Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = Blimp-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1460 KiB  
Article
Interleukin-37 Suppresses the Function of Type 2 Follicular Helper T in Allergic Rhinitis
by Xi Luo, Yanhui Wen, Xiangqian Qiu, Lifeng Zhou, Qingxiang Zeng and Wenlong Liu
Biomedicines 2025, 13(5), 1263; https://doi.org/10.3390/biomedicines13051263 - 21 May 2025
Viewed by 595
Abstract
Background: Allergic rhinitis (AR) is triggered by immunoglobulin E (IgE)-mediated immune responses to airborne allergens. Recent studies highlight the pivotal role of T follicular helper 2 (Tfh2) cells in IgE production. Interleukin-37 (IL-37) has emerged as an intrinsic modulator of innate immunity and [...] Read more.
Background: Allergic rhinitis (AR) is triggered by immunoglobulin E (IgE)-mediated immune responses to airborne allergens. Recent studies highlight the pivotal role of T follicular helper 2 (Tfh2) cells in IgE production. Interleukin-37 (IL-37) has emerged as an intrinsic modulator of innate immunity and inflammatory processes. We aimed to investigate the regulatory effect of IL-37 on Tfh2 cells in the pathogenesis of AR. Methods: Blood samples were collected from AR patients and controls. The IL-37 levels and the frequency of Tfh2 cells were detected by enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. The isolated Tfh2 cells were cultured or cocultured with naive B cells. The regulatory effects of IL-37 on Tfh2/B cells were assessed using ELISA, quantitative real-time polymerase chain reaction (qRT-PCR). Mouse models of ovalbumin (OVA)-induced AR were established to explore the effect of IL-37 in vivo. Results: IL-37 suppressed the production of IL-4 and IL-21 by Tfh2 cells and downregulated C-X-C chemokine receptor type 5 (CXCR5) and B-cell lymphoma 6 protein (Bcl6) mRNA expression while upregulating B lymphocyte-induced maturation protein 1 (Blimp1) and signal transducers and activators of transduction5 (STAT5) mRNA. IL-37 decreased IgE production by B cells significantly, and the addition of anti-IL-18 receptor α alleviated this effect. In mouse models, IL-37 reduced nasal rubbing, sneezing, eosinophil counts, OVA-specific IgE, and Tfh2 proportions. Conclusions: IL-37 plays a crucial role in modulating Tfh2 cell responses in AR, suggesting a potential therapeutic target for this condition. Full article
(This article belongs to the Special Issue Allergic Rhinitis: From Pathology to Novel Therapeutic Approaches)
Show Figures

Figure 1

36 pages, 885 KiB  
Review
The Epithelial Immune Response to Human Papillomavirus Infection
by Shyantani Roy-Biswas and Merilyn Hibma
Pathogens 2025, 14(5), 464; https://doi.org/10.3390/pathogens14050464 - 9 May 2025
Cited by 1 | Viewed by 2116
Abstract
The skin is a complex organ, containing an intricate network of immune cells that are crucial for host barrier function and defence against pathogens. Human papillomavirus (HPV) exclusively infects the skin, and its lifecycle is intimately associated with epithelial cell division and differentiation. [...] Read more.
The skin is a complex organ, containing an intricate network of immune cells that are crucial for host barrier function and defence against pathogens. Human papillomavirus (HPV) exclusively infects the skin, and its lifecycle is intimately associated with epithelial cell division and differentiation. There are over 450 HPV types, 12 of which are classified as carcinogenic. The primary focus of this review is the epithelial immune response to HPV infection of the cervix during the initial stages of infection, productive infection, and disease progression. During the early stages of infection, cells are HPV-positive; however, there are no attributable histological changes to the epithelium. The HPV-infected cells have the capacity for innate sensing and signalling through toll-like receptors in response to viral nucleic acids. However, HPV has evolved multiple mechanisms to evade the innate response. During productive infection, all viral antigens are expressed and there are visible histological changes to the epithelium, including koilocytosis. Disease regression is associated with Tbet positive cells in the infected epithelium and the presence of CD4 and CD8 T cells in the lamina propria. Disease progression is associated with the overexpression of the E6 and E7 oncoproteins after integration of viral genomes into the host chromosomal DNA. Histologically, the epithelium is less differentiated, and changes to cells include a higher nuclear-to-cytoplasmic ratio and an increased mitotic index. Immune changes associated with disease progression include increased numbers of cells expressing suppressor molecules, such as FoxP3, Blimp-1, and HMGB1, and myeloid cell infiltrates with an M2-like phenotype. This review highlights the gaps in the understanding of the immune response in HPV-positive cervical neoplasia, and in regression and progression of disease. This knowledge is critical for the development of effective immunotherapies that reliably cause HPV-positive cervical neoplasia to regress. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

