Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = Baeyer-Villiger reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 10506 KiB  
Review
HOF•CH3CN—The Most Potent Oxygen Transfer Agent for a Large Variety of Organic Molecules
by Shlomo Rozen
Molecules 2025, 30(6), 1248; https://doi.org/10.3390/molecules30061248 - 11 Mar 2025
Viewed by 1359
Abstract
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here [...] Read more.
The complex of hypofluorous acid with acetonitrile—HOF•CH3CN—is the only substance possessing a truly electrophilic oxygen. This fact makes it the only tool suitable for transferring oxygen atoms to sites that are not accessible to this vital element. We will review here most of the known organic reactions with this complex, which is easily made by bubbling dilute fluorine through aqueous acetonitrile. The reactions of HOF•CH3CN with double bonds produce epoxides in a matter of minutes at room temperature, even when the olefin is electron-depleted and cannot be epoxidized by any other means. The electrophilic oxygen can also substitute deactivated tertiary C-H bonds via electrophilic substitution, proceeding with full retention of configuration. Using this complex enables transferring oxygen atoms to a carbonyl and oxidizing alcohols and ethers to ketones. The latter could be oxidized to esters via the Baeyer–Villiger reaction, proving once again the validity of the original Baeyer mechanism. Azines are usually avoided as protecting groups for carbonyl since their removal is problematic. HOF•CH3CN solves this problem, as it is very effective in recreating carbonyls from the respective azines. A bonus of the last reaction is the ability to replace the common 16O isotope of the carbonyl with the heavier 17O or 18O in the simplest and cheapest possible way. The reagent can transfer oxygen to most nitrogen-containing molecules. Thus, it turns practically any azide or amine into nitro compounds, including amino acids. This helps to produce novel α-alkylamino acids. It also attaches oxygen atoms to most tertiary nitrogen atoms, including certain aromatic ones, which could not be obtained before. HOF•CH3CN was also used to make five-member cyclic poly-NO derivatives, many of them intended to be highly energetic materials. The nucleophilic sulfur atom also reacts very smoothly with the reagent in a wide range of compounds to form sulfone derivatives. While common sulfides are easily converted to sulfones by many orthodox reagents, electron-depleted ones, such as Rf-S-Ar, can be oxidized to Rf-SO2-Ar only with this reagent. The mild reaction conditions also make it possible to synthesize a whole range of novel episulfones and offer, as a bonus, a very easy way to make SxO2, x being any isotope variation of oxygen. These mild conditions also helped to oxidize thiophene to thiophen-S,S-dioxide without the Diels–Alder dimerizations, which usually follow such dioxide formation. The latter reaction was a prelude to a series of preparations of [all]-S,S-dioxo-oligothiophenes, which are important for the efficient preparation of active layers in field-effect transistors (FETs), as such oligomers are considered to be important for organic semiconductors for light-emitting diodes (LEDs). Several types of these oligothiophenes were prepared, including partly or fully oxygenated ones, star-oligothiophenes, and fused ones. Several [all]-S,S-dioxo-oligo-thienylenevinylenes were also successfully prepared despite the fact that they also possess carbon–carbon p centers in their molecules. All oxygenated derivatives have been prepared for the first time and have lower HOMO-LUMO gaps compared to their parent compounds. HOF•CH3CN was also used to oxidize the surface of the nanoparticles of oligothiophenes, leaving the core of the nanoparticle unchanged. Several highly interesting features have been detected, including their ability to photostimulate the retinal neurons, especially the inner retinal ones. HOF•CH3CN was also used on elements other than carbon, such as selenium and phosphor. Various selenides were oxidized to the respective selenodioxide derivatives (not a trivial task), while various phosphines were converted efficiently to the corresponding phosphine oxides. Full article
(This article belongs to the Special Issue Featured Reviews in Organic Chemistry 2025)
Show Figures

