Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Berezinskii-Kosterlitz-Thouless transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1179 KiB  
Article
Magnetocaloric Effect for a Q-Clock-Type System
by Michel Aguilera, Sergio Pino-Alarcón, Francisco J. Peña, Eugenio E. Vogel, Natalia Cortés and Patricio Vargas
Entropy 2025, 27(1), 11; https://doi.org/10.3390/e27010011 - 27 Dec 2024
Viewed by 794
Abstract
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with Q possible orientations, known as the “Q-state clock model”. When the Q-state clock model has Q5 possible [...] Read more.
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with Q possible orientations, known as the “Q-state clock model”. When the Q-state clock model has Q5 possible configurations, it presents the famous Berezinskii–Kosterlitz–Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even Q numbers, ranging from Q=2 to Q=8 spin orientations per site in a lattice. We use lattices of different sizes with N=L×L=82,162,322,642,and1282 sites, considering free boundary conditions and an external magnetic field varying between B=0 and B=1.0 in natural units of the system. By obtaining the entropy, it is possible to quantify the MCE through an isothermal process in which the external magnetic field on the spin system is varied. In particular, we find the values of Q that maximize the MCE depending on the lattice size and the magnetic phase transitions linked with the process. Given the broader relevance of the Q-state clock model in areas such as percolation theory, neural networks, and biological systems, where multi-state interactions are essential, our study provides a robust framework in applied quantum mechanics, statistical physics, and related fields. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

13 pages, 2894 KiB  
Article
In-Plane Anisotropy of Electrical Transport in Y0.85Tb0.15Ba2Cu3O7−x Films
by Matvey Lyatti, Ines Kraiem, Torsten Röper, Irina Gundareva, Gregor Mussler, Abdur Rehman Jalil, Detlev Grützmacher and Thomas Schäpers
Materials 2024, 17(3), 558; https://doi.org/10.3390/ma17030558 - 24 Jan 2024
Cited by 1 | Viewed by 1313
Abstract
We fabricated high-quality c-axis-oriented epitaxial YBa2Cu3O7−x films with 15% of the yttrium atoms replaced by terbium (YTBCO) and studied their electrical properties. The Tb substitution reduced the charge carrier density, resulting in increased resistivity and decreased critical current [...] Read more.
We fabricated high-quality c-axis-oriented epitaxial YBa2Cu3O7−x films with 15% of the yttrium atoms replaced by terbium (YTBCO) and studied their electrical properties. The Tb substitution reduced the charge carrier density, resulting in increased resistivity and decreased critical current density compared to pure YBa2Cu3O7−x films. The electrical properties of the YTBCO films showed an in-plane anisotropy in both the superconducting and normal states that, together with the XRD data, provided evidence for, at least, a partially twin-free film. Unexpectedly, the resistive transition of the bridges also demonstrated the in-plane anisotropy that could be explained within the framework of Tinkham’s model of resistive transition and the Berezinskii–Kosterlitz–Thouless (BKT) model, depending on the sample parameters. Measurements of the differential resistance in the temperature range of the resistive transition confirmed the occurrence of the BKT transition in the YTBCO bridges. Therefore, we consider the YTBCO films to be a promising platform for both the fabrication of devices with high kinetic inductance and fundamental research on the BKT transition in cuprate superconductors. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

