production, redox balance, and biosynthesis, thereby triggering apoptotic pathways. The combined treatment of BKA and STAU primarily mirrored the effects of STAU alone, with BKA showing little capacity to counteract the pro-apoptotic effects. In non-cancerous HK2 cells, the metabolic alterations were far less pronounced, highlighting key differences in the metabolic responses of cancerous and non-cancerous cells. RCC cells displayed greater metabolic flexibility, while HK2 cells maintained a more regulated metabolic state. These findings emphasize the potential for targeting cancer-specific metabolic vulnerabilities while sparing non-cancerous cells, underscoring the value of metabolomics in understanding apoptotic and anti-apoptotic mechanisms. Future studies should validate these results in vivo and explore their potential for personalized treatment strategies. Full article
(This article belongs to the Collection Feature Papers in Mitochondria)
Show Figures

Figure 1

18 pages, 2698 KiB  
Article
ANT-Mediated Inhibition of the Permeability Transition Pore Alleviates Palmitate-Induced Mitochondrial Dysfunction and Lipotoxicity
by Natalia V. Belosludtseva, Anna I. Ilzorkina, Dmitriy A. Serov, Mikhail V. Dubinin, Eugeny Yu. Talanov, Maxim N. Karagyaur, Alexandra L. Primak, Jiankang Liu and Konstantin N. Belosludtsev
Biomolecules 2024, 14(9), 1159; https://doi.org/10.3390/biom14091159 - 15 Sep 2024
Cited by 2 | Viewed by 4682
Abstract
Hyperlipidemia is a major risk factor for vascular lesions in diabetes mellitus and other metabolic disorders, although its basis remains poorly understood. One of the key pathogenetic events in this condition is mitochondrial dysfunction associated with the opening of the mitochondrial permeability transition [...] Read more.
Hyperlipidemia is a major risk factor for vascular lesions in diabetes mellitus and other metabolic disorders, although its basis remains poorly understood. One of the key pathogenetic events in this condition is mitochondrial dysfunction associated with the opening of the mitochondrial permeability transition (MPT) pore, a drop in the membrane potential, and ROS overproduction. Here, we investigated the effects of bongkrekic acid and carboxyatractyloside, a potent blocker and activator of the MPT pore opening, respectively, acting through direct interaction with the adenine nucleotide translocator, on the progression of mitochondrial dysfunction in mouse primary lung endothelial cells exposed to elevated levels of palmitic acid. Palmitate treatment (0.75 mM palmitate/BSA for 6 days) resulted in an 80% decrease in the viability index of endothelial cells, which was accompanied by mitochondrial depolarization, ROS hyperproduction, and increased colocalization of mitochondria with lysosomes. Bongkrekic acid (25 µM) attenuated palmitate-induced lipotoxicity and all the signs of mitochondrial damage, including increased spontaneous formation of the MPT pore. In contrast, carboxyatractyloside (10 μM) stimulated cell death and failed to prevent the progression of mitochondrial dysfunction under hyperlipidemic stress conditions. Silencing of gene expression of the predominate isoform ANT2, similar to the action of carboxyatractyloside, led to increased ROS generation and cell death under conditions of palmitate-induced lipotoxicity in a stably transfected HEK293T cell line. Altogether, these results suggest that targeted manipulation of the permeability transition pore through inhibition of ANT may represent an alternative approach to alleviate mitochondrial dysfunction and cell death in cell culture models of fatty acid overload. Full article
Show Figures