Graphical abstract

12 pages, 2952 KiB  
Article
3D Hierarchical Composites of Hydrotalcite-Coated Carbon Microspheres as Catalysts in Baeyer–Villiger Oxidation Reactions
by Marta Estrada-Ruiz, Daniel Cosano, Dolores Esquivel, Francisco J. Romero-Salguero and José Rafael Ruiz
Crystals 2024, 14(10), 878; https://doi.org/10.3390/cryst14100878 - 5 Oct 2024
Cited by 1 | Viewed by 1252
Abstract
The use of heterogeneous catalysts is fundamental in the search for sustainable chemical processes. Research on hierarchical materials is a growing field aimed at optimizing the synthesis of catalysts. In this work, layered materials with metals of different cationic ratios and three-dimensional hierarchical [...] Read more.
The use of heterogeneous catalysts is fundamental in the search for sustainable chemical processes. Research on hierarchical materials is a growing field aimed at optimizing the synthesis of catalysts. In this work, layered materials with metals of different cationic ratios and three-dimensional hierarchical structures have been synthesized in a simple and easy way using carbon spheres as support. All materials were characterized with various techniques such as XRF, elemental analysis XRD, FT-IR, SEM, and TEM to study their composition and structure. Finally, these materials were used in the Baeyer–Villiger reaction, which was carried out under optimized conditions. The results showed that the metal ratio was an important factor in the coating process, affecting the catalytic capacity of the materials. Full article
Show Figures

Figure 1

20 pages, 3618 KiB  
Article
Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer
by Gabriel Robert and J. Richard Wagner
Antioxidants 2024, 13(10), 1194; https://doi.org/10.3390/antiox13101194 - 1 Oct 2024
Cited by 4 | Viewed by 2055
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally [...] Read more.
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2′-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO by PRA onto Asc may have beneficial consequences since it directly converts ROO into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid. Full article
(This article belongs to the Section Aberrant Oxidation of Biomolecules)
Show Figures

Graphical abstract

18 pages, 2221 KiB  
Article
Comparative Genome-Wide Analysis Underscores the Rapid Expansion of Cytochrome P450s for Secondary Metabolism in the Mycoparasite Pezizomycetes
by Puleng Rosinah Syed, Tiara Padayachee, Philasande Gamede, Bridget Valeria Zinhle Nkosi, David R. Nelson, Rajshekhar Karpoormath and Khajamohiddin Syed
Microbiol. Res. 2024, 15(3), 1251-1268; https://doi.org/10.3390/microbiolres15030084 - 20 Jul 2024
Viewed by 1355
Abstract
Mycoparasite secondary metabolites control fungal infections or diseases in agriculture and human health. Among genes involved in synthesizing secondary metabolites, cytochrome P450 monooxygenases (CYPs/P450s) play a key role in synthesizing and attributing diversity to the secondary metabolites. Despite the importance of P450s, a [...] Read more.
Mycoparasite secondary metabolites control fungal infections or diseases in agriculture and human health. Among genes involved in synthesizing secondary metabolites, cytochrome P450 monooxygenases (CYPs/P450s) play a key role in synthesizing and attributing diversity to the secondary metabolites. Despite the importance of P450s, a comparative analysis of P450s in mycoparasites has yet to be reported. This study is aimed at addressing this research gap. Genome-wide analysis of P450s in 43 fungi representing six fungal phyla and three distinct lifestyles, such as mycoparasitic (24 species), saprophytic (5 species), and ectomycorrhizal (14 species), revealed the expansion of P450s in Pezizomycete mycoparasites for the synthesis of secondary metabolites. The number of P450s and their families and subfamilies, the number of secondary-metabolite biosynthetic gene clusters (SMBGCs), and the number of P450s that are part of these SMBGCs were found to be highest in Pezizomycete mycoparasites compared to their counterparts of saprophytes and ectomycorrhiza, indicating P450s also play a key role in mycoparasitism. An analysis of P450 location as part of SMBGCs and the available literature on Pezizomycete P450s revealed that P450s play a key role in the synthesis of anti-fungal secondary metabolites such as trichothecene sesquiterpene, harzianum A, heptelidic acid, and gliotoxin. The mycoparasite Trichoderma virens Tv29.8 P450 CYP68Q3 is found to be a bifunctional enzyme with epoxidation and oxidation capability, and CYP5117A3 performs a Baeyer–Villiger oxidation reaction with regioselectivity. This study serves as a reference for future annotation of P450s in mycoparasites. Full article
Show Figures