18 pages, 2497 KiB  
Article
Complex Phase-Fluctuation Effects Correlated with Granularity in Superconducting NbN Nanofilms
by Meenakshi Sharma, Manju Singh, Rajib K. Rakshit, Surinder P. Singh, Matteo Fretto, Natascia De Leo, Andrea Perali and Nicola Pinto
Nanomaterials 2022, 12(23), 4109; https://doi.org/10.3390/nano12234109 - 22 Nov 2022
Cited by 9 | Viewed by 2656
Abstract
Superconducting nanofilms are tunable systems that can host a 3D–2D dimensional crossover leading to the Berezinskii–Kosterlitz–Thouless (BKT) superconducting transition approaching the 2D regime. Reducing the dimensionality further, from 2D to quasi-1D superconducting nanostructures with disorder, can generate quantum and thermal phase slips (PS) [...] Read more.
Superconducting nanofilms are tunable systems that can host a 3D–2D dimensional crossover leading to the Berezinskii–Kosterlitz–Thouless (BKT) superconducting transition approaching the 2D regime. Reducing the dimensionality further, from 2D to quasi-1D superconducting nanostructures with disorder, can generate quantum and thermal phase slips (PS) of the order parameter. Both BKT and PS are complex phase-fluctuation phenomena of difficult experiments. We characterized superconducting NbN nanofilms thinner than 15 nm, on different substrates, by temperature-dependent resistivity and current–voltage (I-V) characteristics. Our measurements evidence clear features related to the emergence of BKT transition and PS events. The contemporary observation in the same system of BKT transition and PS events, and their tunable evolution in temperature and thickness was explained as due to the nano-conducting paths forming in a granular NbN system. In one of the investigated samples, we were able to trace and characterize the continuous evolution in temperature from quantum to thermal PS. Our analysis established that the detected complex phase phenomena are strongly related to the interplay between the typical size of the nano-conductive paths and the superconducting coherence length. Full article
(This article belongs to the Special Issue Novel Research in Low-Dimensional Systems)
Show Figures

Figure 1

10 pages, 824 KiB  
Review
First and Second Sound in Two-Dimensional Bosonic and Fermionic Superfluids
by Luca Salasnich, Alberto Cappellaro, Koichiro Furutani, Andrea Tononi and Giacomo Bighin
Symmetry 2022, 14(10), 2182; https://doi.org/10.3390/sym14102182 - 17 Oct 2022
Cited by 1 | Viewed by 2093
Abstract
We review our theoretical results of the sound propagation in two-dimensional (2D) systems of ultracold fermionic and bosonic atoms. In the superfluid phase, characterized by the spontaneous symmetry breaking of the U(1) symmetry, there is the coexistence of first and [...] Read more.
We review our theoretical results of the sound propagation in two-dimensional (2D) systems of ultracold fermionic and bosonic atoms. In the superfluid phase, characterized by the spontaneous symmetry breaking of the U(1) symmetry, there is the coexistence of first and second sound. In the case of weakly-interacting repulsive bosons, we model the recent measurements of the sound velocities of 39K atoms in 2D obtained in the weakly-interacting regime and around the Berezinskii–Kosterlitz–Thouless (BKT) superfluid-to-normal transition temperature. In particular, we perform a quite accurate computation of the superfluid density and show that it is reasonably consistent with the experimental results. For superfluid attractive fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover. In the low-temperature regime, we reproduce the recent measurements of first-sound speed with 6Li atoms. We also predict that there is mixing between sound modes only in the finite-temperature BEC regime. Full article
(This article belongs to the Special Issue Symmetry and Pauli Exclusion Principle)
Show Figures

Figure 1

11 pages, 463 KiB  
Article
Ultradilute Quantum Droplets in the Presence of Higher-Order Quantum Fluctuations
by Abdelaali Boudjemaa, Karima Abbas and Nadia Guebli
Atoms 2022, 10(2), 64; https://doi.org/10.3390/atoms10020064 - 17 Jun 2022
Cited by 6 | Viewed by 2541
Abstract
We investigate the effects of higher-order quantum fluctuations on the bulk properties of self-bound droplets in three-, two- and one-dimensional binary Bose mixtures using the Hartree–Fock–Bogoliubov theory. We calculate higher-order corrections to the equation of state of the droplet at both zero and [...] Read more.
We investigate the effects of higher-order quantum fluctuations on the bulk properties of self-bound droplets in three-, two- and one-dimensional binary Bose mixtures using the Hartree–Fock–Bogoliubov theory. We calculate higher-order corrections to the equation of state of the droplet at both zero and finite temperatures. We show that our results for the ground-state energy are in a good agreement with recent quantum Monte Carlo simulations in any dimension. Our study extends to the finite temperature case where it is found that thermal fluctuations may destabilize the droplet state and eventually destroy it. In two dimensions, we reveal that the droplet occurs at temperatures well below the Berezinskii–Kosterlitz–Thouless transition temperature. Full article
(This article belongs to the Special Issue Recent Trends on Quantum Fluctuations in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