11 pages, 1286 KiB  
Review
Toxoplasma Gondii Replication During Belatacept Treatment in Kidney Transplantation: A Case Report and a Review of the Literature
by Raffaella Vigilante, Raafiah Izhar, Rossella Di Paola, Ananya De, Rosa Maria Pollastro, Giovanna Capolongo, Giulio Viceconte and Mariadelina Simeoni
Genes 2025, 16(4), 391; https://doi.org/10.3390/genes16040391 - 29 Mar 2025
Cited by 1 | Viewed by 854
Abstract
Belatacept is a chimeric protein that acts as a selective blocker of T-lymphocyte co-stimulation. It has been proposed for the prevention of kidney transplant rejection. This paper reports a literature review on pharmacological characteristics of belatacept and genetic factors influencing its efficacy and [...] Read more.
Belatacept is a chimeric protein that acts as a selective blocker of T-lymphocyte co-stimulation. It has been proposed for the prevention of kidney transplant rejection. This paper reports a literature review on pharmacological characteristics of belatacept and genetic factors influencing its efficacy and safety profile. A severe case of neurotoxoplasmosis observed in a kidney transplant recipient (KTR) treated with belatacept is also described. It appears that the interference of belatacept on guanylate binding proteins (GBPs) expression in antigen-presenting cells (APC) cytoplasm could be involved in Toxoplasma gondii (Toxo-g) reactivation in seropositive KTRs. Additionally, genetic variations in immune regulatory genes encoding CTLA-4 and Blimp-1 may influence individual susceptibility to infection and immune modulation under belatacept therapy. In conclusion, we highlight the importance of drug avoidance and/or increased surveillance in Toxo-g IgG-positive KTR. We also retain that further studies on the host defense pathways involved in the surveillance of opportunistic pathogens in KTR are strongly desirable. Full article
(This article belongs to the Special Issue From Genetic to Molecular Basis of Kidney Diseases)
Show Figures

Figure 1

41 pages, 2908 KiB  
Review
Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases
by Aline Yen Ling Wang, Ana Elena Aviña, Yen-Yu Liu, Yun-Ching Chang and Huang-Kai Kao
Antioxidants 2025, 14(2), 183; https://doi.org/10.3390/antiox14020183 - 4 Feb 2025
Viewed by 1790
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 [...] Read more.
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1’s emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention. Full article
(This article belongs to the Special Issue Oxidative Stress in Chronic Diseases: A Focus on Rheumatoid Arthritis)
Show Figures

