Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Bogach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10495 KiB  
Article
Revisiting Mn4Al11: Growth of Stoichiometric Single Crystals and Their Structural and Magnetic Properties
by Roman A. Khalaniya, Andrei V. Mironov, Alexander N. Samarin, Alexey V. Bogach, Aleksandr N. Kulchu and Andrei V. Shevelkov
Crystals 2025, 15(8), 714; https://doi.org/10.3390/cryst15080714 - 4 Aug 2025
Viewed by 136
Abstract
Stoichiometric single crystals of Mn4Al11 were synthesized from the elements using Sn as a flux. The crystal structure of Mn4Al11 was investigated using single crystal X-ray diffraction and showed a complex triclinic structure with a relatively small [...] Read more.
Stoichiometric single crystals of Mn4Al11 were synthesized from the elements using Sn as a flux. The crystal structure of Mn4Al11 was investigated using single crystal X-ray diffraction and showed a complex triclinic structure with a relatively small unit cell and interpenetrating networks of Mn and Al atoms. While our results generally agree with the previously reported data in the basic structure features such as triclinic symmetry and structure type, the atomic parameters differ significantly, likely due to different synthetic techniques producing off-stoichiometry or doped crystals used in the previous works. Our structural analysis showed that the view of the Mn substructure as isolated zigzag chains is incomplete. Instead, the Mn chains are coupled in corrugated layers by long Mn-Mn bonds. The high quality of the crystals with the stoichiometric composition also enabled us to study magnetic behavior in great detail and reveal previously unobserved magnetic ordering. Our magnetization measurements showed that Mn4Al11 is an antiferromagnet with TN of 65 K. The presence of the maximum above TN also suggests strong local interactions indicative of low-dimensional magnetic behavior, which likely stems from lowered dimensionality of the Mn substructure. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 5955 KiB  
Article
High-Temperature Layered Modification of Mn2In2Se5
by Ivan V. Chernoukhov, Anton D. Pyreu, Andrey N. Azarevich, Alexander N. Samarin, Alexey V. Bogach, Konstantin O. Znamenkov, Andrei V. Shevelkov and Valeriy Yu. Verchenko
Molecules 2025, 30(9), 1904; https://doi.org/10.3390/molecules30091904 - 24 Apr 2025
Viewed by 414
Abstract
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn2+ or Fe3+ cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. [...] Read more.
Layered chalcogenides are interesting from the point of view of the formation of two-dimensional magnetic systems for relevant applications in spintronics. High-spin Mn2+ or Fe3+ cations with five unpaired electrons are promising in the search for compounds with interesting magnetic properties. In this study, a new layered modification of the Mn2In2Se5 compound from the A2B2X5 family (“225”) was synthesized and investigated. A phase transition to the polymorph with primitive trigonal lattice was recorded at a temperature of 711 °C, which was confirmed by simultaneous thermal analysis, X-ray powder diffraction at elevated temperatures, and sample annealing and quenching. The stability of Mn2In2Se5 in air at high temperatures was investigated by thermal gravimetric analysis and powder X-ray diffraction. The new polymorph of Mn2In2Se5 crystallizes in the Mg2Al2Se5 structure type, as revealed by the Rietveld refinement against powder X-ray diffraction data. The crystal structure can be viewed as a close-packing of Se anions, in which indium and manganese cations are enclosed inside tetrahedral and octahedral voids, respectively, according to the AMnBInCBInCMnA… sequence. Magnetization measurements reveal an antiferromagnetic-like transition at a temperature of 6.3 K. The same magnetic properties are reported in the literature for the low-temperature R-centered trigonal polymorph. An approximation by the modified Curie–Weiss law yields a significant ratio of |θ|/TN = 28, which indicates strong magnetic frustration. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

