Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling and Processing
2.3. Tissue Histology
2.4. Gene Expression Analysis
2.5. Immunoglobulin Quantification
2.6. Cecal Bacteria and Ig-Coated Bacteria Analysis
2.7. Cell Subset Staining and Flow Cytometry Analysis
2.8. Short-Chain Fatty Acid Quantification
2.9. Microbiota Analysis by 16S rRNA Amplicon Sequencing
2.10. Statistical Analysis
3. Results
3.1. Body Weight and Intake Consumption
3.2. Growth Parameters and Organ Weight
3.3. Hematologic Variables
3.4. Adipose Tissue
3.5. Intestinal Morphology and Maturation
3.6. Intestinal Expression of Barrier and Crosstalk Genes
3.7. Gastrointestinal Ig Profile
3.8. Microbiota
3.9. SCFA Profile
3.10. Lymphocyte Subset Characterization
3.11. Systemic and Mucosal Immunoglobulin Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calder, P.C. Immunonutrition. BMJ 2003, 327, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.; Piscopo, S.; Gasmi, A. Nutrients Interaction with the Immune System. Arch. Razi Inst. 2021, 76, 1579–1588. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Fontana, L.; Gil, A. Human Milk Oligosaccharides and Immune System Development. Nutrients 2018, 10, 1038. [Google Scholar] [CrossRef]
- Shim, J.O. Human Milk Oligosaccharides as Immunonutrition Key in Early Life. Clin. Exp. Pediatr. 2022, 65, 344–345. [Google Scholar] [CrossRef]
- Finn, S.; Culligan, E.P.; Snelling, W.J.; Sleator, R.D. Early Life Nutrition. Sci. Prog. 2018, 101, 332–359. [Google Scholar] [CrossRef] [PubMed]
- Frei, R.; Akdis, M.; O’mahony, L. Prebiotics, Probiotics, Synbiotics, and the Immune System: Experimental Data and Clinical Evidence. Curr. Opin. Gastroenterol. 2015, 31, 153–158. [Google Scholar] [CrossRef]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Salek Farrokhi, A.; Darabi, N. Probiotics Importance and Their Immunomodulatory Properties. J. Cell Physiol. 2019, 234, 8008–8018. [Google Scholar] [CrossRef]
- Halloran, K.; Underwood, M.A. Probiotic Mechanisms of Action. Early Hum. Dev. 2019, 135, 58–65. [Google Scholar] [CrossRef]
- Momo Kadia, B.; Otiti, M.I.; Ramsteijn, A.S.; Sow, D.; Faye, B.; Heffernan, C.; Hall, L.J.; Webster, J.P.; Walker, A.W.; Allen, S. Modulating the Early-Life Gut Microbiota Using pro-, Pre-, and Synbiotics to Improve Gut Health, Child Development, and Growth. Nutr. Rev. 2024, 82, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Oozeer, R.; Van Limpt, K.; Ludwig, T.; Amor, K.B.; Martin, R.; Wind, R.D.; Boehm, G.; Knol, J. Intestinal Microbiology in Early Life: Specific Prebiotics Can Have Similar Functionalities as Human-Milk Oligosaccharides. Am. J. Clin. Nutr. 2013, 98, 561S–571S. [Google Scholar] [CrossRef]
- Kukkonen, K.; Savilahti, E.; Haahtela, T.; Juntunen-Backman, K.; Korpela, R.; Poussa, T.; Tuure, T.; Kuitunen, M. Probiotics and Prebiotic Galacto-Oligosaccharides in the Prevention of Allergic Diseases: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Allergy Clin. Immunol. 2007, 119, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Van Der Aa, L.B.; Heymans, H.S.; Van Aalderen, W.M.; Sillevis Smitt, J.H.; Knol, J.; Ben Amor, K.; Goossens, D.A.; Sprikkelman, A.B. Effect of a New Synbiotic Mixture on Atopic Dermatitis in Infants: A Randomized-Controlled Trial. Clin. Exp. Allergy 2010, 40, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Dhingra, U.; Hiremath, G.; Sarkar, A.; Dhingra, P.; Dutta, A.; Verma, P.; Menon, V.P.; Black, R.E. Prebiotic and Probiotic Fortified Milk in Prevention of Morbidities among Children: Community-Based, Randomized, Double-Blind, Controlled Trial. PLoS ONE 2010, 5, e12164. [Google Scholar] [CrossRef] [PubMed]