Figure 1

24 pages, 4611 KiB  
Article
Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats
by Laura Sáez-Fuertes, Garyfallia Kapravelou, Blanca Grases-Pintó, Manuel Bernabeu, Karen Knipping, Johan Garssen, Raphaëlle Bourdet-Sicard, Margarida Castell, María José Rodríguez-Lagunas, María Carmen Collado and Francisco José Pérez-Cano
Foods 2024, 13(13), 2058; https://doi.org/10.3390/foods13132058 - 28 Jun 2024
Cited by 2 | Viewed by 2076
Abstract
Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants’ immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain [...] Read more.
Immunonutrition, which focuses on specific nutrients in breast milk and post-weaning diets, plays a crucial role in supporting infants’ immune system development. This study explored the impact of maternal supplementation with Bifidobacterium breve M-16V and a combination of short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) from pregnancy through lactation, extending into the early childhood of the offspring. The synbiotic supplementation’s effects were examined at both mucosal and systemic levels. While the supplementation did not influence their overall growth, water intake, or food consumption, a trophic effect was observed in the small intestine, enhancing its weight, length, width, and microscopic structures. A gene expression analysis indicated a reduction in FcRn and Blimp1 and an increase in Zo1 and Tlr9, suggesting enhanced maturation and barrier function. Intestinal immunoglobulin (Ig) A levels remained unaffected, while cecal IgA levels decreased. The synbiotic supplementation led to an increased abundance of total bacteria and Ig-coated bacteria in the cecum. The abundance of Bifidobacterium increased in both the intestine and cecum. Short-chain fatty acid production decreased in the intestine but increased in the cecum due to the synbiotic supplementation. Systemically, the Ig profiles remained unaffected. In conclusion, maternal synbiotic supplementation during gestation, lactation, and early life is established as a new strategy to improve the maturation and functionality of the gastrointestinal barrier. Additionally, it participates in the microbiota colonization of the gut, leading to a healthier composition. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

23 pages, 6503 KiB  
Article
Identification of miRNAs and Their Target Genes Associated with Sunitinib Resistance in Clear Cell Renal Cell Carcinoma Patients
by María Armesto, Stéphane Nemours, María Arestín, Iraide Bernal, Jon Danel Solano-Iturri, Manuel Manrique, Laura Basterretxea, Gorka Larrinaga, Javier C. Angulo, David Lecumberri, Ane Miren Iturregui, José I. López and Charles H. Lawrie
Int. J. Mol. Sci. 2024, 25(13), 6881; https://doi.org/10.3390/ijms25136881 - 22 Jun 2024
Cited by 3 | Viewed by 2384
Abstract
Sunitinib has greatly improved the survival of clear cell renal cell carcinoma (ccRCC) patients in recent years. However, 20–30% of treated patients do not respond. To identify miRNAs and genes associated with a response, comparisons were made between biopsies from responder and non-responder [...] Read more.
Sunitinib has greatly improved the survival of clear cell renal cell carcinoma (ccRCC) patients in recent years. However, 20–30% of treated patients do not respond. To identify miRNAs and genes associated with a response, comparisons were made between biopsies from responder and non-responder ccRCC patients. Using integrated transcriptomic analyses, we identified 37 miRNAs and 60 respective target genes, which were significantly associated with the NF-kappa B, PI3K-Akt and MAPK pathways. We validated expression of the miRNAs (miR-223, miR-155, miR-200b, miR-130b) and target genes (FLT1, PRDM1 and SAV1) in 35 ccRCC patients. High levels of miR-223 and low levels of FLT1, SAV1 and PRDM1 were associated with worse overall survival (OS), and combined miR-223 + SAV1 levels distinguished responders from non-responders (AUC = 0.92). Using immunohistochemical staining of 170 ccRCC patients, VEGFR1 (FLT1) expression was associated with treatment response, histological grade and RECIST (Response Evaluation Criteria in Solid Tumors) score, whereas SAV1 and BLIMP1 (PRDM1) were associated with metachronous metastatic disease. Using in situ hybridisation (ISH) to detect miR-155 we observed higher tumoural cell expression in non-responders, and non-tumoural cell expression with increased histological grade. In summary, our preliminary analysis using integrated miRNA-target gene analyses identified several novel biomarkers in ccRCC patients that surely warrant further investigation. Full article
(This article belongs to the Special Issue Role of MicroRNAs in Cancer Development and Treatment, 2nd Edition)
Show Figures