34 pages, 18653 KiB  
Article
Phase Transitions and Structural Evolution of Manganese Ores During High-Temperature Treatment
by Ruslan Z. Safarov, Yerlan A. Baikenov, Assemgul K. Zhandildenova, Eldar E. Kopishev, Ruslan M. Kamatov, Jumat B. Kargin, H. Sanchez Cornejo, Crispin H. W. Barnes and Luis De Los Santos Valladares
Metals 2025, 15(1), 89; https://doi.org/10.3390/met15010089 - 18 Jan 2025
Cited by 3 | Viewed by 1903
Abstract
The aim of this research is to investigate the phase composition and structural peculiarities of complex metamorphic manganese ores from Central Kazakhstan before and after sintering in the temperature range of 600–1200 °C in an air atmosphere. X-ray diffraction, X-ray fluorescence, scanning electron [...] Read more.
The aim of this research is to investigate the phase composition and structural peculiarities of complex metamorphic manganese ores from Central Kazakhstan before and after sintering in the temperature range of 600–1200 °C in an air atmosphere. X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and optical microscopy were used to analyze changes in elemental and phase composition. In their initial state, according to XRF analysis, the Bogach ore was manganese-rich, with a manganese content of 60.77 wt.%, while the Zhaksy ore contained manganese (44.88 wt.%), silicon (20.85 wt.%), and iron (6.14 wt.%) as its main components. In the Bogach ore samples, manganese content increased from 60.77% to 65.7% as the sintering temperature rose to 1100 °C, while the hausmannite phase (Mn3O4) emerged as the dominant phase, comprising 95.77% of the crystalline component at 1200 °C. Conversely, the Zhaksy ore samples displayed a sharp increase in braunite-phase (Mn7O12Si) content, reaching 83.81% at 1100 °C, alongside significant quartz amorphization. The degree of crystallinity in Bogach ore peaked at 56.2% at 900 °C but declined at higher temperatures due to amorphous phase formation. A surface morphology analysis revealed the transformation of dense, non-uniform particles into porous, granular structures with pronounced recrystallization as the temperature increased. In the Bogach samples, sintering at 900 °C resulted in elongated, needle-like crystalline formations, while at 1200 °C, tetragonal crystals of hausmannite dominated, indicating significant grain growth and recrystallization. For Zhaksy samples, sintering at 1100 °C led to a porous morphology with interconnected grains and microvoids, reflecting enhanced braunite crystallization and quartz amorphization. These findings provide quantitative insights into optimizing manganese oxide phases for industrial applications, such as catalysts and pigments, and emphasize the impact of thermal treatment on phase stability and structural properties. This research contributes to the development of efficient processing technologies for medium-grade manganese ores, aligning with Kazakhstan’s strategic goals in sustainable resource utilization. Full article
(This article belongs to the Special Issue Recent Progress in Metal Extraction and Recycling)
Show Figures

Figure 1

12 pages, 9613 KiB  
Article
Mn2Ga2S5 and Mn2Al2Se5 van der Waals Chalcogenides: A Source of Atomically Thin Nanomaterials
by Ivan V. Chernoukhov, Alexey V. Bogach, Kirill A. Cherednichenko, Ruslan A. Gashigullin, Andrei V. Shevelkov and Valeriy Yu. Verchenko
Molecules 2024, 29(9), 2026; https://doi.org/10.3390/molecules29092026 - 28 Apr 2024
Cited by 3 | Viewed by 1836
Abstract
Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the [...] Read more.
Layered chalcogenides containing 3d transition metals are promising for the development of two-dimensional nanomaterials with interesting magnetic properties. Both mechanical and solution-based exfoliation of atomically thin layers is possible due to the low-energy van der Waals bonds. In this paper, we present the synthesis and crystal structures of the Mn2Ga2S5 and Mn2Al2Se5 layered chalcogenides. For Mn2Ga2S5, we report magnetic properties, as well as the exfoliation of nanofilms and nanoscrolls. The synthesis of both polycrystalline phases and single crystals is described, and their chemical stability in air is studied. Crystal structures are probed via powder X-ray diffraction and high-resolution transmission electron microscopy. The new compound Mn2Al2Se5 is isomorphous with Mn2Ga2S5 crystallizing in the Mg2Al2Se5 structure type. The crystal structure is built by the ABCBCA sequence of hexagonal close-packing layers of chalcogen atoms, where Mn2+ and Al3+/Ga3+ species preferentially occupy octahedral and tetrahedral voids, respectively. Mn2Ga2S5 exhibits an antiferromagnetic-like transition at 13 K accompanied by the ferromagnetic hysteresis of magnetization. Significant frustration of the magnetic system may yield spin-glass behavior at low temperatures. The exfoliation of Mn2Ga2S5 layers was performed in a non-polar solvent. Nanolayers and nanoscrolls were observed using high-resolution transmission electron microscopy. Fragments of micron-sized crystallites with a thickness of 70–100 nanometers were deposited on a glass surface, as evidenced by atomic force microscopy. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