Figure 1

15 pages, 3604 KiB  
Article
Aerosol-Assisted Synthesis of Sn–Si Composite Oxide Microspheres with the Hollow Mesoporous Structure for Baeyer–Villiger Oxidation
by Qingrun Meng, Xiaoxu Gao, Ting Sun, Yu Guo and Huimin Liu
Catalysts 2023, 13(12), 1460; https://doi.org/10.3390/catal13121460 - 22 Nov 2023
Cited by 2 | Viewed by 1395
Abstract
Tetravalent Sn species, such as zeolite or oxide, possess Lewis acidic properties, and thus exhibit prominent catalytic performance in several reactions when they are incorporated into the silica framework. Unfortunately, the synthesis of Sn-based zeolite (Sn–Beta) usually suffers from several drawbacks, including a [...] Read more.
Tetravalent Sn species, such as zeolite or oxide, possess Lewis acidic properties, and thus exhibit prominent catalytic performance in several reactions when they are incorporated into the silica framework. Unfortunately, the synthesis of Sn-based zeolite (Sn–Beta) usually suffers from several drawbacks, including a long crystallization time, limited framework Sn content and complex synthesis steps. Sn-based composite oxides are favored in the industry, due to their simple synthesis steps and easy control of their pore structure, morphology and Sn content. In this work, an aerosol-assisted method is used to prepare Sn–Si composite oxide microspheres, using CTAB as template. The method is based on the formation of aerosol from a solution of Sn, Si precursors and a template (CTAB). The introduction of CTAB causes the surface tension of the atomized droplets to decrease. During the fast drying of the droplets, the Sn–Si composite oxide microspheres with a concave hollow morphology were first formed. After calcination, calibrated mesopores of 2.3 nm were also formed, with a specific surface area of 1260 m2/g and a mesopores ratio of 0.84. Sn species are incorporated in the silica network, mainly in the form of single sites. The resulting material proved to exhibit high catalytic performances in the Baeyer–Villiger oxidation of 2-adamantanone by using H2O2 as green oxidant, which was mainly attributed to the enhancement of the access to the catalytic tin sites through both the continuous hollow and mesopore channels, which have a 52% conversion of 2-adamantanone after 3 h of reaction. This method is simple, convenient, cheap and can be continuously produced, meaning it has broad potential for industrial application. Full article
(This article belongs to the Special Issue Catalysis for Energy Transformation Reactions)
Show Figures

Graphical abstract

21 pages, 7385 KiB  
Article
Catalytic Oxidation of Benzoins by Hydrogen Peroxide on Nanosized HKUST-1: Influence of Substituents on the Reaction Rates and DFT Modeling of the Reaction Path
by Darya V. Yurchenko, Anton S. Lytvynenko, Emir N. Abdullayev, Nina V. Peregon, Konstantin S. Gavrilenko, Alina O. Gorlova, Sergey V. Ryabukhin, Dmitriy M. Volochnyuk and Sergey V. Kolotilov
Molecules 2023, 28(2), 747; https://doi.org/10.3390/molecules28020747 - 11 Jan 2023
Cited by 4 | Viewed by 2239
Abstract
In this research, the oxidation of a series of benzoins, R-C(=O)-CH(OH)-R, where R = phenyl, 4-methoxyphenyl, 4-bromophenyl, and 2-naphthyl, by hydrogen peroxide in the presence of nanostructured HKUST-1 (suspension in acetonitrile/water mixture) was studied. The respective benzoic acids were the only products of [...] Read more.
In this research, the oxidation of a series of benzoins, R-C(=O)-CH(OH)-R, where R = phenyl, 4-methoxyphenyl, 4-bromophenyl, and 2-naphthyl, by hydrogen peroxide in the presence of nanostructured HKUST-1 (suspension in acetonitrile/water mixture) was studied. The respective benzoic acids were the only products of the reactions. The initial average reaction rates were experimentally determined at different concentrations of benzoin, H2O2 and an effective concentration of HKUST-1. The sorption of the isotherms of benzoin, dimethoxybenzoin and benzoic acid on HKUST-1, as well as their sorption kinetic curves, were measured. The increase in H2O2 concentration expectedly led to an acceleration of the reaction. The dependencies of the benzoin oxidation rates on the concentrations of both benzoin and HKUST-1 passed through the maxima. This finding could be explained by a counterplay between the increasing reaction rate and increasing benzoin sorption on the catalyst with the increase in the concentration. The electronic effect of the substituent in benzoin had a significant influence on the reaction rate, while no relation between the size of the substrate molecule and the rate of its oxidation was found. It was confirmed by DFT modeling that the reaction could pass through the Baeyer–Villiger mechanism, involving an attack by the HOO anion on the C atom of the activated C=O group. Full article
(This article belongs to the Special Issue Theoretical Investigations of Reaction Mechanisms II)
Show Figures