16 pages, 8051 KiB  
Article
Otto Engine for the q-State Clock Model
by Michel Angelo Aguilera, Francisco José Peña, Oscar Andrés Negrete and Patricio Vargas
Entropy 2022, 24(2), 268; https://doi.org/10.3390/e24020268 - 13 Feb 2022
Cited by 2 | Viewed by 2685
Abstract
This present work explores the performance of a thermal–magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the q state clock model. We obtain all the thermodynamic quantities for the q = 2, 4, [...] Read more.
This present work explores the performance of a thermal–magnetic engine of Otto type, considering as a working substance an effective interacting spin model corresponding to the q state clock model. We obtain all the thermodynamic quantities for the q = 2, 4, 6, and 8 cases in a small lattice size (3×3 with free boundary conditions) by using the exact partition function calculated from the energies of all the accessible microstates of the system. The extension to bigger lattices was performed using the mean-field approximation. Our results indicate that the total work extraction of the cycle is highest for the q=4 case, while the performance for the Ising model (q=2) is the lowest of all cases studied. These results are strongly linked with the phase diagram of the working substance and the location of the cycle in the different magnetic phases present, where we find that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice increases, the extraction work is lower than smaller lattices for all values of q presented in this study. Full article
(This article belongs to the Special Issue Thermal Analysis of Materials)
Show Figures

Figure 1

9 pages, 2352 KiB  
Article
Possible Evidence for Berezinskii–Kosterlitz–Thouless Transition in Ba(Fe0.914Co0.086)2As2 Crystals
by Wen-He Jiao, Xiao-Feng Xu, Hao Jiang, Zhu-An Xu, Qing-Hu Chen and Guang-Han Cao
Materials 2021, 14(21), 6294; https://doi.org/10.3390/ma14216294 - 22 Oct 2021
Cited by 1 | Viewed by 2617
Abstract
In this study, we measure the in-plane transport properties of high-quality Ba(Fe0.914Co0.086)2As2 single crystals. Signatures of vortex unbinding Berezinskii–Kosterlitz–Thouless (BKT) transition are shown from both the conventional approach and the Fisher–Fisher–Huse dynamic scaling analysis, in which [...] Read more.
In this study, we measure the in-plane transport properties of high-quality Ba(Fe0.914Co0.086)2As2 single crystals. Signatures of vortex unbinding Berezinskii–Kosterlitz–Thouless (BKT) transition are shown from both the conventional approach and the Fisher–Fisher–Huse dynamic scaling analysis, in which a characteristic Nelson–Kosterlitz jump is demonstrated. We also observe a non-Hall transverse signal exactly at the superconducting transition, which is explained in terms of guided motion of unbound vortices. Full article
(This article belongs to the Special Issue Quantum Materials: Superconductivity and Topology)
Show Figures

Figure 1

13 pages, 1206 KiB  
Article
Short-Range Berezinskii-Kosterlitz-Thouless Phase Characterization for the q-State Clock Model
by Oscar A. Negrete, Patricio Vargas, Francisco J. Peña, Gonzalo Saravia and Eugenio E. Vogel
Entropy 2021, 23(8), 1019; https://doi.org/10.3390/e23081019 - 7 Aug 2021
Cited by 4 | Viewed by 2868
Abstract
Beyond the usual ferromagnetic and paramagnetic phases present in spin systems, the usual q-state clock model presents an intermediate vortex state when the number of possible orientations q for the system is greater than or equal to 5. Such vortex states give [...] Read more.
Beyond the usual ferromagnetic and paramagnetic phases present in spin systems, the usual q-state clock model presents an intermediate vortex state when the number of possible orientations q for the system is greater than or equal to 5. Such vortex states give rise to the Berezinskii-Kosterlitz-Thouless (BKT) phase present up to the XY model in the limit q. Based on information theory, we present here an analysis of the classical order parameters plus new short-range parameters defined here. Thus, we show that even using the first nearest neighbors spin-spin correlations only, it is possible to distinguish the two transitions presented by this system for q greater than or equal to 5. Moreover, the appearance at relatively low temperature and disappearance of the BKT phase at a rather fix higher temperature is univocally determined by the short-range interactions recognized by the information content of classical and new parameters. Full article
(This article belongs to the Special Issue Entropy: The Scientific Tool of the 21st Century)
Show Figures