- Picaud, J.C.; Chapalain, V.; Paineau, D.; Zourabichvili, O.; Bornet, F.R.J.; Duhamel, J.F. Incidence of Infectious Diseases in Infants Fed Follow-on Formula Containing Synbiotics: An Observational Study. Acta Paediatr. 2010, 99, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Nauta, A.J.; Ben Amor, K.; Knippels, L.M.J.; Knol, J.; Garssen, J. Early Life: Gut Microbiota and Immune Development in Infancy. Benef. Microbes 2010, 1, 367–382. [Google Scholar] [CrossRef]
- Jinno, S.; Toshimitsu, T.; Nakamura, Y.; Kubota, T.; Igoshi, Y.; Ozawa, N.; Suzuki, S.; Nakano, T.; Morita, Y.; Arima, T.; et al. Maternal Prebiotic Ingestion Increased the Number of Fecal Bifidobacteria in Pregnant Women but Not in Their Neonates Aged One Month. Nutrients 2017, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Baldassarre, M.E.; Di Mauro, A.; Mastromarino, P.; Fanelli, M.; Martinelli, D.; Urbano, F.; Capobianco, D.; Laforgia, N. Administration of a Multi-Strain Probiotic Product to Women in the Perinatal Period Differentially Affects the Breast Milk Cytokine Profile and May Have Beneficial Effects on Neonatal Gastrointestinal Functional Symptoms. A Randomized Clinical Trial. Nutrients 2016, 8, 677. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, W.; Gao, Q.; Zhu, Q.; Song, M.; Ding, H.; Yin, Y.; Kong, X. Dietary Synbiotic Alters Plasma Biochemical Parameters and Fecal Microbiota and Metabolites in Sows. J. Funct. Foods 2020, 75, 104221. [Google Scholar] [CrossRef]
- Schwarzenberg, S.J.; Georgieff, M.K. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics 2018, 141, e20173716. [Google Scholar] [CrossRef]
- Agosti, M.; Tandoi, F.; Morlacchi, L.; Bossi, A. Nutritional and Metabolic Programming during the First Thousand Days of Life. Pediatr. Med. Chir. 2017, 39, 157. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Massot-Cladera, M.; Abril-Gil, M.; Torres, S.; Franch, À.; Castell, M.; Pérez-Cano, F.J. Impact of Cocoa Polyphenol Extracts on the Immune System and Microbiota in Two Strains of Young Rats. Br. J. Nutr. 2014, 112, 1944–1954. [Google Scholar] [CrossRef] [PubMed]
- Camps-Bossacoma, M.; Pérez-Cano, F.J.; Franch, À.; Untersmayr, E.; Castell, M. Effect of a Cocoa Diet on the Small Intestine and Gut-Associated Lymphoid Tissue Composition in an Oral Sensitization Model in Rats. J. Nutr. Biochem. 2017, 42, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cano, F.J.; Ramírez-Santana, C.; Molero-Luís, M.; Castell, M.; Rivero, M.; Castellote, C.; Franch, À. Mucosal IgA Increase in Rats by Continuous CLA Feeding during Suckling and Early Infancy. J. Lipid Res. 2009, 50, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Gil-Campos, M.; López, M.Á.; Rodriguez-Benítez, M.V.; Romero, J.; Roncero, I.; Linares, M.D.; Maldonado, J.; López-Huertas, E.; Berwind, R.; Ritzenthaler, K.L.; et al. Lactobacillus fermentum CECT 5716 Is Safe and Well Tolerated in Infants of 1-6 Months of Age: A Randomized Controlled Trial. Pharmacol. Res. 2012, 65, 231–238. [Google Scholar] [CrossRef]
- Phavichitr, N.; Wang, S.; Chomto, S.; Tantibhaedhyangkul, R.; Kakourou, A.; Intarakhao, S.; Jongpiputvanich, S.; Roeselers, G.; Knol, J. Impact of Synbiotics on Gut Microbiota during Early Life: A Randomized, Double-Blind Study. Sci. Rep. 2021, 11, 3534. [Google Scholar] [CrossRef]