Graphical abstract

16 pages, 7180 KiB  
Article
Oxidation of Cyclohexanone with Peracids—A Straight Path to the Synthesis of ε-Caprolactone Oligomers
by Jakub Bińczak, Anna Szelwicka, Agnieszka Siewniak, Krzysztof Dziuba and Anna Chrobok
Materials 2022, 15(19), 6608; https://doi.org/10.3390/ma15196608 - 23 Sep 2022
Cited by 3 | Viewed by 2631
Abstract
During Baeyer–Villiger (BV) oxidation of cyclohexanone with peracids, oligo(ε-caprolactone) (OCL) may be formed. In this work, a two-step one-pot method for the synthesis of OCL involving the BV oxidation of cyclohexanone with peracids and then oligomerization of the resulting ε-caprolactone has been developed. [...] Read more.
During Baeyer–Villiger (BV) oxidation of cyclohexanone with peracids, oligo(ε-caprolactone) (OCL) may be formed. In this work, a two-step one-pot method for the synthesis of OCL involving the BV oxidation of cyclohexanone with peracids and then oligomerization of the resulting ε-caprolactone has been developed. The process was carried out in two solvents: toluene and cyclohexane. Based on the studies, it was determined that the increased temperature (45–55 °C) and the longer reaction time (4 h) favor the formation of OCls. Among the tested peracids (perC8-C12), perC10 turned out to be the most effective oxidant. Moreover, the obtained oligomers were characterized by means of NMR, MS MALDI TOF, and TGA analyses, which made it possible to determine the structure of oligomers (length and terminal groups of the chains). Additionally, the oligomers obtained after the distillation of the reaction mixture were analyzed. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

52 pages, 14174 KiB  
Review
Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks
by César A. Godoy, Juan S. Pardo-Tamayo and Oveimar Barbosa
Int. J. Mol. Sci. 2022, 23(17), 9933; https://doi.org/10.3390/ijms23179933 - 1 Sep 2022
Cited by 43 | Viewed by 6144
Abstract
Processes involving lipases in obtaining active pharmaceutical ingredients (APIs) are crucial to increase the sustainability of the industry. Despite their lower production cost, microbial lipases are striking for their versatile catalyzing reactions beyond their physiological role. In the context of taking advantage of [...] Read more.
Processes involving lipases in obtaining active pharmaceutical ingredients (APIs) are crucial to increase the sustainability of the industry. Despite their lower production cost, microbial lipases are striking for their versatile catalyzing reactions beyond their physiological role. In the context of taking advantage of microbial lipases in reactions for the synthesis of API building blocks, this review focuses on: (i) the structural origins of the catalytic properties of microbial lipases, including the results of techniques such as single particle monitoring (SPT) and the description of its selectivity beyond the Kazlauskas rule as the “Mirror-Image Packing” or the “Key Region(s) rule influencing enantioselectivity” (KRIE); (ii) immobilization methods given the conferred operative advantages in industrial applications and their modulating capacity of lipase properties; and (iii) a comprehensive description of microbial lipases use as a conventional or promiscuous catalyst in key reactions in the organic synthesis (Knoevenagel condensation, Morita–Baylis–Hillman (MBH) reactions, Markovnikov additions, Baeyer–Villiger oxidation, racemization, among others). Finally, this review will also focus on a research perspective necessary to increase microbial lipases application development towards a greener industry. Full article
(This article belongs to the Special Issue Biocatalysis: An Eco-Friendly Scenario for the Manufacturing of APIs)
Show Figures