20 pages, 2132 KiB  
Article
An Open CAPT System for Prosody Practice: Practical Steps towards Multilingual Setup
by John Blake, Natalia Bogach, Akemi Kusakari, Iurii Lezhenin, Veronica Khaustova, Son Luu Xuan, Van Nhi Nguyen, Nam Ba Pham, Roman Svechnikov, Andrey Ostapchuk, Dmitrei Efimov and Evgeny Pyshkin
Languages 2024, 9(1), 27; https://doi.org/10.3390/languages9010027 - 12 Jan 2024
Cited by 4 | Viewed by 2852
Abstract
This paper discusses the challenges posed in creating a Computer-Assisted Pronunciation Training (CAPT) environment for multiple languages. By selecting one language from each of three different language families, we show that a single environment may be tailored to cater for different target languages. [...] Read more.
This paper discusses the challenges posed in creating a Computer-Assisted Pronunciation Training (CAPT) environment for multiple languages. By selecting one language from each of three different language families, we show that a single environment may be tailored to cater for different target languages. We detail the challenges faced during the development of a multimodal CAPT environment comprising a toolkit that manages mobile applications using speech signal processing, visualization, and estimation algorithms. Since the applied underlying mathematical and phonological models, as well as the feedback production algorithms, are based on sound signal processing and modeling rather than on particular languages, the system is language-agnostic and serves as an open toolkit for developing phrasal intonation training exercises for an open selection of languages. However, it was necessary to tailor the CAPT environment to the language-specific particularities in the multilingual setups, especially the additional requirements for adequate and consistent speech evaluation and feedback production. In our work, we describe our response to the challenges in visualizing and segmenting recorded pitch signals and modeling the language melody and rhythm necessary for such a multilingual adaptation, particularly for tonal syllable-timed and mora-timed languages. Full article
(This article belongs to the Special Issue Speech Analysis and Tools in L2 Pronunciation Acquisition)
Show Figures

Figure 1

25 pages, 6799 KiB  
Article
Hall Effect Anisotropy in the Paramagnetic Phase of Ho0.8Lu0.2B12 Induced by Dynamic Charge Stripes
by Artem L. Khoroshilov, Kirill M. Krasikov, Andrey N. Azarevich, Alexey V. Bogach, Vladimir V. Glushkov, Vladimir N. Krasnorussky, Valery V. Voronov, Natalya Y. Shitsevalova, Volodymyr B. Filipov, Slavomir Gabáni, Karol Flachbart and Nikolay E. Sluchanko
Molecules 2023, 28(2), 676; https://doi.org/10.3390/molecules28020676 - 9 Jan 2023
Cited by 2 | Viewed by 1857
Abstract
A detailed study of charge transport in the paramagnetic phase of the cage-cluster dodecaboride Ho0.8Lu0.2B12 with an instability both of the fcc lattice (cooperative Jahn–Teller effect) and the electronic structure (dynamic charge stripes) was carried out at temperatures [...] Read more.
A detailed study of charge transport in the paramagnetic phase of the cage-cluster dodecaboride Ho0.8Lu0.2B12 with an instability both of the fcc lattice (cooperative Jahn–Teller effect) and the electronic structure (dynamic charge stripes) was carried out at temperatures 1.9–300 K in magnetic fields up to 80 kOe. Four mono-domain single crystals of Ho0.8Lu0.2B12 samples with different crystal axis orientation were investigated in order to establish the singularities of Hall effect, which develop due to (i) the electronic phase separation (stripes) and (ii) formation of the disordered cage-glass state below T*~60 K. It was demonstrated that a considerable intrinsic anisotropic positive component ρanxy appears at low temperatures in addition to the ordinary negative Hall resistivity contribution in magnetic fields above 40 kOe applied along the [001] and [110] axes. A relation between anomalous components of the resistivity tensor ρanxyanxx1.7 was found for H||[001] below T*~60 K, and a power law ρanxyanxx0.83 for the orientation H||[110] at temperatures T < TS~15 K. It is argued that below characteristic temperature TS~15 K the anomalous odd ρanxy(T) and even ρanxx(T) parts of the resistivity tensor may be interpreted in terms of formation of long chains in the filamentary structure of fluctuating charges (stripes). We assume that these ρanxy(H||[001]) and ρanxy(H||[110]) components represent the intrinsic (Berry phase contribution) and extrinsic (skew scattering) mechanism, respectively. Apart from them, an additional ferromagnetic contribution to both isotropic and anisotropic components in the Hall signal was registered and attributed to the effect of magnetic polarization of 5d states (ferromagnetic nano-domains) in the conduction band of Ho0.8Lu0.2B12. Full article
(This article belongs to the Special Issue New Science of Boron Allotropes, Compounds, and Nanomaterials)
Show Figures