Figure 1

13 pages, 1852 KiB  
Article
Identification of Burkholderia gladioli pv. cocovenenans in Black Fungus and Efficient Recognition of Bongkrekic Acid and Toxoflavin Producing Phenotype by Back Propagation Neural Network
by Chen Niu, Xiying Song, Jin Hao, Mincheng Zhao, Yahong Yuan, Jingyan Liu and Tianli Yue
Foods 2024, 13(2), 351; https://doi.org/10.3390/foods13020351 - 22 Jan 2024
Cited by 5 | Viewed by 3702
Abstract
Burkholderia gladioli pv. cocovenenans is a serious safety issue in black fungus due to the deadly toxin, bongkrekic acid. This has triggered the demand for an efficient toxigenic phenotype recognition method. The objective of this study is to develop an efficient method for [...] Read more.
Burkholderia gladioli pv. cocovenenans is a serious safety issue in black fungus due to the deadly toxin, bongkrekic acid. This has triggered the demand for an efficient toxigenic phenotype recognition method. The objective of this study is to develop an efficient method for the recognition of toxin-producing B. gladioli strains. The potential of multilocus sequence typing and a back propagation neural network for the recognition of toxigenic B. cocovenenans was explored for the first time. The virulent strains were isolated from a black fungus cultivation environment in Qinba Mountain area, Shaanxi, China. A comprehensive evaluation of toxigenic capability of 26 isolates were conducted using Ultra Performance Liquid Chromatography for determination of bongkrekic acid and toxoflavin production in different culturing conditions and foods. The isolates produced bongkrekic acid in the range of 0.05–6.24 mg/L in black fungus and a highly toxin-producing strain generated 201.86 mg/L bongkrekic acid and 45.26 mg/L toxoflavin in co-cultivation with Rhizopus oryzae on PDA medium. Multilocus sequence typing phylogeny (MLST) analysis showed that housekeeping gene sequences have a certain relationship with a strain toxigenic phenotype. We developed a well-trained, back-propagation neutral network for prediction of toxigenic phenotype in B. gladioli based on MLST sequences with an accuracy of 100% in the training set and an accuracy of 86.7% in external test set strains. The BP neutral network offers a highly efficient approach to predict toxigenic phenotype of strains and contributes to hazard detection and safety surveillance. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

17 pages, 3514 KiB  
Review
Bongkrekic Acid and Burkholderia gladioli pathovar cocovenenans: Formidable Foe and Ascending Threat to Food Safety
by Dong Han, Jian Chen, Wei Chen and Yanbo Wang
Foods 2023, 12(21), 3926; https://doi.org/10.3390/foods12213926 - 26 Oct 2023
Cited by 21 | Viewed by 9906
Abstract
Bongkrekic acid (BKA) poisoning, induced by the contamination of Burkholderia gladioli pathovar cocovenenans, has a long-standing history of causing severe outbreaks of foodborne illness. In recent years, it has emerged as a lethal food safety concern, presenting significant challenges to public health. This [...] Read more.
Bongkrekic acid (BKA) poisoning, induced by the contamination of Burkholderia gladioli pathovar cocovenenans, has a long-standing history of causing severe outbreaks of foodborne illness. In recent years, it has emerged as a lethal food safety concern, presenting significant challenges to public health. This review article highlights the recent incidents of BKA poisoning and current research discoveries on the pathogenicity of B. gladioli pv. cocovenenans and underlying biochemical mechanisms for BKA synthesis. Moreover, the characterization of B. gladioli pv. cocovenenans and the identification of the bon gene cluster provide a crucial foundation for developing targeted interventions to prevent BKA accumulation in food matrices. The prevalence of the bon gene cluster, which is the determining factor distinguishing B. gladioli pv. cocovenenans from non-pathogenic B. gladioli strains, has been identified in 15% of documented B. gladioli genomes worldwide. This finding suggests that BKA poisoning has the potential to evolve into a more prevalent threat. Although limited, previous research has proved that B. gladioli pv. cocovenenans is capable of producing BKA in diverse environments, emphasizing the possible food safety hazards associated with BKA poisoning. Also, advancements in detection methods of both BKA and B. gladioli pv. cocovenenans hold great promise for mitigating the impact of this foodborne disease. Future studies focusing on reducing the threat raised by this vicious foe is of paramount importance to public health. Full article
(This article belongs to the Special Issue Foodborne Pathogenic Bacteria: Prevalence and Control—Volume II)
Show Figures