Figure 1

33 pages, 10816 KiB  
Review
Multifunctional Molecular Magnets: Magnetocaloric Effect in Octacyanometallates
by Magdalena Fitta, Robert Pełka, Piotr Konieczny and Maria Bałanda
Crystals 2019, 9(1), 9; https://doi.org/10.3390/cryst9010009 - 22 Dec 2018
Cited by 29 | Viewed by 6127
Abstract
Octacyanometallate-based compounds displaying a rich pallet of interesting physical and chemical properties, are key materials in the field of molecular magnetism. The [M(CN)8]n− complexes, (M = WV, MoV, NbIV), are universal building blocks as [...] Read more.
Octacyanometallate-based compounds displaying a rich pallet of interesting physical and chemical properties, are key materials in the field of molecular magnetism. The [M(CN)8]n− complexes, (M = WV, MoV, NbIV), are universal building blocks as they lead to various spatial structures, depending on the surrounding ligands and the choice of the metal ion. One of the functionalities of the octacyanometallate-based coordination polymers or clusters is the magnetocaloric effect (MCE), consisting in a change of the material temperature upon the application of a magnetic field. In this review, we focus on different approaches to MCE investigation. We present examples of magnetic entropy change ΔSm and adiabatic temperature change ΔTad, determined using calorimetric measurements supplemented with the algebraic extrapolation of the data down to 0 K. At the field change of 5T, the compound built of high spin clusters Ni9[W(CN)8]6 showed a maximum value of −ΔSm equal to 18.38 J·K−1 mol−1 at 4.3 K, while the corresponding maximum ΔTad = 4.6 K was attained at 2.2 K. These values revealed that this molecular material may be treated as a possible candidate for cryogenic magnetic cooling. Values obtained for ferrimagnetic polymers at temperatures close to their magnetic ordering temperatures, Tc, were lower, i.e., −ΔSm = 6.83 J·K−1 mol−1Tad = 1.42 K) and −ΔSm = 4.9 J·K−1 mol−1Tad = 2 K) for {[MnII(pyrazole)4]2[NbIV(CN)8]·4H2O}n and{[FeII(pyrazole)4]2[NbIV(CN)8]·4H2O}n, respectively. MCE results have been obtained also for other -[Nb(CN)8]-based manganese polymers, showing significant Tc dependence on pressure or the remarkable magnetic sponge behaviour. Using the data obtained for compounds with different Tc, due to dissimilar ligands or other phase of the material, the ΔSm ~ Tc−2/3 relation stemming from the molecular field theory was confirmed. The characteristic index n in the ΔSm ~ ΔHn dependence, and the critical exponents, related to n, were determined, pointing to the 3D Heisenberg model as the most adequate for the description of these particular compounds. At last, results of the rotating magnetocaloric effect (RMCE), which is a new technique efficient in the case of layered magnetic systems, are presented. Data have been obtained and discussed for single crystals of two 2D molecular magnets: ferrimagnetic {MnII(R-mpm)2]2[NbIV(CN)8]}∙4H2O (mpm = α-methyl-2-pyridinemethanol) and a strongly anisotropic (tetren)Cu4[W(CN)8]4 bilayered magnet showing the topological Berezinskii-Kosterlitz-Thouless transition. Full article
(This article belongs to the Special Issue Molecular Magnets)
Show Figures