Graphical abstract

15 pages, 3042 KiB  
Article
Comparative Physicochemical and Catalytic Study of Nanocrystalline Mg-Al Hydrotalcites Precipitated with Inorganic and Organic Bases
by Robert Karcz, Bogna D. Napruszewska, Anna Walczyk, Joanna Kryściak-Czerwenka, Dorota Duraczyńska, Wojciech Płaziński and Ewa M. Serwicka
Nanomaterials 2022, 12(16), 2775; https://doi.org/10.3390/nano12162775 - 13 Aug 2022
Cited by 11 | Viewed by 1960
Abstract
Synthetic Mg-Al hydrotalcites (HT) are environmentally friendly solid bases frequently applied as catalysts in base catalyzed reactions. The most common synthesis method, using NaOH as precipitant, is problematized by the possibility of introducing undesired Na contamination. Alkali-free synthesis is usually performed with NH [...] Read more.
Synthetic Mg-Al hydrotalcites (HT) are environmentally friendly solid bases frequently applied as catalysts in base catalyzed reactions. The most common synthesis method, using NaOH as precipitant, is problematized by the possibility of introducing undesired Na contamination. Alkali-free synthesis is usually performed with NH3aq, a precipitant which is less efficient in incorporation of Mg into HT lattice. In the present work, organic bases, tetrabutylammonium hydroxide and choline hydroxide, were successfully employed as precipitating agents in a new alkali-free route of Mg-Al HT synthesis. HT solids were also obtained with inorganic bases, NH3aq and NaOH. Characterization with X-ray diffraction, elemental analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy and thermogravimetry/differential scanning calorimetry, confirmed the formation of nanocrystalline HT compounds with all employed bases. HT prepared with NH3aq exhibited an Mg deficit, which was detrimental to the catalytic activity in base catalyzed reactions. The effect was attributed to the tendency of Mg2+ to form ammine complexes, a conclusion supported by quantum mechanical calculations. HT prepared with NaOH showed the highest crystallinity, which was unfavorable for catalytic application. The addition of starch to the synthesis medium provided a means by which to diminish the crystal size of all HT precipitates. Catalytic tests of the Baeyer–Villiger oxidation of cyclohexanone demonstrated that the highest yields of ε-caprolactone were obtained with fine-crystalline HT catalysts prepared with organic bases in the presence of a starch template. Full article
Show Figures

Figure 1

12 pages, 5302 KiB  
Article
Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide
by Daniel Cosano, Dolores Esquivel, Francisco J. Romero-Salguero, César Jiménez-Sanchidrián and José Rafael Ruiz
Catalysts 2022, 12(6), 629; https://doi.org/10.3390/catal12060629 - 8 Jun 2022
Cited by 3 | Viewed by 2286
Abstract
The development of effective, environmentally friendly catalysts for the Baeyer–Villiger reaction is becoming increasingly important in applied catalysis. In this work, we synthesized a 3D composite consisting of silica spheres coated with Mg/Al hydrotalcite with much better textural properties than its 2D counterparts. [...] Read more.
The development of effective, environmentally friendly catalysts for the Baeyer–Villiger reaction is becoming increasingly important in applied catalysis. In this work, we synthesized a 3D composite consisting of silica spheres coated with Mg/Al hydrotalcite with much better textural properties than its 2D counterparts. In fact, the 3D solid outperformed a 2D-layered hydrotalcite as catalyst in the Baeyer–Villiger reaction of cyclic ketones with H2O2/benzonitrile as oxidant. The 3D catalyst provided excellent conversion and selectivity; it was also readily filtered off the reaction mixture. The proposed reaction mechanism, which involves adsorption of the reactants on the hydrotalcite surface, is consistent with the catalytic activity results. Full article
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Newly-Obtained Two Organic-Inorganic Hybrid Compounds Based on Potassium Peroxidomolybdate and Dicarboxypyridinic Acid: Structure Determination, Catalytic Properties, and Cytotoxic Effects of Eight Peroxidomolybdates in Colon and Hepatic Cancer Cells
by Adrianna Sławińska, Małgorzata Tyszka-Czochara, Paweł Serda, Marcin Oszajca, Małgorzata Ruggiero-Mikołajczyk, Katarzyna Pamin, Robert Karcz and Wiesław Łasocha
Materials 2022, 15(1), 241; https://doi.org/10.3390/ma15010241 - 29 Dec 2021
Cited by 3 | Viewed by 2086
Abstract
Two new organic-inorganic hybrid compounds containing dicarboxylic pyridine acids have been obtained and characterized. Both compounds are potassium oxidodiperoxidomolybdates with 2,6-dicarboxylicpyridine acid or 3,5-dicarboxylicpyridine acid moieties, respectively. The chemical formula for the first one is C14H7K3Mo2 [...] Read more.
Two new organic-inorganic hybrid compounds containing dicarboxylic pyridine acids have been obtained and characterized. Both compounds are potassium oxidodiperoxidomolybdates with 2,6-dicarboxylicpyridine acid or 3,5-dicarboxylicpyridine acid moieties, respectively. The chemical formula for the first one is C14H7K3Mo2N2O18 denoted as K26dcpa, the second C7H4K1Mo1N1O11.5K35dcpa. Their crystal structures were determined using single crystal (K26dcpa) or XRPD—X-ray powder diffraction techniques (K35dcpa). The purity of the compounds was confirmed by elemental analysis. Their thermal stability was determined with the use of non-ambient XRPD. In addition, they were examined by IR spectroscopy methods and catalytic activity studies were performed for them. Catalytic tests in the Baeyer–Villiger reaction and biological activity have been performed for eight compounds: K26dcpa, K35dcpa, and six peroxidomolybdates previously obtained by our group. The anti-proliferative activity of peroxidomolybdenum compounds after 24 h of incubation was studied in vitro against three selected human tumor cell lines (SW620, LoVo, HEP G2) and normal human cells (fibroblasts). The data were expressed as IC50 values. The structure of the investigated oxodiperoxomolybdenum compounds was shown to have influence on the biological activity and catalytic properties. It has been shown that the newly-obtained compound, K35dcpa, is a very efficient catalyst in the Baeyer–Villiger reaction. The best biological activity results were obtained for Na-picO (previously obtained by us), which is a very effective anti-cancer agent towards SW 620 colorectal adenocarcinoma cells. Full article
(This article belongs to the Special Issue Biochemical/Inorganic Hybrid Materials)
Show Figures

