Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = Bcl9 peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 - 1 Aug 2025
Viewed by 159
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

26 pages, 5701 KiB  
Article
Design of a Multi-Epitope Vaccine Based on Fasciola gigantica Cathepsin B and Evaluation of Immunological Responses in Mice
by Supanan Chansap, Werachon Cheukamud, Thitikul Suthisintong, Pornanan Kueakhai and Narin Changklungmoa
Int. J. Mol. Sci. 2025, 26(14), 6971; https://doi.org/10.3390/ijms26146971 - 20 Jul 2025
Viewed by 404
Abstract
Fasciola gigantica (F. gigantica) is a vital parasite that causes fasciolosis. Liver fluke infections affect livestock animals, and the Fasciola species (Fasciola spp.) vaccine has been tested for many types of these diseases. Currently, computer-based vaccine design represents an attractive [...] Read more.
Fasciola gigantica (F. gigantica) is a vital parasite that causes fasciolosis. Liver fluke infections affect livestock animals, and the Fasciola species (Fasciola spp.) vaccine has been tested for many types of these diseases. Currently, computer-based vaccine design represents an attractive alternative for constructing vaccines. Thus, this study aimed to design the epitopes of linear B-cells (BCL) and helper T lymphocytes (HTL) using an immunoinformatic approach and to investigate in silico and the mice’s immune response. A non-conserved host region, overlapping F. gigantica cathepsin B proteins (FgCatB), and the highest conserved residue percentages were the criteria used to construct epitopes. The GPGPG linker was used to link epitopes in the multi-epitope Fasciola gigantica cathepsin B (MeFgCatB) peptide. The MeFgCatB peptide has high antigenicity, non-allergenicity, non-toxicity, good solubility, and a high-quality structure. The molecular docking between the MeFgCatB peptide and Toll-like receptor 2 (TLR-2) was evaluated. The IgM, IgG1, and IgG2 levels were elevated in silico. In mice, the MeFgCatB peptide was synthesized and administered as an injection. The MeFgCatB-specific IgG1 and IgG2a levels were elevated after week 2, showing a predominance of IgG1. The rFgCatB1, rFgCatB2, and rFgCatB3 were detected using the MeFgCatB peptide-immunized sera. The MeFgCatB peptide-immunized sera were detected at approximately 28–34 kDa in the whole body. In addition, the MeFgCatB immunized sera can positively signal at the caecal epithelium in the NEJ, 4WKJ, and adult stages. In summary, the MeFgCatB peptide is able to induce mixed Th1/Th2 immune responses with Th2 dominating and to detect the native protein of F. gigantica. The MeFgCatB peptide should help against F. gigantica in future experiments. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