Figure 1

18 pages, 4295 KiB  
Article
FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers
by Jürgen Kreiter, Sanja Škulj, Zlatko Brkljača, Sarah Bardakji, Mario Vazdar and Elena E. Pohl
Int. J. Mol. Sci. 2023, 24(18), 13701; https://doi.org/10.3390/ijms241813701 - 5 Sep 2023
Cited by 9 | Viewed by 2331
Abstract
Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the [...] Read more.
Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the FA cycling model, in which protonated FA transports the proton to the mitochondrial matrix. The mechanism by which ANT1 transports FA anions back to the intermembrane space remains unclear. Using a combined approach involving measurements of the current through the planar lipid bilayers reconstituted with ANT1, site-directed mutagenesis and molecular dynamics simulations, we show that the FA anion is first attracted by positively charged arginines or lysines on the matrix side of ANT1 before moving along the positively charged protein–lipid interface and binding to R79, where it is protonated. We show that R79 is also critical for the competitive binding of ANT1 substrates (ADP and ATP) and inhibitors (carboxyatractyloside and bongkrekic acid). The binding sites are well conserved in mitochondrial SLC25 members, suggesting a general mechanism for transporting FA anions across the inner mitochondrial membrane. Full article
(This article belongs to the Special Issue Transport Mechanisms of Mitochondrial Membrane Proteins)
Show Figures

Figure 1

12 pages, 3757 KiB  
Article
Refractive Index Imaging Reveals That Elimination of the ATP Synthase C Subunit Does Not Prevent the Adenine Nucleotide Translocase-Dependent Mitochondrial Permeability Transition
by Maria A. Neginskaya, Sally E. Morris and Evgeny V. Pavlov
Cells 2023, 12(15), 1950; https://doi.org/10.3390/cells12151950 - 27 Jul 2023
Cited by 10 | Viewed by 2096
Abstract
The mitochondrial permeability transition pore (mPTP) is a large, weakly selective pore that opens in the mitochondrial inner membrane in response to the pathological increase in matrix Ca2+ concentration. mPTP activation has been implicated as a key factor contributing to stress-induced necrotic [...] Read more.
The mitochondrial permeability transition pore (mPTP) is a large, weakly selective pore that opens in the mitochondrial inner membrane in response to the pathological increase in matrix Ca2+ concentration. mPTP activation has been implicated as a key factor contributing to stress-induced necrotic and apoptotic cell death. The molecular identity of the mPTP is not completely understood. Both ATP synthase and adenine nucleotide translocase (ANT) have been described as important components of the mPTP. Using a refractive index (RI) imaging approach, we recently demonstrated that the removal of either ATP synthase or ANT eliminates the Ca2+-induced mPTP in experiments with intact cells. These results suggest that mPTP formation relies on the interaction between ATP synthase and ANT protein complexes. To gain further insight into this process, we used RI imaging to investigate mPTP properties in cells with a genetically eliminated C subunit of ATP synthase. These cells also lack ATP6, ATP8, 6.8PL subunits and DAPIT but, importantly, have a vestigial ATP synthase complex with assembled F1 and peripheral stalk domains. We found that these cells can still undergo mPTP activation, which can be blocked by the ANT inhibitor bongkrekic acid. These results suggest that ANT can form the pore independently from the C subunit but still requires the presence of other components of ATP synthase. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease)
Show Figures

Figure 1

21 pages, 3669 KiB  
Article
The Regulation of Non-Specific Membrane Permeability Transition in Yeast Mitochondria under Oxidative Stress
by Elena P. Isakova, Olga I. Klein and Yulia I. Deryabina
Microbiol. Res. 2021, 12(2), 419-439; https://doi.org/10.3390/microbiolres12020029 - 1 May 2021
Cited by 1 | Viewed by 2925
Abstract
In this study, the mechanism of non-specific membrane permeability (yPTP) in the Endomyces magnusii yeast mitochondria under oxidative stress due to blocking the key antioxidant enzymes has been investigated. We used monitoring the membrane potential at the cellular (potential-dependent staining) and mitochondrial levels [...] Read more.
In this study, the mechanism of non-specific membrane permeability (yPTP) in the Endomyces magnusii yeast mitochondria under oxidative stress due to blocking the key antioxidant enzymes has been investigated. We used monitoring the membrane potential at the cellular (potential-dependent staining) and mitochondrial levels and mitochondria ultra-structural images with transmission electron microscopy (TEM) to demonstrate the mitochondrial permeability transition induction due to the pore opening. Analysis of the yPTP opening upon respiring different substrates showed that NAD(P)H completely blocked the development of the yPTP. The yPTP opening was inhibited by 5–20 mM Pi, 5 mM Mg2+, adenine nucleotides (AN), 5 mM GSH, the inhibitor of the Pi transporter (PiC), 100 μM mersalyl, the blockers of the adenine nucleotide transporter (ANT) carboxyatractyloside (CATR), and bongkrekic acid (BA). We concluded that the non-specific membrane permeability pore opens in the E. magnusii mitochondria under oxidative stress, and the ANT and PiC are involved in its formation. The crucial role of the Ca2+ ions in the process has not been confirmed. We showed that the Ca2+ ions affected the yPTP both with and without the Ca2+ ionophore ETH129 application insignificantly. This phenomenon in the E. magnusii yeast unites both mitochondrial unselective channel (ScMUC) features in the Saccharomyces cerevisiae mitochondria and the classical membrane pore in the mammalian ones (mPTP). Full article
Show Figures