- Massot-Cladera, M.; Franch, À.; Castellote, C.; Castell, M.; Pérez-Cano, F.J. Cocoa Flavonoid-Enriched Diet Modulates Systemic and Intestinal Immunoglobulin Synthesis in Adult Lewis Rats. Nutrients 2013, 5, 3272–3286. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Iglesias, P.; Massot-Cladera, M.; Rodríguez-Lagunas, M.J.; Franch, À.; Camps-Bossacoma, M.; Castell, M.; Pérez-Cano, F.J. A Cocoa Diet Can Partially Attenuate the Alterations in Microbiota and Mucosal Immunity Induced by a Single Session of Intensive Exercise in Rats. Front. Nutr. 2022, 9, 861533. [Google Scholar] [CrossRef]
- Pérez-Berezo, T.; Franch, A.; Ramos-Romero, S.; Castellote, C.; Pérez-Cano, F.J.; Castell, M. Cocoa-Enriched Diets Modulate Intestinal and Systemic Humoral Immune Response in Young Adult Rats. Mol. Nutr. Food Res. 2011, 55, S56–S66. [Google Scholar] [CrossRef]
- Massot-Cladera, M.; Pérez-Berezo, T.; Franch, A.; Castell, M.; Pérez-Cano, F.J. Cocoa Modulatory Effect on Rat Faecal Microbiota and Colonic Crosstalk. Arch. Biochem. Biophys. 2012, 527, 105–112. [Google Scholar] [CrossRef]
- Marín-Gallén, S.; Pérez-Cano, F.J.; Castell, M.; Castellote, C.; Franch, À. Intestinal Intraepithelial NK and NKT Cell Ontogeny in Lewis Rats. Dev. Comp. Immunol. 2008, 32, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Eberhart, B.L.; Wilson, A.S.; O’Keefe, S.J.D.; Ramaboli, M.C.; Nesengani, L.T. A Simplified Method for the Quantitation of Short-Chain Fatty Acids in Human Stool. Anal. Biochem. 2021, 612, 114016. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [PubMed]
- Dixon, P. VEGAN, a Package of R Functions for Community Ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Arévalo Sureda, E.; Weström, B.; Pierzynowski, S.G.; Prykhodko, O. Maturation of the Intestinal Epithelial Barrier in Neonatal Rats Coincides with Decreased FcRn Expression, Replacement of Vacuolated Enterocytes and Changed Blimp-1 Expression. PLoS ONE 2016, 11, e0164775. [Google Scholar] [CrossRef] [PubMed]
- Mazanec, M.B.; Nedrud, J.G.; Kaetzel, C.S.; Lamm, M.E. A Three-Tiered View of the Role of IgA in Mucosal Defense. Immunol. Today 1993, 14, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, J.P.; Fischetti, V.A. Diversity of Antibody-Mediated Immunity at the Mucosal Barrier. Infect. Immun. 1999, 67, 2687–2691. [Google Scholar] [CrossRef] [PubMed]
- Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding#tab=tab_1 (accessed on 5 January 2024).
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human Breast Milk: A Review on Its Composition and Bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Yang, Y.; Wu, S.; Zhao, J.; Li, Y.; Kang, X.; Li, Z.; Chen, J.; Shen, X.; et al. Bifidobacterium Infantis and 2’-Fucosyllactose Supplementation in Early Life May Have Potential Long-Term Benefits on Gut Microbiota, Intestinal Development, and Immune Function in Mice. J. Dairy Sci. 2023, 106, 7461–7476. [Google Scholar] [CrossRef]
- Abrahamsson, T.R.; Jakobsson, H.E.; Andersson, A.F.; Björkstén, B.; Engstrand, L.; Jenmalm, M.C. Low Gut Microbiota Diversity in Early Infancy Precedes Asthma at School Age. Clin. Exp. Allergy 2014, 44, 842–850. [Google Scholar] [CrossRef]
- Cassir, N.; Benamar, S.; Khalil, J.B.; Croce, O.; Saint-Faust, M.; Jacquot, A.; Million, M.; Azza, S.; Armstrong, N.; Henry, M.; et al. Clostridium butyricum Strains and Dysbiosis Linked to Necrotizing Enterocolitis in Preterm Neonates. Clin. Infect. Dis. 2015, 61, 1107–1115. [Google Scholar] [CrossRef]