22 pages, 3867 KiB  
Article
Neuroprotective Mechanisms of Porcine Brain Enzyme Hydrolysate in Memory Impairment: Multi-Target Strategy Against Amyloid-β-Induced Neurotoxicity
by Sun Myung Yoon, Ye-Won Lee, Min Ju Kim, Jae-Joon Shin, Gun Won Bae and Sunmin Park
Int. J. Mol. Sci. 2025, 26(13), 6030; https://doi.org/10.3390/ijms26136030 - 24 Jun 2025
Viewed by 486
Abstract
This study investigated the potential neuroprotective mechanisms of porcine brain enzyme hydrolysate (PBEH) against Alzheimer’s disease pathology using differentiated SH-SY5Y cells. Differentiated neuronal cells were treated with 40 μM amyloid-β(1-42; Aβ) to induce neurotoxicity, followed by PBEH treatment (12.5–400 μg/mL), Com-A (peptide-based neuroprotective [...] Read more.
This study investigated the potential neuroprotective mechanisms of porcine brain enzyme hydrolysate (PBEH) against Alzheimer’s disease pathology using differentiated SH-SY5Y cells. Differentiated neuronal cells were treated with 40 μM amyloid-β(1-42; Aβ) to induce neurotoxicity, followed by PBEH treatment (12.5–400 μg/mL), Com-A (peptide-based neuroprotective supplement; 200 μg/mL) treatment, and Com-B (herbal extract known for improving memory function; 100 μg/mL) treatment. Key assessments included cell viability, Aβ aggregation in adding 10 μM Aβ, amyloidogenic proteins (APP, BACE), synaptic markers (BDNF, ERK), apoptotic markers (BAX/BCL-2, caspase-3), oxidative stress (reactive oxygen species (ROS)), cholinergic function (ChAT, AChE), MAPK signaling (JNK, p38), and neuroinflammation (IL-1β). PBEH contained high concentrations of amino acids, including L-lysine (32.3 mg/g), L-leucine (42.4 mg/g), L-phenylalanine (30.0 mg/g) and the PSIS peptide (86.9 μg/g). Treatment up to 400 μg/mL showed no cytotoxicity and had cognitive protection effects up to 152% under Aβ stress (p < 0.05). PBEH significantly attenuated Aβ aggregation, decreased APP (28%) and BACE (51%) expression, enhanced synaptic function through increased BDNF, and restored ERK phosphorylation (p < 0.05). Anti-apoptotic effects included a 76% reduction in the BAX/BCL-2 ratio, a 47% decrease in caspase-3, and a 56% reduction in ROS levels. Cholinergic function showed restoration via increased ChAT activity (p < 0.01) and decreased AChE activity (p < 0.05). PBEH reduced IL-1β levels by 70% and suppressed JNK/p38 phosphorylation (p < 0.05). While Com-A enhanced BDNF and Com-B showed anti-inflammatory effects, PBEH demonstrated activity across multiple pathway markers. In conclusion, these findings suggest that PBEH may enable neuronal preservation through multi-pathway modulation, establishing foundational evidence for further mechanistic investigation in cognitive enhancement applications. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Alzheimer’s Disease)
Show Figures

Figure 1

20 pages, 6365 KiB  
Article
Peptide DFCPPGFNTK Mitigates Dry Eye Pathophysiology by Suppressing Oxidative Stress, Apoptosis, Inflammation, and Autophagy: Evidence from In Vitro and In Vivo Models
by Kaishu Deng, Wenan Li, Jinyuan Liang, Zhengdao Chen, Yan Xu, Jingxi Zhang, Yingtong Zhan, Zhiyou Yang, Shaohong Chen, Yun-Tao Zhao and Chuanyin Hu
Curr. Issues Mol. Biol. 2025, 47(6), 441; https://doi.org/10.3390/cimb47060441 - 10 Jun 2025
Viewed by 526
Abstract
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human [...] Read more.
Dry eye is an ophthalmic disease with an intricate pathomechanism, and there are no effective interventions or medications available. We investigated the effects of a peptide, DFCPPGFNTK (DFC), screened from tilapia skin hydrolysate on dry eye and its underlying mechanisms. In vitro, human corneal epithelial cells (HCECs) were challenged by 100 mM NaCl in a hyperosmotic environment. DFC restored the cell viability of HCECs induced by NaCl, reduced the transition of mitochondrial membrane potential, delayed the apoptosis of damaged cells, reduced the production of reactive oxygen (ROS) and malondialdehyde (MDA), increased the activities of superoxide dismutase (SOD) and catalase (CAT), and increased the expression rate of Bcl-2/Bax. Compared to the model group, the protein expression levels of COX-2 and iNOS were down-regulated, the mRNA expression of Tnf-α and Il-6 were decreased, the protein expression levels of Nrf2 and HO-1 were increased, and the levels of autophagy-related proteins p62 and LC3B were regulated. In vivo, the dry eye model was developed by administering eye drops of 0.2% BAC to mice for 14 days. DFC increased tear secretion, changed the morphology of tear fern crystals, prevented corneal epithelial thinning, reduced the loss of conjunctival goblet cells (GCs), and inhibited the apoptosis of mice corneal epithelial cells. In summary, DFC improved dry eye by inhibiting oxidative stress, apoptosis, inflammation, and autophagy. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