Figure 1

25 pages, 4037 KiB  
Article
Maternal Synbiotic Supplementation with B. breve M-16V and scGOS/lcFOS Shape Offspring Immune Development and Gut Microbiota at the End of Suckling
by Laura Sáez-Fuertes, Garyfallia Kapravelou, Blanca Grases-Pintó, Manuel Bernabeu, Karen Knipping, Johan Garssen, Raphaëlle Bourdet-Sicard, Margarida Castell, María Carmen Collado, Francisco José Pérez-Cano and María José Rodríguez-Lagunas
Nutrients 2024, 16(12), 1890; https://doi.org/10.3390/nu16121890 - 15 Jun 2024
Cited by 1 | Viewed by 1814
Abstract
Immune system development during gestation and suckling is significantly modulated by maternal environmental and dietary factors. Breastfeeding is widely recognized as the optimal source of nutrition for infant growth and immune maturation, and its composition can be modulated by the maternal diet. In [...] Read more.
Immune system development during gestation and suckling is significantly modulated by maternal environmental and dietary factors. Breastfeeding is widely recognized as the optimal source of nutrition for infant growth and immune maturation, and its composition can be modulated by the maternal diet. In the present work, we investigated whether oral supplementation with Bifidobacterium breve M-16V and short-chain galacto-oligosaccharide (scGOS) and long-chain fructo-oligosaccharide (lcFOS) to rat dams during gestation and lactation has an impact on the immune system and microbiota composition of the offspring at day 21 of life. On that day, blood, adipose tissue, small intestine (SI), mesenteric lymph nodes (MLN), salivary gland (SG), cecum, and spleen were collected. Synbiotic supplementation did not affect the overall body or organ growth of the pups. The gene expression of Tlr9, Muc2, IgA, and Blimp1 were upregulated in the SI, and the increase in IgA gene expression was further confirmed at the protein level in the gut wash. Synbiotic supplementation also positively impacted the microbiota composition in both the small and large intestines, resulting in higher proportions of Bifidobacterium genus, among others. In addition, there was an increase in butanoic, isobutanoic, and acetic acid concentrations in the cecum but a reduction in the small intestine. At the systemic level, synbiotic supplementation resulted in higher levels of immunoglobulin IgG2c in plasma, SG, and MLN, but it did not modify the main lymphocyte subsets in the spleen and MLN. Overall, synbiotic maternal supplementation is able to positively influence the immune system development and microbiota of the suckling offspring, particularly at the gastrointestinal level. Full article
Show Figures

Figure 1

18 pages, 7701 KiB  
Article
Dynamics Management of Intermediate Water Storage in an Air-Breathing Single-Cell Membrane Electrode Assembly
by Avinash Kumar, Alex Schechter and Idit Avrahami
Membranes 2024, 14(1), 4; https://doi.org/10.3390/membranes14010004 - 22 Dec 2023
Cited by 1 | Viewed by 2528
Abstract
In air-breathing proton exchange membrane fuel cells (Air PEM FCs), a high rate of water evaporation from the cathode might influence the resistance of the membrane electrode assembly (MEA), which is highly dependent on the water content of the Nafion membrane. We propose [...] Read more.
In air-breathing proton exchange membrane fuel cells (Air PEM FCs), a high rate of water evaporation from the cathode might influence the resistance of the membrane electrode assembly (MEA), which is highly dependent on the water content of the Nafion membrane. We propose a dead-end hydrogen anode as a means of intermediate storage of water/humidity for self-humidification of the membrane. Such an inflatable bag integrated with a single lightweight MEA FC has the potential in blimp applications for anode self-humidification. A dynamic numerical water balance model, validated by experimental measurements, is derived to predict the effect of MEA configuration, and the membrane’s hydration state and water transfer rate at the anode on MEA resistance and performance. The experimental setup included humidity measurements, and polarization and electrochemical impedance spectroscopy tests to quantify the effect of membrane hydration on its resistance in a lightweight MEA (12 g) integrated with an inflatable dead-end hydrogen storage bag. Varying current densities (5, 10, and 15 mA/cm2) and cathode humidity levels (20, 50, and 80%) were examined and compared with the numerical results. The validated model predicts that the hydration state of the membrane and water transfer rate at the anode can be increased by using a thin membrane and thicker gas diffusion layer. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

34 pages, 2078 KiB  
Review
Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment
by Bodo C. Melnik
Cells 2023, 12(22), 2600; https://doi.org/10.3390/cells12222600 - 10 Nov 2023
Cited by 23 | Viewed by 14332
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin’s mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western [...] Read more.
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin’s mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin’s desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin. Full article
Show Figures