- Fujimura, K.E.; Sitarik, A.R.; Havstad, S.; Lin, D.L.; Levan, S.; Fadrosh, D.; Panzer, A.R.; Lamere, B.; Rackaityte, E.; Lukacs, N.W.; et al. Neonatal Gut Microbiota Associates with Childhood Multisensitized Atopy and T Cell Differentiation. Nat. Med. 2016, 22, 1187–1191. [Google Scholar] [CrossRef]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef]
- Chang, H.Y.; Chen, J.H.; Chang, J.H.; Lin, H.C.; Lin, C.Y.; Peng, C.C. Multiple Strains Probiotics Appear to Be the Most Effective Probiotics in the Prevention of Necrotizing Enterocolitis and Mortality: An Updated Meta-Analysis. PLoS ONE 2017, 12, e0171579. [Google Scholar] [CrossRef] [PubMed]
- Cuello-Garcia, C.A.; Brozek, J.L.; Fiocchi, A.; Pawankar, R.; Yepes-Nuñez, J.J.; Terracciano, L.; Gandhi, S.; Agarwal, A.; Zhang, Y.; Schünemann, H.J. Probiotics for the Prevention of Allergy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Allergy Clin. Immunol. 2015, 136, 952–961. [Google Scholar] [CrossRef]
- Katayama, T. Host-Derived Glycans Serve as Selected Nutrients for the Gut Microbe: Human Milk Oligosaccharides and Bifidobacteria. Biosci. Biotechnol. Biochem. 2016, 80, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Boehm, G.; Moro, G. Structural and Functional Aspects of Prebiotics Used in Infant Nutrition1. J. Nutr. 2008, 138, 1818S–1828S. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Varela, L.; Ruas-Madiedo, P.; Gueimonde, M. In Vitro Fermentation of Different Fructo-Oligosaccharides by Bifidobacterium Strains for the Selection of Synbiotic Combinations. Int. J. Food Microbiol. 2017, 242, 19–23. [Google Scholar] [CrossRef]
- Sims, I.M.; Tannock, G.W. Galacto- and Fructo-Oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut. Appl. Environ. Microbiol. 2020, 86, e00214–e00220. [Google Scholar] [CrossRef]
- Kosuwon, P.; Lao-araya, M.; Uthaisangsook, S.; Lay, C.; Bindels, J.; Knol, J.; Chatchatee, P. A Synbiotic Mixture of ScGOS/LcFOS and Bifidobacterium Breve M-16V Increases Faecal Bifidobacterium in Healthy Young Children. Benef. Microbes 2018, 9, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Shin, N.H.; Ok, J.U.; Jung, H.S.; Chu, G.M.; Kim, J.D.; Kim, I.H.; Lee, S.S. Effects of Dietary Synbiotics from Anaerobic Microflora on Growth Performance, Noxious Gas Emission and Fecal Pathogenic Bacteria Population in Weaning Pigs. Asian-Australas. J. Anim. Sci. 2009, 22, 1202–1208. [Google Scholar] [CrossRef]
- Sławin´ska, A.; Siwek, M.; Zylin´ska, J.; Bardowski, J.; Brzezin´ska, J.; Gulewicz, K.A.; Nowak, M.; Urbanowski, M.; Płowiec, A.; Bednarczyk, M. Influence of Synbiotics Delivered in Ovo on Immune Organs Development and Structure. Folia Biol. 2014, 62, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Erdoĝan, Z.; Erdoĝan, S.; Aslantaş, Ö.; Çelik, S. Effects of Dietary Supplementation of Synbiotics and Phytobiotics on Performance, Caecal Coliform Population and Some Oxidant/Antioxidant Parameters of Broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, e40–e48. [Google Scholar] [CrossRef] [PubMed]
- Del Mar Rigo-Adrover, M.a; van Limpt, K.; Knipping, K.; Garssen, J.; Knol, J.; Costabile, A.; Franch, À.; Castell, M.; Pérez-Cano, F.J. Preventive Effect of a Synbiotic Combination of Galacto- and Fructooligosaccharides Mixture with Bifidobacterium breve M-16V in a Model of Multiple Rotavirus Infections. Front. Immunol. 2018, 9, 1318. [Google Scholar] [CrossRef]
- Ratih, R.; Maheswari, A.; Komang, I.; Wiryawan, G.; Lesmana Maduningsih, G. Stability of Two Probiotics Bacteria of Goat Milk Yoghurt in Rat Digestive Tract. J. Microbiol. Indones. 2008, 2, 6. [Google Scholar]