Graphical abstract

27 pages, 6552 KiB  
Review
Interplay of Spin and Spatial Anisotropy in Low-Dimensional Quantum Magnets with Spin 1/2
by Alžbeta Orendáčová, Róbert Tarasenko, Vladimír Tkáč, Erik Čižmár, Martin Orendáč and Alexander Feher
Crystals 2019, 9(1), 6; https://doi.org/10.3390/cryst9010006 - 21 Dec 2018
Cited by 11 | Viewed by 6140
Abstract
Quantum Heisenberg chain and square lattices are important paradigms of a low-dimensional magnetism. Their ground states are determined by the strength of quantum fluctuations. Correspondingly, the ground state of a rectangular lattice interpolates between the spin liquid and the ordered collinear Néel state [...] Read more.
Quantum Heisenberg chain and square lattices are important paradigms of a low-dimensional magnetism. Their ground states are determined by the strength of quantum fluctuations. Correspondingly, the ground state of a rectangular lattice interpolates between the spin liquid and the ordered collinear Néel state with the partially reduced order parameter. The diversity of additional exchange interactions offers variety of quantum models derived from the aforementioned paradigms. Besides the spatial anisotropy of the exchange coupling, controlling the lattice dimensionality and ground-state properties, the spin anisotropy (intrinsic or induced by the magnetic field) represents another important effect disturbing a rotational symmetry of the spin system. The S = 1/2 easy-axis and easy-plane XXZ models on the square lattice even for extremely weak spin anisotropies undergo Heisenberg-Ising and Heisenberg-XY crossovers, respectively, acting as precursors to the onset of the finite-temperature phase transitions within the two-dimensional Ising universality class (for the easy axis anisotropy) and a topological Berezinskii–Kosterlitz–Thouless phase transition (for the easy-plane anisotropy). Experimental realizations of the S = 1/2 two-dimensional XXZ models in bulk quantum magnets appeared only recently. Partial solutions of the problems associated with their experimental identifications are discussed and some possibilities of future investigations in quantum magnets on the square and rectangular lattice are outlined. Full article
(This article belongs to the Special Issue Molecular Magnets)
Show Figures

Figure 1

16 pages, 12156 KiB  
Article
Entropy and Mutability for the q-State Clock Model in Small Systems
by Oscar A. Negrete, Patricio Vargas, Francisco J. Peña, Gonzalo Saravia and Eugenio E. Vogel
Entropy 2018, 20(12), 933; https://doi.org/10.3390/e20120933 - 6 Dec 2018
Cited by 9 | Viewed by 5572
Abstract
In this paper, we revisit the q-state clock model for small systems. We present results for the thermodynamics of the q-state clock model for values from q = 2 to q = 20 for small square lattices of [...] Read more.
In this paper, we revisit the q-state clock model for small systems. We present results for the thermodynamics of the q-state clock model for values from q = 2 to q = 20 for small square lattices of L × L , with L ranging from L = 3 to L = 64 with free-boundary conditions. Energy, specific heat, entropy, and magnetization were measured. We found that the Berezinskii–Kosterlitz–Thouless (BKT)-like transition appears for q > 5, regardless of lattice size, while this transition at q = 5 is lost for L < 10; for q 4, the BKT transition is never present. We present the phase diagram in terms of q that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the critical temperature T 1 for small systems, and the transition changes such that it is from the FM to the BKT phase for larger systems, while a second phase transition between the BKT and the PM phases occurs at T 2. We also show that the magnetic phases are well characterized by the two-dimensional (2D) distribution of the magnetization values. We made use of this opportunity to carry out an information theory analysis of the time series obtained from Monte Carlo simulations. In particular, we calculated the phenomenological mutability and diversity functions. Diversity characterizes the phase transitions, but the phases are less detectable as q increases. Free boundary conditions were used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size is discussed. Full article
Show Figures

Figure 1

10 pages, 6682 KiB  
Article
The BKT Universality Class in the Presence of Correlated Disorder
by Ilaria Maccari, Lara Benfatto and Claudio Castellani
Condens. Matter 2018, 3(1), 8; https://doi.org/10.3390/condmat3010008 - 9 Mar 2018
Cited by 13 | Viewed by 5435
Abstract
The correct detection of the Berezinskii-Kosterlitz-Thouless (BKT) transition in quasi-two-dimensional superconductors still remains a controversial issue. Its main signatures, indeed, are often at odds with the theoretical expectations. In a recent work (Maccari, I.; Benfatto, L.; Castellani, C. Phys. Rev. B 2017, 96, [...] Read more.
The correct detection of the Berezinskii-Kosterlitz-Thouless (BKT) transition in quasi-two-dimensional superconductors still remains a controversial issue. Its main signatures, indeed, are often at odds with the theoretical expectations. In a recent work (Maccari, I.; Benfatto, L.; Castellani, C. Phys. Rev. B 2017, 96, 060508), we have shown that the presence of spatially correlated disorder plays a key role in this sense because it is the reason underlying the experimentally-observed smearing of the universal superfluid-density jump. In the present paper we closely investigate the effects of correlated disorder on the BKT transition, specifically addressing the issue of whether or not it changes the BKT universality class. Full article
(This article belongs to the Special Issue Proceedings of the conference SuperFluctuations 2017)
Show Figures

Figure 1

Back to TopTop