Graphical abstract

12 pages, 1202 KiB  
Article
The High-Risk Human Papillomavirus Type Influences the Tissue Microenvironment in Cervical Intraepithelial Neoplasia Grade 2
by Mayumi Saito, Aarthi Rajesh, Carrie Innes, Rachael van der Griend, Peter Fitzgerald, Bryony Simcock, Peter Sykes and Merilyn Hibma
Viruses 2023, 15(9), 1953; https://doi.org/10.3390/v15091953 - 19 Sep 2023
Cited by 3 | Viewed by 1952
Abstract
High-risk, cancer-causing human papillomavirus (HPV) types are associated with cervical precancer and cancer. A high proportion of high-risk HPV precancer lesions undergo immune-mediated regression. The purpose of this study was to determine if the tissue microenvironment of HPV16 and 18 (HPV16/18) cervical intraepithelial [...] Read more.
High-risk, cancer-causing human papillomavirus (HPV) types are associated with cervical precancer and cancer. A high proportion of high-risk HPV precancer lesions undergo immune-mediated regression. The purpose of this study was to determine if the tissue microenvironment of HPV16 and 18 (HPV16/18) cervical intraepithelial neoplasia grade 2 lesions differed from other high-risk types (HPV ‘other’). Consistent with other studies, we found that progression to higher-grade disease was more frequent in HPV16/18 lesions when compared with HPV ‘other’ lesions. HPV16/18 lesions were significantly more likely to be indoleamine 2,3,-dioxygenase 1 (IDO1)-positive and were associated with reduced CD8 and FoxP3 T cells in the lesion. In the stroma, reduced Tbet- and CD32-positive cells and increased Blimp1-positive cells were significantly associated with HPV16/18 lesions when compared with HPV ‘other’ types. On analysis of the IDO1-positive tissues, lesional IDO1 was associated with significantly decreased numbers of CD4-, CD8-, and FoxP3-positive cells in the stroma compared with IDO1-negative tissues. These data suggest that IDO1 expression may impair infiltration of CD4, CD8, and FoxP3 cells into the stroma beneath the precancer lesion. Increased expression of IDO1 may contribute to immune avoidance and an increased frequency of disease progression in HPV16- and 18-positive lesions. Full article
(This article belongs to the Special Issue Immune Responses to Papillomavirus Infections)
Show Figures

Graphical abstract

21 pages, 1127 KiB  
Review
Unraveling the Immunopathogenesis of Multiple Sclerosis: The Dynamic Dance of Plasmablasts and Pathogenic T Cells
by Yasunari Matsuzaka and Ryu Yashiro
Biologics 2023, 3(3), 232-252; https://doi.org/10.3390/biologics3030013 - 14 Sep 2023
Cited by 1 | Viewed by 4167
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in [...] Read more.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, characterized by multiple lesions occurring temporally and spatially. Additionally, MS is a disease that predominates in the white population. In recent years, there has been a rapid increase in the number of patients, and it often occurs in young people, with an average age of onset of around 30 years old, but it can also occur in children and the elderly. It is more common in women than men, with a male-to-female ratio of approximately 1:3. As the immunopathogenesis of MS, a group of B cells called plasmablasts controls encephalomyelitis via IL-10 production. These IL-10-producing B cells, called regulatory B cells, suppress inflammatory responses in experimental mouse models of autoimmune diseases including MS. Since it has been clarified that these regulatory B cells are plasmablasts, it is expected that the artificial control of plasmablast differentiation will lead to the development of new treatments for MS. Among CD8-positive T cells in the peripheral blood, the proportion of PD-1-positive cells is decreased in MS patients compared with healthy controls. The dysfunction of inhibitory receptors expressed on T cells is known to be the core of MS immunopathology and may be the cause of chronic persistent inflammation. The PD-1+ CD8+ T cells may also serve as indicators that reflect the condition of each patient in other immunological neurological diseases such as MS. Th17 cells also regulate the development of various autoimmune diseases, including MS. Thus, the restoration of weakened immune regulatory functions may be a true disease-modifying treatment. So far, steroids and immunosuppressants have been the mainstream for autoimmune diseases, but the problem is that this kills not only pathogenic T cells, but also lymphocytes, which are necessary for the body. From this understanding of the immune regulation of MS, we can expect the development of therapeutic strategies that target only pathogenic immune cells. Full article
Show Figures