- Hosseinifard, E.S.; Bavafa-Valenlia, K.; Saghafi-Asl, M.; Morshedi, M. Antioxidative and Metabolic Effects of Lactobacillus plantarum, Inulin, and Their Synbiotic on the Hypothalamus and Serum of Healthy Rats. Nutr. Metab. Insights 2020, 13, 1178638820925092. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Ashoori, M.; Dehghani, F.; Meshkini, F.; Clayton, Z.S.; Abdollahi, S. Effects of Probiotic/Synbiotic Supplementation on Body Weight in Patients with Diabetes: A Systematic Review and Meta-Analyses of Randomized-Controlled Trials. BMC Endocr. Disord. 2023, 23, 86. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.F.; Casarotti, S.N.; de Oliveira, G.L.V.; Penna, A.L.B. The Impact of Probiotics, Prebiotics, and Synbiotics on the Biochemical, Clinical, and Immunological Markers, as Well as on the Gut Microbiota of Obese Hosts. Crit. Rev. Food Sci. Nutr. 2021, 61, 337–355. [Google Scholar] [CrossRef]
- De La Mora, Z.V.; Nuño, K.; Vázquez-Paulino, O.; Avalos, H.; Castro-Rosas, J.; Gómez-Aldapa, C.; Angulo, C.; Ascencio, F.; Villarruel-López, A. Effect of a Synbiotic Mix on Intestinal Structural Changes, and Salmonella typhimurium and Clostridium perfringens Colonization in Broiler Chickens. Animals 2019, 9, 777. [Google Scholar] [CrossRef]
- Caspary, W.F. Physiology and Pathophysiology of Intestinal Absorption. Am. J. Clin. Nutr. 1992, 55, 299S–308S. [Google Scholar] [CrossRef]
- Yason, C.V.; Summers, B.A.; Schat, K.A. Pathogenesis of Rotavirus Infection in Various Age Groups of Chickens and Turkeys: Pathology. Am. J. Vet. Res. 1987, 48, 927–938. [Google Scholar] [PubMed]
- Nadeau, S.; Martins, G.A. Conserved and Unique Functions of Blimp1 in Immune Cells. Front. Immunol. 2022, 12, 805260. [Google Scholar] [CrossRef]
- Mould, A.W.; Morgan, M.A.J.; Nelson, A.C.; Bikoff, E.K.; Robertson, E.J. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation. PLoS Genet. 2015, 11, e1005375. [Google Scholar] [CrossRef]
- Stapleton, N.M.; Einarsdóttir, H.K.; Stemerding, A.M.; Vidarsson, G. The Multiple Facets of FcRn in Immunity. Immunol. Rev. 2015, 268, 253–268. [Google Scholar] [CrossRef]
- Yoshida, M.; Kobayashi, K.; Kuo, T.T.; Bry, L.; Glickman, J.N.; Claypool, S.M.; Kaser, A.; Nagaishi, T.; Higgins, D.E.; Mizoguchi, E.; et al. Neonatal Fc Receptor for IgG Regulates Mucosal Immune Responses to Luminal Bacteria. J. Clin. Investig. 2006, 116, 2142–2151. [Google Scholar] [CrossRef]
- Lee, B.; Moon, K.M.; Kim, C.Y. Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J. Immunol. Res. 2018, 2018, 2645465. [Google Scholar] [CrossRef]
- Qin, H.L.; Shen, T.Y.; Gao, Z.G.; Fan, X.B.; Hang, X.M.; Jiang, Y.Q.; Zhang, H.Z. Effect of Lactobacillus on the Gut Microflora and Barrier Function of the Rats with Abdominal Infection. World J. Gastroenterol. 2005, 11, 2591–2596. [Google Scholar] [CrossRef] [PubMed]
- Commane, D.M.; Shortt, C.T.; Silvi, S.; Cresci, A.; Hughes, R.M.; Rowland, I.R. Effects of Fermentation Products of Pro- and Prebiotics on Trans-Epithelial Electrical Resistance in an in Vitro Model of the Colon. Nutr. Cancer 2005, 51, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, F.; Kong, X.; Wen, C.; Guo, Q.; Zhang, L.; Wang, W.; Duan, Y.; Li, T.; Tan, Z.; et al. Dietary Xylo-Oligosaccharide Improves Intestinal Functions in Weaned Piglets. Food Funct. 2019, 10, 2701–2709. [Google Scholar] [CrossRef]