14 pages, 3247 KiB  
Article
In Silico Screening and Identification of Functional Peptides from Yak Bone Collagen Hydrolysates: Antioxidant and Osteoblastic Activities
by Yali Wang, Yue Wang, Baishan Fang and Yousi Fu
Int. J. Mol. Sci. 2025, 26(10), 4570; https://doi.org/10.3390/ijms26104570 - 10 May 2025
Viewed by 638
Abstract
Collagen peptides are recognized for their diverse bioactivities; however, efficiently screening potent peptides from hydrolysates remains challenging. This study employed an integrated strategy that combined in silico antioxidant activity prediction and molecular docking to myeloperoxidase (MPO) to screen active peptides derived from yak [...] Read more.
Collagen peptides are recognized for their diverse bioactivities; however, efficiently screening potent peptides from hydrolysates remains challenging. This study employed an integrated strategy that combined in silico antioxidant activity prediction and molecular docking to myeloperoxidase (MPO) to screen active peptides derived from yak bone collagen hydrolysates. Focusing on low molecular weight peptides, containing motifs such as GVM, GLP, GPM, and GPQ, we identified nine antioxidant peptides (KC1–KC9). Their activities were validated through in vitro free radical scavenging assays, with peptide KC7 demonstrating superior performance. Furthermore, peptide KC7 promoted proliferation, differentiation, and mineralization in MC3T3-E1 cells by upregulating osteogenic markers such as Runx2 and osteocalcin, modulating the Wnt/β-catenin and PI3K/Akt pathways, and reducing the Bax/Bcl-2 ratio. These results highlight KC7’s dual capacity to mitigate oxidative stress and potentially reduce apoptotic susceptibility, thereby stimulating osteogenesis. This positions peptide KC7 as a promising candidate for bone regeneration and oxidative stress-related disorders. Moreover, this study underscores the effectiveness of integrating computational and experimental approaches for the discovery of multifunctional natural peptides. Full article
(This article belongs to the Special Issue Food-Derived Bioactive Peptides)
Show Figures

Figure 1

16 pages, 3697 KiB  
Article
D-M159 Synergistically Induces Apoptosis in HeLa Cells Through Endoplasmic Reticulum Stress and Mitochondrial Dysfunction
by Yuanyuan Li, Dingding Li, Zonghan Jiang, Zhihang Yuan, Zhiliang Sun and Leisheng Sun
Int. J. Mol. Sci. 2025, 26(7), 3172; https://doi.org/10.3390/ijms26073172 - 29 Mar 2025
Viewed by 861
Abstract
Pore-forming peptides are promising antimicrobial and anticancer agents due to their membrane selectivity and biodegradability. Our prior work identified peptide M159, which permeabilized synthetic phosphatidylcholine liposomes without mammalian cell toxicity. Here, we report that the D-type variant (D-M159) induces apoptosis in HeLa cells [...] Read more.
Pore-forming peptides are promising antimicrobial and anticancer agents due to their membrane selectivity and biodegradability. Our prior work identified peptide M159, which permeabilized synthetic phosphatidylcholine liposomes without mammalian cell toxicity. Here, we report that the D-type variant (D-M159) induces apoptosis in HeLa cells under starvation. To explore its anticancer mechanism, we analyzed D-M159 cytotoxicity, intracellular uptake, and apoptotic pathways via flow cytometry, confocal microscopy, and Western blot. Calcium dynamics and mitochondrial function were examined via specific labeling and functional assays. Results revealed that D-M159 exhibited starvation-dependent, dose-responsive cytotoxicity and triggered apoptosis in HeLa cells. Mechanistic studies indicated that D-M159 entered the cells via caveolin-dependent and caveolae-dependent endocytosis pathways and induced endoplasmic reticulum stress in HeLa cells by up-regulating proteins such as ATF6, p-IRE1, PERK, GRP78, and CHOP. Meanwhile, D-M159 promoted the expression of IP3R1, GRP75, and VDAC1, which led to mitochondrial calcium iron overload, decreased mitochondrial membrane potential, and increased reactive oxygen species (ROS) generation, thereby activating the mitochondrial apoptotic pathway and inducing the aberrant expression of Bax, Bcl-2, Caspase-9, and Caspase-3. This study showed that D-M159 synergistically induced apoptosis in starved HeLa cells through endoplasmic reticulum stress and mitochondrial dysfunction, demonstrating its potential as a novel anticancer agent. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