Graphical abstract

14 pages, 797 KiB  
Article
Unprecedented Biodegradable Cellulose-Derived Polyesters with Pendant Citronellol Moieties: From Monomer Synthesis to Enzymatic Degradation
by Aihemaiti Kayishaer, Sami Fadlallah, Louis M. M. Mouterde, Aurélien A. M. Peru, Yasmine Werghi, Fanny Brunois, Quentin Carboué, Michel Lopez and Florent Allais
Molecules 2021, 26(24), 7672; https://doi.org/10.3390/molecules26247672 - 18 Dec 2021
Cited by 12 | Viewed by 3360
Abstract
Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,β-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free [...] Read more.
Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,β-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as −42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme. Full article
(This article belongs to the Special Issue Sustainable Chemistry in France)
Show Figures

Graphical abstract

34 pages, 8556 KiB  
Review
The Isoenzymic Diketocamphane Monooxygenases of Pseudomonas putida ATCC 17453—An Episodic History and Still Mysterious after 60 Years
by Andrew Willetts
Microorganisms 2021, 9(12), 2593; https://doi.org/10.3390/microorganisms9122593 - 15 Dec 2021
Cited by 4 | Viewed by 2516
Abstract
Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the [...] Read more.
Researching the involvement of molecular oxygen in the degradation of the naturally occurring bicyclic terpene camphor has generated a six-decade history of fascinating monooxygenase biochemistry. While an extensive bibliography exists reporting the many varied studies on camphor 5-monooxygenase, the initiating enzyme of the relevant catabolic pathway in Pseudomonas putida ATCC 17453, the equivalent recorded history of the isoenzymic diketocamphane monooxygenases, the enzymes that facilitate the initial ring cleavage of the bicyclic terpene, is both less extensive and more enigmatic. First referred to as ‘ketolactonase—an enzyme for cyclic lactonization’—the enzyme now classified as 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) holds a special place in the history of oxygen-dependent biochemistry, being the first biocatalyst confirmed to undertake a biooxygenation reaction equivalent to the peracid-catalysed Baeyer–Villiger chemical oxidation first reported in the late 19th century. However, following that auspicious beginning, the biochemistry of EC 1.14.14.108, and its isoenzymic partner 3,6-diketocamphane 1,6-monooxygenase (EC 1.14.14.155) was dogged for many years by the mistaken belief that the enzymes were true flavoproteins that function with a tightly-bound flavin cofactor in the active site. This misconception led to a number of erroneous interpretations of relevant experimental data. It is only in the last decade, initially as the result of pure serendipity, that these enzymes have been confirmed to be members of a relatively recently discovered class of oxygen-dependent enzymes, the flavin-dependent two-component monooxygenases. This has promoted a renaissance of interest in the enzymes, resulting in programmes of research that have significantly expanded current knowledge of both their mode of action and regulation in camphor-grown P. putida ATCC 17453. However, some features of the biochemistry of the isoenzymic diketocamphane monooxygenases remain currently unexplained. It is the episodic history of these enzymes and some of what remains unresolved that are the principal subjects of this review. Full article
(This article belongs to the Special Issue Microbial Biocatalysis and Biodegradation)
Show Figures