Figure 1

10 pages, 2456 KiB  
Article
Ambient Pressure Synthesis of Re-Substituted MnGe and Its Magnetic Properties
by Vladislav O. Zhupanov, Roman A. Khalaniya, Alexey V. Bogach, Valeriy Yu. Verchenko, Maxim S. Likhanov and Andrei V. Shevelkov
Crystals 2022, 12(9), 1256; https://doi.org/10.3390/cryst12091256 - 5 Sep 2022
Cited by 3 | Viewed by 4930
Abstract
Due to their non-centrosymmetric structure, B20-type compounds have intriguing properties of chiral magnets and are the objects of study of topological spin textures. Among them is a high-pressure phase MnGe, which demonstrates properties of magnetic skyrmions. We report on the synthesis of an [...] Read more.
Due to their non-centrosymmetric structure, B20-type compounds have intriguing properties of chiral magnets and are the objects of study of topological spin textures. Among them is a high-pressure phase MnGe, which demonstrates properties of magnetic skyrmions. We report on the synthesis of an Mn1−xRexGe solid solution with the B20 structure, which can be prepared without the application of high pressure. Mn1−xRexGe (x = 0.169(6)) shows unconventional magnetic behavior, where the Neel temperature is only slightly reduced compared to a chiral-lattice helimagnet MnGe. Full article
(This article belongs to the Special Issue Feature Papers in Crystalline Metals and Alloys in 2022–2023)
Show Figures

Figure 1

30 pages, 1090 KiB  
Article
Language Accent Detection with CNN Using Sparse Data from a Crowd-Sourced Speech Archive
by Veranika Mikhailava, Mariia Lesnichaia, Natalia Bogach, Iurii Lezhenin, John Blake and Evgeny Pyshkin
Mathematics 2022, 10(16), 2913; https://doi.org/10.3390/math10162913 - 13 Aug 2022
Cited by 12 | Viewed by 5454
Abstract
The problem of accent recognition has received a lot of attention with the development of Automatic Speech Recognition (ASR) systems. The crux of the problem is that conventional acoustic language models adapted to fit standard language corpora are unable to satisfy the recognition [...] Read more.
The problem of accent recognition has received a lot of attention with the development of Automatic Speech Recognition (ASR) systems. The crux of the problem is that conventional acoustic language models adapted to fit standard language corpora are unable to satisfy the recognition requirements for accented speech. In this research, we contribute to the accent recognition task for a group of up to nine European accents in English and try to provide some evidence in favor of specific hyperparameter choices for neural network models together with the search for the best input speech signal parameters to ameliorate the baseline accent recognition accuracy. Specifically, we used a CNN-based model trained on the audio features extracted from the Speech Accent Archive dataset, which is a crowd-sourced collection of accented speech recordings. We show that harnessing time–frequency and energy features (such as spectrogram, chromogram, spectral centroid, spectral rolloff, and fundamental frequency) to the Mel-frequency cepstral coefficients (MFCC) may increase the accuracy of the accent classification compared to the conventional feature sets of MFCC and/or raw spectrograms. Our experiments demonstrate that the most impact is brought about by amplitude mel-spectrograms on a linear scale fed into the model. Amplitude mel-spectrograms on a linear scale, which are the correlates of the audio signal energy, allow to produce state-of-the-art classification results and brings the recognition accuracy for English with Germanic, Romance and Slavic accents ranged from 0.964 to 0.987; thus, outperforming existing models of classifying accents which use the Speech Accent Archive. We also investigated how the speech rhythm affects the recognition accuracy. Based on our preliminary experiments, we used the audio recordings in their original form (i.e., with all the pauses preserved) for other accent classification experiments. Full article
Show Figures