22 pages, 16108 KiB  
Article
Marine-Derived Enterococcus faecalis HY0110 as a Next-Generation Functional Food Probiotic: Comprehensive In Vitro and In Vivo Bioactivity Evaluation and Synergistic Fermentation of Periplaneta americana Extract Powder
by Feiyun Huang, Nan Yang, Qingqing Zhang, Cuiling Luo, Jingheng Wang, Yu Yang, Bisong Yue, Peng Chen and Xiuyue Zhang
Foods 2025, 14(7), 1181; https://doi.org/10.3390/foods14071181 - 28 Mar 2025
Viewed by 1085
Abstract
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in [...] Read more.
Addressing the escalating global burdens of inflammatory bowel disease and antimicrobial resistance demanded innovative food-based approaches to fortify gut health and suppress pathogens. We introduced a novel edible probiotic, Enterococcus faecalis HY0110, isolated from marine Thunnus thynnus. Through comprehensive in vitro, in vivo, and metabolomic analyses, we demonstrated its superior antibacterial effects compared to Lactobacillus rhamnosus GG, along with significantly enhanced antioxidant and free-radical scavenging capacities. Notably, elevated acetic acid production strongly correlated with its antimicrobial efficacy (R ≥ 0.999). HY0110 also exerted antiproliferative effects on HT-29 colorectal cancer cells by attenuating β-catenin and BCL-2 expression while upregulating pro-apoptotic markers P62 and c-PARP. In a DSS-induced colitis model, HY0110 alleviated inflammation, restored gut microbial homeostasis, and enhanced deterministic processes in community assembly dynamics. Furthermore, fermenting Periplaneta americana powder with HY0110 triggered extensive metabolic remodeling, notably a 668.73-fold rise in astragaloside A, plus increases in L-Leucyl-L-Alanine, S-lactoylglutathione, and 16,16-dimethyl prostaglandin A1. These shifts diminished harmful components and amplified essential amino acids and peptides to bolster immune modulation, redox balance, and anti-inflammatory responses. This work established a transformative paradigm for utilizing marine probiotics and novel entomological substrates in functional foods, presenting strategic pathways for precision nutrition and inflammatory disease management. Full article
Show Figures

Graphical abstract

15 pages, 2546 KiB  
Article
Unraveling the Molecular Mechanisms of Synthetic Acetyl Hexapeptide in E-Cadherin Activation for Tissue Rejuvenation
by Nikoleta Topouzidou, Androulla N. Miliotou, Danai Nodaraki, Eleftheria Galatou, Christos Petrou and Yiannis Sarigiannis
Cosmetics 2025, 12(2), 48; https://doi.org/10.3390/cosmetics12020048 - 12 Mar 2025
Viewed by 2051
Abstract
Objective: Dermo-cosmetics have significantly advanced, focusing on innovative and effective products such as cosmeceuticals—cosmetics infused with bioactive ingredients for skin benefits. Synthetic peptides are prominent among these bioactive molecules, noted for their enhanced effects in cellular processes related to skin physiology. Specifically, the [...] Read more.
Objective: Dermo-cosmetics have significantly advanced, focusing on innovative and effective products such as cosmeceuticals—cosmetics infused with bioactive ingredients for skin benefits. Synthetic peptides are prominent among these bioactive molecules, noted for their enhanced effects in cellular processes related to skin physiology. Specifically, the glycoprotein E-cadherin plays a crucial role in cellular adhesion and has shown promise in wound healing studies, although its broader cellular functions remain underexplored. Despite their widespread use, many cosmetic peptides lack genetic validation of their effects. This study focuses on the synthetic, amphiphilic acetyl hexapeptide-1, aimed to possess wound healing and anti-aging properties, with a novel exploration of its molecular mechanisms, specifically its effect on the expression of the CDH-1 gene, which encodes E-cadherin—a key protein in cellular adhesion and wound healing. Methods: In this investigation, the acetyl hexapeptide-1 was synthesized in house, followed by cell culture assessment and molecular evaluation. Human hepatocytes HepG2 were exposed to the synthetic hexapeptide to assess cytotoxic effects and examine its impact on gene expression, specifically targeting the wound healing-associated gene CDH-1, as well as apoptosis-related genes BAX, Bcl-2, Caspase-9, and Cyclin D1. Results: No cytotoxic effects were observed in cell cultures. Gene expression analysis revealed a significant increase in E-cadherin expression, along with the NO modulation of apoptosis-related genes (BAX, Bcl-2, Caspase-9) and the cell cycle-related gene Cyclin D1. These findings suggest peptide’s role in enhancing cellular adhesion, without any cytotoxic effects. Conclusions: The findings of this study provide promising insights into the potential molecular properties of synthetic acetyl hexapeptide-1, implying its applicability in cosmeceuticals. These cosmetic peptides hold enormous potential and diverse applications not only within skincare. To fully understand their benefits and expand their scope, additional investigations are warranted to comprehensively explore their molecular mechanisms across a spectrum of applications. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