Figure 1

14 pages, 2216 KiB  
Article
ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport
by Jürgen Kreiter, Anne Rupprecht, Sanja Škulj, Zlatko Brkljača, Kristina Žuna, Denis G. Knyazev, Sarah Bardakji, Mario Vazdar and Elena E. Pohl
Int. J. Mol. Sci. 2021, 22(5), 2490; https://doi.org/10.3390/ijms22052490 - 2 Mar 2021
Cited by 29 | Viewed by 5308
Abstract
Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about [...] Read more.
Adenine nucleotide translocase (ANT) is a well-known mitochondrial exchanger of ATP against ADP. In contrast, few studies have shown that ANT also mediates proton transport across the inner mitochondrial membrane. The results of these studies are controversial and lead to different hypotheses about molecular transport mechanisms. We hypothesized that the H+-transport mediated by ANT and uncoupling proteins (UCP) has a similar regulation pattern and can be explained by the fatty acid cycling concept. The reconstitution of purified recombinant ANT1 in the planar lipid bilayers allowed us to measure the membrane current after the direct application of transmembrane potential ΔΨ, which would correspond to the mitochondrial states III and IV. Experimental results reveal that ANT1 does not contribute to a basal proton leak. Instead, it mediates H+ transport only in the presence of long-chain fatty acids (FA), as already known for UCPs. It depends on FA chain length and saturation, implying that FA’s transport is confined to the lipid-protein interface. Purine nucleotides with the preference for ATP and ADP inhibited H+ transport. Specific inhibitors of ATP/ADP transport, carboxyatractyloside or bongkrekic acid, also decreased proton transport. The H+ turnover number was calculated based on ANT1 concentration determined by fluorescence correlation spectroscopy and is equal to 14.6 ± 2.5 s−1. Molecular dynamic simulations revealed a large positively charged area at the protein/lipid interface that might facilitate FA anion’s transport across the membrane. ANT’s dual function—ADP/ATP and H+ transport in the presence of FA—may be important for the regulation of mitochondrial membrane potential and thus for potential-dependent processes in mitochondria. Moreover, the expansion of proton-transport modulating drug targets to ANT1 may improve the therapy of obesity, cancer, steatosis, cardiovascular and neurodegenerative diseases. Full article
(This article belongs to the Special Issue Membrane Proteins: Structure, Function and Motion)
Show Figures

Figure 1

12 pages, 1039 KiB  
Article
A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes
by Jürgen Kreiter, Eric Beitz and Elena E. Pohl
Biomolecules 2020, 10(5), 685; https://doi.org/10.3390/biom10050685 - 29 Apr 2020
Cited by 12 | Viewed by 5482
Abstract
Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating [...] Read more.
Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating substrate transport is challenging. Currently, mainly radioactively labeled substrates are used, which are very expensive and require stringent precautions during their preparation and use. We present and evaluate a fluorescence-based method using Magnesium Green (MgGrTM), a Mg2+-sensitive dye suitable for measurement in liposomes. Given the different binding affinities of Mg2+ for ATP and ADP, changes in their concentrations can be detected. We obtained an ADP/ATP exchange rate of 3.49 ± 0.41 mmol/min/g of recombinant ANT1 reconstituted into unilamellar liposomes, which is comparable to values measured in mitochondria and proteoliposomes using a radioactivity assay. ADP/ATP exchange calculated from MgGrTM fluorescence solely depends on the ANT1 content in liposomes and is inhibited by the ANT-specific inhibitors, bongkrekic acid and carboxyatractyloside. The application of MgGrTM to investigate ADP/ATP exchange rates contributes to our understanding of ANT function in mitochondria and paves the way for the design of other substrate transport assays. Full article
Show Figures

Figure 1

Back to TopTop