- Lavelle, E.C.; Murphy, C.; O’Neill, L.A.J.; Creagh, E.M. The Role of TLRs, NLRs, and RLRs in Mucosal Innate Immunity and Homeostasis. Mucosal Immunol. 2010, 3, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Bermudez-Brito, M.; Muñoz-Quezada, S.; Gomez-Llorente, C.; Matencio, E.; Bernal, M.J.; Romero, F.; Gil, A. Cell-Free Culture Supernatant of Bifidobacterium Breve CNCM I-4035 Decreases pro-Inflammatory Cytokines in Human Dendritic Cells Challenged with Salmonella Typhi through TLR Activation. PLoS ONE 2013, 8, e59370. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, T.S.; Van Maren, W.W.C.; Van Bergenhenegouwen, J.; Hameetman, M.; Nierkens, S.; Jacobs, C.; De Jong, D.J.; Joosten, L.A.B.; Van’t Land, B.; Garssen, J.; et al. Differential Toll-like Receptor Recognition and Induction of Cytokine Profile by Bifidobacterium breve and Lactobacillus Strains of Probiotics. Clin. Vaccine Immunol. 2011, 18, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycka, E.; Bielecka, M.; Wróblewska, B.; Jędrychowski, L.; Zduńczyk, Z. Modulation of immunoglobulin a (IgA) response by oligofructose and its synergistic sets with bifidobacteria in rats. Pol. J. Food Nutr. Sci. 2004, 54, 9–13. [Google Scholar]
- Athiyyah, A.F.; Widjaja, N.A.; Fitri, P.; Setiowati, A.; Darma, A.; Ranuh, R.; Sudarmo, S.M. Effects of a Multispecies Synbiotic on Intestinal Mucosa Immune Responses. Iran. J. Microbiol. 2019, 11, 300. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Zhou, H.; Wang, L.; Ding, S.; Wang, Y.; Song, D.; Li, A. Effects of Microencapsulated Lactobacillus Plantarum and Fructooligosaccharide on Growth Performance, Blood Immune Parameters, and Intestinal Morphology in Weaned Piglets. Food Agric. Immunol. 2018, 29, 84–94. [Google Scholar] [CrossRef]
- Krutyhołowa, R.; Zakrzewski, K.; Glatt, S. Charging the Code—TRNA Modification Complexes. Curr. Opin. Struct. Biol. 2019, 55, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Pabst, O. New Concepts in the Generation and Functions of IgA. Nat. Rev. Immunol. 2012, 12, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Maddux, A.B.; Douglas, I.S. Is the Developmentally Immature Immune Response in Paediatric Sepsis a Recapitulation of Immune Tolerance? Immunology 2015, 145, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zabłocka, A.; Jakubczyk, D.; Leszczyńska, K.; Pacyga-Prus, K.; Macała, J.; Górska, S. Studies of the Impact of the Bifidobacterium Species on Inducible Nitric Oxide Synthase Expression and Nitric Oxide Production in Murine Macrophages of the BMDM Cell Line. Probiotics Antimicrob. Proteins 2023, 1, 1012–1025. [Google Scholar] [CrossRef]
- Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Molecular Communication with the Immune System. Front. Microbiol. 2017, 8, 302400. [Google Scholar] [CrossRef]
- Simeoni, U.; Berger, B.; Junick, J.; Blaut, M.; Pecquet, S.; Rezzonico, E.; Grathwohl, D.; Sprenger, N.; Brüssow, H.; Szajewska, H.; et al. Gut Microbiota Analysis Reveals a Marked Shift to Bifidobacteria by a Starter Infant Formula Containing a Synbiotic of Bovine Milk-Derived Oligosaccharides and Bifidobacterium animalis subsp. lactis CNCM I-3446. Environ. Microbiol. 2016, 18, 2185–2195. [Google Scholar] [CrossRef]
- Tham, C.S.C.; Peh, K.K.; Bhat, R.; Liong, M.T. Probiotic Properties of Bifidobacteria and Lactobacilli Isolated from Local Dairy Products. Ann. Microbiol. 2012, 62, 1079–1087. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Zhang, Y.; Li, W.; Jiang, S.; Qian, D.; Duan, J. Gut Microbiota: A New Avenue to Reveal Pathological Mechanisms of Constipation. Appl. Microbiol. Biotechnol. 2022, 106, 6899–6913. [Google Scholar] [CrossRef]