14 pages, 8221 KiB  
Article
Unraveling the Osteogenic Activity and Molecular Mechanism of an Antioxidant Collagen Peptide in MC3T3-E1 Cells
by Yali Wang, Yue Wang, Xiaoyan Zhuang, Yonghui Zhang, Baishan Fang and Yousi Fu
Nutrients 2025, 17(5), 824; https://doi.org/10.3390/nu17050824 - 27 Feb 2025
Cited by 1 | Viewed by 1032
Abstract
Background: Osteoporosis has become an inevitable health issue with global aging, and the current drug treatments often have adverse side effects, highlighting the need for safer and more effective therapies. Collagen-derived peptides are promising alternatives due to their favorable safety profile and [...] Read more.
Background: Osteoporosis has become an inevitable health issue with global aging, and the current drug treatments often have adverse side effects, highlighting the need for safer and more effective therapies. Collagen-derived peptides are promising alternatives due to their favorable safety profile and biological activity. This study aimed to investigate the osteogenic and anti-apoptotic properties of collagen peptide UU1 (GASGPMGPR) in addition to its antioxidant activity. Methods: The effects of UU1 were evaluated in MC3T3-E1 cells by assessing osteogenic markers, including alkaline phosphatase (ALP), Cyclin D1, runt-related transcription factor 2 (Runx2), and Akt/β-catenin signaling. Western blot analysis quantified collagen I, osteocalcin, and phosphorylated Akt levels. Anti-apoptotic effects were measured via p-Akt levels and the Bax/Bcl-2 ratio. Computational molecular docking was performed to explore the molecular mechanism of UU1 via its interaction with epidermal growth factor receptor (EGFR) and collagen-binding integrin. Results: UU1 treatment promoted cell differentiation, with elevated ALP, Cyclin D1, Runx2, and Akt/β-catenin signaling. Notably, at 0.025 mg/mL, UU1 upregulated the levels of collagen I, osteocalcin, and phosphorylated Akt by 2.14, 3.37, and 1.95 times, respectively, compared to the control. Additionally, UU1 exhibited anti-apoptotic effects, indicated by increased p-Akt levels and a reduced Bax/Bcl-2 ratio. Molecular docking analysis suggested that UU1 could assist the dimerization of EGFR, facilitating downstream signaling transductions and activating collagen-binding integrin. Conclusions: These findings highlight UU1 as a multifunctional peptide with antioxidant, osteogenic, and anti-apoptotic properties, positioning it as a promising candidate for anti-osteoporosis applications in the food and pharmaceutical industries. Full article
Show Figures