Figure 1

16 pages, 4676 KiB  
Article
Identification and Expressional Analysis of Putative PRDI-BF1 and RIZ Homology Domain-Containing Transcription Factors in Mulinia lateralis
by Feng Zhao, Xiaolin Guo, Xixi Li, Fang Liu, Yifan Fu, Xiaohan Sun, Zujing Yang, Zhifeng Zhang and Zhenkui Qin
Biology 2023, 12(8), 1059; https://doi.org/10.3390/biology12081059 - 27 Jul 2023
Cited by 1 | Viewed by 1753
Abstract
Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a [...] Read more.
Mollusca represents one of the ancient bilaterian groups with high morphological diversity, while the formation mechanisms of the precursors of all germ cells, primordial germ cells (PGCs), have not yet been clarified in mollusks. PRDI-BF1 and RIZ homology domain-containing proteins (PRDMs) are a group of transcriptional repressors, and PRDM1 (also known as BLIMP1) and PRDM14 have been reported to be essential for the formation of PGCs. In the present study, we performed a genome-wide retrieval in Mulinia lateralis and identified 11 putative PRDMs, all of which possessed an N-terminal PR domain. Expressional profiles revealed that all these prdm genes showed specifically high expression levels in the given stages, implying that all PRDMs played important roles during early development stages. Specifically, Ml-prdm1 was highly expressed at the gastrula stage, the key period when PGCs arise, and was specifically localized in the cytoplasm of two or three cells of blastula, gastrula, or trochophore larvae, matching the typical characteristics of PGCs. These results suggested that Ml-prdm1-positive cells may be PGCs and that Ml-prdm1 could be a candidate marker for tracing the formation of PGCs in M. lateralis. In addition, the expression profiles of Ml-prdm14 hinted that it may not be associated with PGCs of M. lateralis. The present study provides insights into the evolution of the PRDM family in mollusks and offers a better understanding of the formation of PGCs in mollusks. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

52 pages, 2287 KiB  
Review
Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma
by Bodo C. Melnik, Rudolf Stadler, Ralf Weiskirchen, Claus Leitzmann and Gerd Schmitz
Int. J. Mol. Sci. 2023, 24(7), 6102; https://doi.org/10.3390/ijms24076102 - 23 Mar 2023
Cited by 12 | Viewed by 5766
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs [...] Read more.
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain. Full article
(This article belongs to the Special Issue The Role of Exosomes in Health and Disease 2.0)
Show Figures