- Davis, M.Y.; Zhang, H.; Brannan, L.E.; Carman, R.J.; Boone, J.H. Rapid Change of Fecal Microbiome and Disappearance of Clostridium difficile in a Colonized Infant after Transition from Breast Milk to Cow Milk. Microbiome 2016, 4, 53. [Google Scholar] [CrossRef]
- Kalyana Chakravarthy, S.; Jayasudha, R.; Sai Prashanthi, G.; Ali, M.H.; Sharma, S.; Tyagi, M.; Shivaji, S. Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian J. Microbiol. 2018, 58, 457–469. [Google Scholar] [CrossRef]
- Khattab, M.S.A.; Abd El Tawab, A.M.; Fouad, M.T. Isolation and Characterization of Anaerobic Bacteria from Frozen Rumen Liquid and Its Potential Characterizations. Int. J. Dairy Sci. 2017, 12, 47–51. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, W.; Zhao, Y.; Duan, S.; Liu, W.H.; Zhang, C.; Sun, S.; Wang, T.; Wang, X.; Hung, W.L.; et al. In Vitro Study of Bifidobacterium lactis BL-99 With Fructooligosaccharide Synbiotics Effected on the Intestinal Microbiota. Front. Nutr. 2022, 9, 890316. [Google Scholar] [CrossRef]
- Hoogeveen, A.M.E.; Moughan, P.J.; De Haas, E.S.; Blatchford, P.; McNabb, W.C.; Montoya, C.A. Ileal and Hindgut Fermentation in the Growing Pig Fed a Human-Type Diet. Br. J. Nutr. 2020, 124, 567–576. [Google Scholar] [CrossRef]
- Du, X.; Xiang, Y.; Lou, F.; Tu, P.; Zhang, X.; Hu, X.; Lyu, W.; Xiao, Y. Microbial Community and Short-Chain Fatty Acid Mapping in the Intestinal Tract of Quail. Animals 2020, 10, 1006. [Google Scholar] [CrossRef]
- Campbell, J.M.; Fahey, G.C.; Wolf, B.W. Selected Indigestible Oligosaccharides Affect Large Bowel Mass, Cecal and Fecal Short-Chain Fatty Acids, PH and Microflora in Rats. J. Nutr. 1997, 127, 130–136. [Google Scholar] [CrossRef]
- Saarinen, M.; Forssten, S. Synbiotic Effects of Galacto-Oligosaccharide, Polydextrose and Bifidobacterium lactis Bi-07 in Vitro. Int. J. Probiotics Prebiotics 2010, 5, 203–210. [Google Scholar]
- Hu, Q.; Yu, L.; Zhai, Q.; Zhao, J.; Tian, F. Anti-Inflammatory, Barrier Maintenance, and Gut Microbiome Modulation Effects of Saccharomyces cerevisiae QHNLD8L1 on DSS-Induced Ulcerative Colitis in Mice. Int. J. Mol. Sci. 2023, 24, 6721. [Google Scholar] [CrossRef]
- Gio-Batta, M.; Sjöberg, F.; Jonsson, K.; Barman, M.; Lundell, A.C.; Adlerberth, I.; Hesselmar, B.; Sandberg, A.S.; Wold, A.E. Fecal Short Chain Fatty Acids in Children Living on Farms and a Link between Valeric Acid and Protection from Eczema. Sci. Rep. 2020, 10, 22449. [Google Scholar] [CrossRef]
Body | REF | SYN |
Body length (cm) | 13.58 ± 0.11 | 13.26 ± 0.15 |
Body/tail length ratio | 1.42 ± 0.02 | 1.55 ± 0.14 |
BMI (g/cm2) | 0.36 ± 0.01 | 0.35 ± 0.05 |
Lee index (g0.33/cm × 103) | 298.82 ± 1.80 | 295.93 ± 3.15 |
Organs | REF | SYN |
Spleen (%) | 0.36 ± 0.01 | 0.36 ± 0.01 |
Thymus (%) | 0.44 ± 0.02 | 0.44 ± 0.02 |
Kidney (%) | 0.62 ± 0.01 | 0.59 ± 0.01 |
Heart (%) | 0.58 ± 0.01 | 0.60 ± 0.03 |
Liver (%) | 4.49 ± 0.04 | 4.09 ± 0.46 |
Salivary gland (%) | 0.24 ± 0.09 | 0.16 ± 0.01 |
Stomach (%) | 0.71 ± 0.02 | 0.73 ± 0.02 |
Cecum (%) | 0.33 ± 0.02 | 0.30 ± 0.01 |
Small intestine (%) | 4.18 ± 0.07 | 4.61 ± 0.19 * |
Intestine length (cm) | 67.04 ± 2.14 | 72.39 ± 2.95 # |
Intestine width (cm) | 0.85 ± 0.07 | 1.15 ± 0.05 * |
Area (cm2) | 56.26 ± 5.03 | 83.90 ± 6.59 * |
REF | SYN | |
---|---|---|
Leukocytes (×109/L) | 4.84 ± 0.93 | 2.78 ± 0.2 * |
Lymphocytes (×109/L) | 3.09 ± 0.42 | 1.89 ± 0.18 * |
Monocytes (×109/L) | 0.27 ± 0.12 | 0.11 ± 0.01 |