Figure 1

16 pages, 71941 KiB  
Article
Structure and Content Analysis of Raw Materials for Production of Trimanganese Tetraoxide Pigment
by Ruslan Z. Safarov, Jumat B. Kargin, Yelaman K. Aibuldinov, Assemgul K. Zhandildenova, Bolat B. Makhmutov, Alexandr K. Sviderskiy and Nikolai I. Vatin
Crystals 2021, 11(12), 1460; https://doi.org/10.3390/cryst11121460 - 26 Nov 2021
Cited by 5 | Viewed by 3243
Abstract
The research aims to reveal the structure, phase, and elemental content of manganese ores from deposits—Bogach (Karaganda region, Kazakhstan) and Zhaksy (Akmola region, Kazakhstan). The samples were studied with scanning electron microscopy with energy dispersive analysis (SEM-EDA), X-ray diffractometry (XRD), Infra-red spectroscopy (IRS). [...] Read more.
The research aims to reveal the structure, phase, and elemental content of manganese ores from deposits—Bogach (Karaganda region, Kazakhstan) and Zhaksy (Akmola region, Kazakhstan). The samples were studied with scanning electron microscopy with energy dispersive analysis (SEM-EDA), X-ray diffractometry (XRD), Infra-red spectroscopy (IRS). During the research, structural peculiarities, elemental and phase content of the samples have been revealed. The mineral matter of the Bogach deposit ore mainly consists of hollandite, cryptomelane, braunite, calcite, bixbyite, quartz. The Zhaksy deposit ore includes quartz, hollandite, bixbyite, pyrolusite. Bogach ore includes (wt.%) C(10.68), O(32.00), Mn(43.26), Ca(6.36), Si(3.51), Na(0.52), Al(1.13), Mg(0.69), K(1.85). The elemental content of Mn in Zhaksy ore is two times lower. Zhaksy ore includes (wt.%) C(23.77), O(32.1), Mn(21.81), Si(10.52), Al(5.13), K(1.21), Fe(5.47). The obtained data of the conducted spectral analysis indicate that both samples represent a polymineral heterogeneous structure. Conducted research allows to conclude, that by phase-elemental content the Bogach ore can be used for obtaining trimanganese tetraoxide pigment similar to manganese ores from West Sumatera deposit (Indonesia) by top-down method using grinding with a milling tool and high-temperature sintering. Full article
Show Figures

Figure 1

22 pages, 1420 KiB  
Article
Speech Processing for Language Learning: A Practical Approach to Computer-Assisted Pronunciation Teaching
by Natalia Bogach, Elena Boitsova, Sergey Chernonog, Anton Lamtev, Maria Lesnichaya, Iurii Lezhenin, Andrey Novopashenny, Roman Svechnikov, Daria Tsikach, Konstantin Vasiliev, Evgeny Pyshkin and John Blake
Electronics 2021, 10(3), 235; https://doi.org/10.3390/electronics10030235 - 20 Jan 2021
Cited by 39 | Viewed by 7158
Abstract
This article contributes to the discourse on how contemporary computer and information technology may help in improving foreign language learning not only by supporting better and more flexible workflow and digitizing study materials but also through creating completely new use cases made possible [...] Read more.
This article contributes to the discourse on how contemporary computer and information technology may help in improving foreign language learning not only by supporting better and more flexible workflow and digitizing study materials but also through creating completely new use cases made possible by technological improvements in signal processing algorithms. We discuss an approach and propose a holistic solution to teaching the phonological phenomena which are crucial for correct pronunciation, such as the phonemes; the energy and duration of syllables and pauses, which construct the phrasal rhythm; and the tone movement within an utterance, i.e., the phrasal intonation. The working prototype of StudyIntonation Computer-Assisted Pronunciation Training (CAPT) system is a tool for mobile devices, which offers a set of tasks based on a “listen and repeat” approach and gives the audio-visual feedback in real time. The present work summarizes the efforts taken to enrich the current version of this CAPT tool with two new functions: the phonetic transcription and rhythmic patterns of model and learner speech. Both are designed on a base of a third-party automatic speech recognition (ASR) library Kaldi, which was incorporated inside StudyIntonation signal processing software core. We also examine the scope of automatic speech recognition applicability within the CAPT system workflow and evaluate the Levenstein distance between the transcription made by human experts and that obtained automatically in our code. We developed an algorithm of rhythm reconstruction using acoustic and language ASR models. It is also shown that even having sufficiently correct production of phonemes, the learners do not produce a correct phrasal rhythm and intonation, and therefore, the joint training of sounds, rhythm and intonation within a single learning environment is beneficial. To mitigate the recording imperfections voice activity detection (VAD) is applied to all the speech records processed. The try-outs showed that StudyIntonation can create transcriptions and process rhythmic patterns, but some specific problems with connected speech transcription were detected. The learners feedback in the sense of pronunciation assessment was also updated and a conventional mechanism based on dynamic time warping (DTW) was combined with cross-recurrence quantification analysis (CRQA) approach, which resulted in a better discriminating ability. The CRQA metrics combined with those of DTW were shown to add to the accuracy of learner performance estimation. The major implications for computer-assisted English pronunciation teaching are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Multimedia Signal Processing and Communications)
Show Figures

Figure 1

Back to TopTop