Graphical abstract

23 pages, 11450 KiB  
Article
Inhibition Effects and Mechanism Study of rAj-HRP30, a Recombinant Histidine-Rich Peptide from Apostichopus japonicus, on the Viability of Pancreatic Ductal Adenocarcinoma Cells Panc01 and Panc02
by Yuyao Song, Shan Gao, Jingwei Jiang, Yuebin Zhang, Jingyu Zhang, Xiaona Wang, Li Lv, Zunchun Zhou and Jihong Wang
Int. J. Mol. Sci. 2025, 26(4), 1485; https://doi.org/10.3390/ijms26041485 - 11 Feb 2025
Viewed by 1104
Abstract
rAj-HRP30 is a recombinant peptide derived from the wild-type rAj-HRP of Apostichopus japonicus through a gene-shortening mutation. It has a high histidine content (53.3% in its primary structure) and a molecular weight of 3.919 kDa, classifying it as a histidine-rich peptide. The literature [...] Read more.
rAj-HRP30 is a recombinant peptide derived from the wild-type rAj-HRP of Apostichopus japonicus through a gene-shortening mutation. It has a high histidine content (53.3% in its primary structure) and a molecular weight of 3.919 kDa, classifying it as a histidine-rich peptide. The literature reports indicate that human histidine-rich peptides exhibit antitumor activity. Previous research by our group demonstrated similar properties in rAj-HRP, the precursor of rAj-HRP30. Therefore, this study used Panc01 (human) and Panc02 (mouse) cells—highly malignant models with limited targeted therapies—to investigate the antitumor activity and mechanisms of rAj-HRP30 and evaluate its potential for pancreatic cancer treatment. This study designed a gene-shortening strategy for rAj-HRP and artificially synthesized the gene sequence of rAj-HRP30. The cDNA sequence of rAj-HRP30 was cloned into the pET23b vector, and the recombinant plasmid pET23b-HRP30 was transformed into E. coli BL21 for expression. Following IPTG induction, the recombinant peptide was purified using nickel ion affinity chromatography, yielding rAj-HRP30 with a purity exceeding 95%. rAj-HRP30 markedly inhibited the adhesion, migration, and invasion of Panc01 and Panc02 cells. It also disrupted cellular morphology and cytoskeletal structure while inducing apoptosis. These effects were dose-dependent. After confirming the in vitro anticancer activity of rAj-HRP30, this study employed Panc02 cells as a model to investigate its inhibitory mechanisms using Western blot analysis. The results revealed that rAj-HRP30 reduced FGFR1 expression in Panc02 cells and inhibited the downstream FYN and FAK signaling pathways, subsequently blocking the PI3K/AKT signaling and apoptosis pathways. In the apoptotic pathway, rAj-HRP30 was able to downregulate the expression of Bcl-2, Caspase-9, Caspase-3, Caspase-7, and PARP1 and upregulate the expression of Bax, cleaved Caspase-9, cleaved Caspase-3, cleaved Caspase-7, and cleaved-PARP1 to induce apoptosis in Panc02 cells. Furthermore, rAj-HRP30 also downregulated the expression of MMP2 and MMP9, thereby inhibiting the migration and invasion of Panc02 cells. Conclusion: rAj-HRP30 exhibits significant inhibitory effects on pancreatic ductal adenocarcinoma Panc01 and Panc02 cells in vitro. Its mechanism involves FGFR1-related signaling and apoptosis pathways. rAj-HRP30 shows promise as a therapeutic agent targeting FGFR for pancreatic cancer. Full article
(This article belongs to the Special Issue Oxidative Stress and Autophagy in Cancer Cells)
Show Figures

Figure 1

15 pages, 5848 KiB  
Article
Wheat Leaf Rust Effector Pt48115 Localized in the Chloroplasts and Suppressed Wheat Immunity
by Lulu Song, Liping Cui, Hao Li, Na Zhang and Wenxiang Yang
J. Fungi 2025, 11(1), 80; https://doi.org/10.3390/jof11010080 - 20 Jan 2025
Viewed by 1104
Abstract
Wheat leaf rust caused by Puccinia triticina (Pt) is a prevalent disease worldwide, seriously threatening wheat production. Pt acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby [...] Read more.
Wheat leaf rust caused by Puccinia triticina (Pt) is a prevalent disease worldwide, seriously threatening wheat production. Pt acquires nutrients from host cells via haustoria and secretes effector proteins to modify and regulate the expression of host disease resistance genes, thereby facilitating pathogen growth and reproduction. The study of effector proteins is of great significance for clarifying the pathogenic mechanisms of Pt and effective control of leaf rust. Herein, we report a wheat leaf rust candidate effector protein Pt48115 that is highly expressed in the late stages of infection during wheat–Pt interaction. Pt48115 contains a signal peptide with a secretory function and a transit peptide that can translocate Pt48115 to the host chloroplasts. The amino acid sequence polymorphism analysis of Pt48115 in seven different leaf rust races showed that it was highly conserved. Pt48115 inhibited cell death induced by Bcl-2-associated X protein (BAX) from mice or infestans 1 (INF1) from Phytophthora infestans in Nicotiana benthamiana and by DC3000 in wheat, and its 145–175 amino acids of the C-terminal are critical for its function. Furthermore, Pt48115 inhibited callose deposition and reactive oxygen species accumulation in the wheat cultivar Thatcher, demonstrating that it is an effector that enhances Pt virulence by suppressing wheat defense responses. Our findings lay a foundation for future studies on the pathogenesis of Pt during wheat–fungus interaction. Full article
(This article belongs to the Special Issue Rust Fungi)
Show Figures