Granulocytes (×109/L) | 1.47 ± 0.40 | 0.78 ± 0.08 * |
Erythrocytes (×1012/L) | 5.41 ± 0.25 | 5.38 ± 0.12 |
HGB (g/L) | 101.79 ± 4.02 | 101.22 ± 2.47 |
HCT (%) | 29.76 ± 1.47 | 29.79 ± 0.93 |
MCV (fL) | 55.01 ± 0.62 | 55.34 ± 0.69 |
MCH (pg) | 18.99 ± 0.40 | 18.74 ± 0.11 |
Platelets (×109/L) | 234.54 ± 28.88 | 182.89 ± 41.62 |
Spleen | MLNs | |||
---|---|---|---|---|
REF | SYN | REF | SYN | |
B cells (CD45RA+) | 25.44 ± 2.26 | 35.14 ± 0.64 * | 17.05 ± 1.58 | 17.85 ± 1.17 |
% CD25+ | 2.51 ± 0.43 | 1.40 ± 0.26 | 2.86 ± 0.19 | 2.10 ± 0.32 |
% CD62L+ | 46.15 ± 2.69 | 39.52 ± 2.78 | 65.84 ± 5.24 | 70.23 ± 2.32 |
% αE+ | 2.95 ± 0.58 | 4.04 ± 0.84 | 0.09 ± 0.03 | 0.06 ± 0.01 |
T cells (TCRαβ+NK- and TCRgδ) | 54.01 ± 6.12 | 36.94 ± 1.21 | 79.17 ± 1.86 | 78.77 ± 1.04 |
TCRαβ+ NK- | 50.60 ± 6.33 | 33.20 ± 1.06 | 75.03 ± 1.49 | 75.86 ± 1.07 |
% CD8 | 24.24 ± 0.75 | 24.51 ± 0.49 | 27.24 ± 1.20 | 28.78 ± 0.69 |
TCRgδ+ | 3.40 ± 0.31 | 3.74 ± 0.31 | 4.14 ± 1.08 | 2.90 ± 0.15 |
% CD8 | 55.50 ± 4.29 | 59.96 ± 3.62 | 57.57 ± 1.65 | 54.54 ± 3.07 |
CD4+ CD8- | 43.18 ± 3.62 | 29.96 ± 0.91 * | 58.81 ± 1.40 | 57.84 ± 1.02 |
% CD25+ | 7.68 ± 0.40 | 5.33 ± 0.44 * | 7.67 ± 0.32 | 8.56 ± 0.39 |
% CD62L+ | 80.69 ± 0.91 | 77.31 ± 1.53 | 61.70 ± 4.59 | 49.18 ± 9.02 |
% αE+ | 1.30 ± 0.15 | 1.49 ± 0.26 | 3.51 ± 1.65 | 11.46 ± 3.55 |
CD8+ CD4- | 17.59 ± 0.52 | 16.20 ± 0.55 | 19.82 ± 0.82 | 20.12 ± 0.53 |
% CD25+ | 4.29 ± 0.31 | 3.56 ± 0.47 | 3.77 ± 0.38 | 4.03 ± 0.40 |
% CD62L+ | 66.59 ± 2.62 | 65.13 ± 1.65 | 68.40 ± 1.55 | 67.75 ± 3.99 |
% αE+ | 0.89 ± 0.11 | 0.85 ± 0.14 | 1.27 ± 0.21 | 0.99 ± 0.25 |
CD4+ CD8+ | 1.55 ± 0.67 | 1.42 ± 0.13 | 1.61 ± 0.06 | 1.59 ± 0.09 |
% CD25+ | 73.51 ± 6.20 | 90.4 ± 3.63 | 53.86 ± 5.27 | 45.68 ± 3.79 |
NK (TCRαβ- NK+) | 5.31 ± 1.36 | 6.42 ± 0.71 | 1.09 ± 0.11 | 1.10 ± 0.07 |
% CD8 | 7.82 ± 1.78 | 6.28 ± 0.75 | 10.95 ± 1.19 | 13.50 ± 0.06 |
NKT (TCRαβ+ NK+) | 2.59 ± 0.40 | 3.11 ± 0.30 | 1.87 ± 0.11 | 1.63 ± 0.10 |
% CD8 | 45.83 ± 1.81 | 48.71 ± 2.04 | 61.59 ± 3.29 | 70.12 ± 1.02 |
αE+ | 1.17 ± 0.11 | 1.65 ± 0.20 | 0.66 ± 0.10 | 0.60 ± 0.14 |
CD62L+ | 62.72 ± 3.08 | 54.44 ± 1.24 * | 72.16 ± 1.82 | 70.73 ± 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sáez-Fuertes, L.; Kapravelou, G.; Grases-Pintó, B.; Bernabeu, M.; Knipping, K.; Garssen, J.; Bourdet-Sicard, R.; Castell, M.; Rodríguez-Lagunas, M.J.; Collado, M.C.; et al. Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats. Foods 2024, 13, 2058. https://doi.org/10.3390/foods13132058
Sáez-Fuertes L, Kapravelou G, Grases-Pintó B, Bernabeu M, Knipping K, Garssen J, Bourdet-Sicard R, Castell M, Rodríguez-Lagunas MJ, Collado MC, et al. Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats. Foods. 2024; 13(13):2058. https://doi.org/10.3390/foods13132058
Chicago/Turabian StyleSáez-Fuertes, Laura, Garyfallia Kapravelou, Blanca Grases-Pintó, Manuel Bernabeu, Karen Knipping, Johan Garssen, Raphaëlle Bourdet-Sicard, Margarida Castell, María José Rodríguez-Lagunas, María Carmen Collado, and et al. 2024. "Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats" Foods 13, no. 13: 2058. https://doi.org/10.3390/foods13132058
APA StyleSáez-Fuertes, L., Kapravelou, G., Grases-Pintó, B., Bernabeu, M., Knipping, K., Garssen, J., Bourdet-Sicard, R., Castell, M., Rodríguez-Lagunas, M. J., Collado, M. C., & Pérez-Cano, F. J. (2024). Early-Life Supplementation Enhances Gastrointestinal Immunity and Microbiota in Young Rats. Foods, 13(13), 2058. https://doi.org/10.3390/foods13132058