Figure 1

13 pages, 4753 KiB  
Article
Fine Crystalline Mg-Al Hydrotalcites as Catalysts for Baeyer-Villiger Oxidation of Cyclohexanone with H2O2
by Robert Karcz, Bogna D. Napruszewska, Alicja Michalik, Joanna Kryściak-Czerwenka, Dorota Duraczyńska and Ewa M. Serwicka
Catalysts 2021, 11(12), 1493; https://doi.org/10.3390/catal11121493 - 8 Dec 2021
Cited by 10 | Viewed by 2991
Abstract
The catalytic activity of Mg-Al hydrotalcite (HT) materials in base-catalyzed reactions is known to be promoted by the low crystallinity of the HT solid. In the present work, two routes enabling the preparation of finely crystalline Mg-Al HT materials were explored: (1) the [...] Read more.
The catalytic activity of Mg-Al hydrotalcite (HT) materials in base-catalyzed reactions is known to be promoted by the low crystallinity of the HT solid. In the present work, two routes enabling the preparation of finely crystalline Mg-Al HT materials were explored: (1) the inverse microemulsion technique, and (2) co-precipitation in the presence of starch. Carbonate, chloride and bromide forms of HT were prepared, examined with X-ray diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy and infrared spectroscopy, and used as catalysts in the Baeyer–Villiger oxidation of cyclohexanone to ε-caprolactone with a H2O2/acetonitrile system. The bromide forms proved significantly less active than the chlorides and carbonates, as they promoted nonselective consumption of H2O2. The fine crystalline materials were more active than the more crystalline HT references obtained by conventional co-precipitation. Catalysts prepared by inverse microemulsion were less crystalline and more active than the starch-templated ones, but suffered stronger deactivation by the acidic reaction environment. Alkalization of the reaction medium with NaHCO3 stabilized the HT materials and increased the ε-caprolactone yield, which became comparable for both types of fine crystalline catalysts—thus pointing to the synthesis involving a simple and cheap starch templating approach as being a particularly attractive one. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

18 pages, 3099 KiB  
Article
Chemo-Enzymatic Baeyer–Villiger Oxidation Facilitated with Lipases Immobilized in the Supported Ionic Liquid Phase
by Anna Szelwicka, Anna Wolny, Miroslawa Grymel, Sebastian Jurczyk, Slawomir Boncel and Anna Chrobok
Materials 2021, 14(13), 3443; https://doi.org/10.3390/ma14133443 - 22 Jun 2021
Cited by 11 | Viewed by 3277
Abstract
A novel method for chemo-enzymatic Baeyer–Villiger oxidation of cyclic ketones in the presence of supported ionic liquid-like phase biocatalyst was designed. In this work, multi-walled carbon nanotubes were applied as a support for ionic liquids which were anchored to nanotubes covalently by amide [...] Read more.
A novel method for chemo-enzymatic Baeyer–Villiger oxidation of cyclic ketones in the presence of supported ionic liquid-like phase biocatalyst was designed. In this work, multi-walled carbon nanotubes were applied as a support for ionic liquids which were anchored to nanotubes covalently by amide or imine bonds. Next, lipases B from Candida antarctica, Candida rugosa, or Aspergillus oryzae were immobilized on the prepared materials. The biocatalysts were characterized using various techniques, like thermogravimetry, IR spectroscopy, XPS, elemental analysis, and SEM-EDS microscopy. In the proposed approach, a biocatalyst consisting of a lipase as an active phase allowed the generation of peracid in situ from the corresponding precursor and a green oxidant–hydrogen peroxide. The activity and stability of the obtained biocatalysts in the model oxidation of 2-adamantanone were demonstrated. High conversion of substrate (92%) was achieved under favorable conditions (toluene: n-octanoic acid ratio 1:1 = v:v, 35% aq. H2O2 2 eq., 0.080 g of biocatalyst per 1 mmol of ketone at 20 °C, reaction time 4 h) with four reaction cycles without a drop in its activity. Our ‘properties-by-design’ approach is distinguished by its short reaction time at low temperature and higher thermal stability in comparison with other biocatalysts presented in the literature reports. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts Synthesis and Characterization)
Show Figures

Figure 1

Back to TopTop