Figure 1

16 pages, 330 KiB  
Review
Genetics Abnormalities with Clinical Impact in Primary Cutaneous Lymphomas
by Fernando Gallardo and Ramon M. Pujol
Cancers 2022, 14(20), 4972; https://doi.org/10.3390/cancers14204972 - 11 Oct 2022
Cited by 14 | Viewed by 3342
Abstract
Primary cutaneous lymphomas comprise a heterogeneous group of extranodal non-Hodgkin lymphomas (NHL) that arise from skin resident lymphoid cells and are manifested by specific lymphomatous cutaneous lesions with no evidence of extracutaneous disease at the time of diagnosis. They may originate from mature [...] Read more.
Primary cutaneous lymphomas comprise a heterogeneous group of extranodal non-Hodgkin lymphomas (NHL) that arise from skin resident lymphoid cells and are manifested by specific lymphomatous cutaneous lesions with no evidence of extracutaneous disease at the time of diagnosis. They may originate from mature T-lymphocytes (70% of all cases), mature B-lymphocytes (25–30%) or, rarely, NK cells. Cutaneous T-cell lymphomas (CTCL) comprise a heterogeneous group of T-cell malignancies including Mycosis Fungoides (MF) the most frequent subtype, accounting for approximately half of CTCL, and Sézary syndrome (SS), which is an erythrodermic and leukemic subtype characterized by significant blood involvement. The mutational landscape of MF and SS by NGS include recurrent genomic alterations in the TCR signaling effectors (i.e., PLCG1), the NF-κB elements (i.e., CARD11), DNA damage/repair elements (TP53 or ATM), JAK/STAT pathway elements or epigenetic modifiers (DNMT3). Genomic copy number variations appeared to be more prevalent than somatic mutations. Other CTCL subtypes such as primary cutaneous anaplastic large cell lymphoma also harbor genetic alterations of the JAK/STAT pathway in up to 50% of cases. Recently, primary cutaneous aggressive epidermotropic T-cell lymphoma, a rare fatal subtype, was found to contain a specific profile of JAK2 rearrangements. Other aggressive cytotoxic CTCL (primary cutaneous γδ T-cell lymphomas) also show genetic alterations in the JAK/STAT pathway in a large proportion of patients. Thus, CTCL patients have a heterogeneous genetic/transcriptional and epigenetic background, and there is no uniform treatment for these patients. In this scenario, a pathway-based personalized management is required. Cutaneous B-cell lymphoma (CBCL) subtypes present a variable genetic profile. The genetic heterogeneity parallels the multiple types of specialized B-cells and their specific tissue distribution. Particularly, many recurrent hotspot and damaging mutations in primary cutaneous diffuse large B-cell lymphoma of the leg type, involving MYD88 gene, or BCL6 and MYC translocations and BLIMP1 or CDKN2A deletions are useful for diagnostic and prognostic purposes for this aggressive subtype from other indolent CBCL forms. Full article
(This article belongs to the Special Issue Genomics of Rare Hematologic Cancers)
30 pages, 12417 KiB  
Article
Spherical Indoor Coandă Effect Drone (SpICED): A Spherical Blimp sUAS for Safe Indoor Use
by Ying Hong Pheh, Shane Kyi Hla Win and Shaohui Foong
Drones 2022, 6(9), 260; https://doi.org/10.3390/drones6090260 - 18 Sep 2022
Cited by 4 | Viewed by 28362
Abstract
Even as human–robot interactions become increasingly common, conventional small Unmanned Aircraft Systems (sUAS), typically multicopters, can still be unsafe for deployment in an indoor environment in close proximity to humans without significant safety precautions. This is due to their fast-spinning propellers, and lack [...] Read more.
Even as human–robot interactions become increasingly common, conventional small Unmanned Aircraft Systems (sUAS), typically multicopters, can still be unsafe for deployment in an indoor environment in close proximity to humans without significant safety precautions. This is due to their fast-spinning propellers, and lack of a fail-safe mechanism in the event of a loss of power. A blimp, a non-rigid airship filled with lighter-than-air gases is inherently safer as it ’floats’ in the air and is generally incapable of high-speed motion. The Spherical Indoor Coandă Effect Drone (SpICED), is a novel, safe spherical blimp design propelled by closed impellers utilizing the Coandă effect. Unlike a multicopter or conventional propeller blimp, the closed impellers reduce safety risks to the surrounding people and objects, allowing for SpICED to be operated in close proximity with humans and opening up the possibility of novel human–drone interactions. The design implements multiple closed-impeller rotors as propulsion units to accelerate airflow along the the surface of the spherical blimp and produce thrust by utilising the Coandă effect. A cube configuration with eight uni-directional propulsion units is presented, together with the closed-loop Proportional–Integral–Derivative (PID) controllers, and custom control mixing algorithm for position and attitude control in all three axes. A physical prototype of the propulsion unit and blimp sUAS was constructed to experimentally validate the dynamic behavior and controls in a motion-captured environment, with the experimental results compared to the side-tetra configuration with four bi-directional propulsion units as presented in our previously published conference paper. An up to 40% reduction in trajectory control error was observed in the new cube configuration, which is also capable of motion control in all six Degrees of Freedom (DoF) with additional pitch and roll control when compared to the side-tetra configuration. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

Back to TopTop