Figure 1

17 pages, 4193 KiB  
Article
Soybean β-Conglycinin and Cowpea β-Vignin Peptides Inhibit Breast and Prostate Cancer Cell Growth: An In Silico and In Vitro Approach
by Biane Oliveira Philadelpho, Victória Guimarães Santiago, Johnnie Elton Machado dos Santos, Mariana Barros de Cerqueira e Silva, Rone Aparecido De Grandis, Eduardo Maffud Cilli, Fernando Rogério Pavan, Marcelo Santos Castilho, Alessio Scarafoni, Carolina Oliveira de Souza and Ederlan de Souza Ferreira
Foods 2024, 13(21), 3508; https://doi.org/10.3390/foods13213508 - 1 Nov 2024
Viewed by 2008
Abstract
B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate [...] Read more.
B-cell lymphoma 2 protein (Bcl-2) is an important regulator of cell apoptosis. Inhibitors that mirror the structural domain 3 (BH3) of Bcl-2 can activate apoptosis in cancer cells, making them a promising target for anticancer treatment. Hence, the present study aimed to investigate potential BH3-mimetic peptides from two vicilin-derived legume proteins from soybean and cowpea bean. The proteins were isolated and sequentially hydrolyzed with pepsin/pancreatin. Peptides < 3 kDa from vicilin-derived proteins from soybean and cowpea beans experimentally inhibited the growth of cultivated breast and prostate cancer cells. In silico analysis allowed the identification of six potential candidates, all predicted to be able to interact with the BH3 domain. The VIPAAY peptide from the soybean β-conglycinin β subunit showed the highest potential to interact with Bcl-2, comparable to Venetoclax, a well-known anticancer drug. Further experiments are needed to confirm this study’s findings. Full article
(This article belongs to the Special Issue Structural Characterization of Food Proteins and Peptides)
Show Figures

Figure 1

18 pages, 5253 KiB  
Article
Targeted PHA Microsphere-Loaded Triple-Drug System with Sustained Drug Release for Synergistic Chemotherapy and Gene Therapy
by Shuo Wang, Chao Zhang, Huandi Liu, Xueyu Fan, Shuangqing Fu, Wei Li and Honglei Zhang
Nanomaterials 2024, 14(20), 1657; https://doi.org/10.3390/nano14201657 - 16 Oct 2024
Viewed by 1780
Abstract
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of [...] Read more.
The combination of paclitaxel (PTX) with other chemotherapy drugs (e.g., gemcitabine, GEM) or genetic drugs (e.g., siRNA) has been shown to enhance therapeutic efficacy against tumors, reduce individual drug dosages, and prevent drug resistance associated with single-drug treatments. However, the varying solubility of chemotherapy drugs and genetic drugs presents a challenge in co-delivering these agents. In this study, nanoparticles loaded with PTX were prepared using the biodegradable polymer material poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). These nanoparticles were surface-modified with target proteins (Affibody molecules) and RALA cationic peptides to create core-shell structured microspheres with targeted and cationic functionalization. A three-drug co-delivery system (PTX@PHBHHx-ARP/siRNAGEM) were developed by electrostatically adsorbing siRNA chains containing GEM onto the microsphere surface. The encapsulation efficiency of PTX in the nanodrug was found to be 81.02%, with a drug loading of 5.09%. The chemogene adsorption capacity of siRNAGEM was determined to be 97.3%. Morphological and size characterization of the nanodrug revealed that PTX@PHBHHx-ARP/siRNAGEM is a rough-surfaced microsphere with a particle size of approximately 150 nm. This nanodrug exhibited targeting capabilities toward BT474 cells with HER2 overexpression while showing limited targeting ability toward MCF-7 cells with low HER2 expression. Results from the MTT assay demonstrated that PTX@PHBHHx-ARP/siRNAGEM exhibits high cytotoxicity and excellent combination therapy efficacy compared to physically mixed PTX/GEM/siRNA. Additionally, Western blot analysis confirmed that siRNA-mediated reduction of Bcl-2 expression significantly enhanced cell apoptosis mediated by PTX or GEM in tumor cells, thereby increasing cell sensitivity to PTX and GEM. This study presents a novel targeted nanosystem for the co-delivery of chemotherapy drugs and genetic drugs. Full article
Show Figures

Figure 1

19 pages, 8961 KiB  
Article
Novel Insights into Ethanol-Soluble Oyster Peptide–Zinc-Chelating Agents: Structural Characterization, Chelation Mechanism, and Potential Protection on MEHP-Induced Leydig Cells
by Zhen Lu, Qianqian Huang, Xiaoming Qin, Fujia Chen, Enzhong Li and Haisheng Lin
Mar. Drugs 2024, 22(10), 465; https://doi.org/10.3390/md22100465 - 10 Oct 2024
Viewed by 2085
Abstract
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following [...] Read more.
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following processes: zinc-immobilized affinity chromatography (IMAC-Zn2+), liquid chromatography–mass spectrometry technology (LC-MS/MS) analysis, molecular docking, molecular dynamic simulation, and structural characterization. Then, the Zn-binding peptide (PEP) named Glu—His—Ala—Pro—Asn—His—Asp—Asn—Pro—Gly—Asp—Leu (EHAPNHDNPGDL) was identified. EHAPNHDNPGDL showed the highest zinc-chelating ability of 49.74 ± 1.44%, which was higher than that of the ethanol-soluble oyster peptides (27.50 ± 0.41%). In the EHAPNHDNPGDL-Zn complex, Asn-5, Asp-7, Asn-8, His-2, and Asp-11 played an important role in binding to the zinc ion. Additionally, EHAPNHDNPGDL-Zn was found to increase the cell viability, significantly increase the relative activity of antioxidant enzymes and testosterone content, and decrease malondialdehyde (MDA) content in MEHP-induced TM3 cells. The results also indicated that EHAPNHDNPGDL-Zn could alleviate MEHP-induced apoptosis by reducing the protein level of p53, p21, and Bax, and increasing the protein level of Bcl-2. These results indicate that the zinc-chelating peptides derived from oyster peptides could be used as a potential dietary zinc supplement. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Graphical abstract

16 pages, 3571 KiB  
Article
Characterization and Expression Analysis of the C-Type Lectin Ladderlectin in Litopenaeus vannamei Post-WSSV Infection
by Qian Xue, Bingbing Yang, Kun Luo, Sheng Luan, Jie Kong, Qiang Fu, Jiawang Cao, Baolong Chen, Ping Dai, Qun Xing, Xupeng Li and Xianhong Meng
Biology 2024, 13(10), 758; https://doi.org/10.3390/biology13100758 - 24 Sep 2024
Viewed by 1420
Abstract
C-type lectins are known for agglutination activity and play crucial roles in regulating the prophenoloxidase (proPO) activation system, enhancing phagocytosis and encapsulation, synthesizing antimicrobial peptides, and mediating antiviral immune responses. This work cloned a C-type lectin, ladderlectin (LvLL), from Litopenaeus vannamei [...] Read more.
C-type lectins are known for agglutination activity and play crucial roles in regulating the prophenoloxidase (proPO) activation system, enhancing phagocytosis and encapsulation, synthesizing antimicrobial peptides, and mediating antiviral immune responses. This work cloned a C-type lectin, ladderlectin (LvLL), from Litopenaeus vannamei. LvLL comprised a 531 bp open reading frame (ORF) that encoded 176 amino acids. The predicted LvLL protein included a signal peptide and a CLECT domain. LvLL was predicted to feature a transmembrane region, suggesting it may be a transmembrane protein. LvLL was predominantly expressed in the shrimp’s hepatopancreas. After WSSV infection, LvLL expression in the hepatopancreas increased significantly by 11.35-fold after 228 h, indicating a general upregulation. Knockdown of LvLL resulted in a significant decrease in WSSV viral load and a notable increase in shrimp survival rates. Additionally, knockdown of LvLL led to a significant downregulation of apoptosis-related genes Bcl-2 and caspase 8 and a significant upregulation of p53 and proPO in WSSV-infected shrimp. This study showed that LvLL played a vital role in the interaction between L. vannamei and WSSV. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

Back to TopTop