Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = BOILED-egg analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1650 KB  
Article
Profiling of Disubstituted Chloroacetamides’ Potential Biological Activity by Liquid Chromatography
by Suzana Apostolov, Dragana Mekić, Marija Mitrović, Slobodan Petrović and Gyöngyi Vastag
Organics 2025, 6(3), 35; https://doi.org/10.3390/org6030035 - 4 Aug 2025
Viewed by 419
Abstract
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to [...] Read more.
Modern agriculture relies heavily on the use of pesticides, with one-third of them being herbicides. Chloroacetamides are the most widely used herbicides because of their high effectiveness, but their extensive use poses environmental challenges and threatens the health of living organisms due to toxicity risks. Since the pharmacokinetic behavior and toxicity of a compound are influenced by its lipophilicity, this essential physicochemical parameter for disubstituted chloroacetamides was determined in silico and experimentally through thin-layer chromatography on reversed phases (RPTLC C18/UV254s) in mixtures of water and distinct organic modifiers. The pharmacokinetic profile of chloroacetamides was analyzed by using the BOILED-Egg model. The correlation between the obtained chromatographic parameters and software-based lipophilicity, pharmacokinetic, and ecotoxicity predictors of the studied chloroacetamides was assessed by using linear regression, but more comprehensive insight was obtained through multivariate methods—Cluster Analysis and Principal Component Analysis. It was observed that the total number of carbon atoms in the structure of their molecules, along with the type of hydrocarbon substituents, are the most important factors affecting lipophilicity, pharmacokinetics, and potential toxicity to non-target organisms. Full article
Show Figures

Figure 1

31 pages, 8352 KB  
Article
Novel Trimethoprim-Based Metal Complexes and Nanoparticle Functionalization: Synthesis, Structural Analysis, and Anticancer Properties
by Abbas M. Abbas, Hossam H. Nasrallah, A. Aboelmagd, W. Christopher Boyd, Haitham Kalil and Adel S. Orabi
Inorganics 2025, 13(5), 144; https://doi.org/10.3390/inorganics13050144 - 1 May 2025
Viewed by 1195
Abstract
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their [...] Read more.
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their structures were confirmed through 1H NMR, mass spectrometry, FTIR, conductivity, thermal analysis, magnetic susceptibility, X-ray diffraction, UV-Vis spectroscopy, and TEM, revealing octahedral geometries for all complexes. Surface features were investigated using density functional theory (DFT) analysis. Pharmacokinetic parameters and target enzymes for HD and its complexes were computed using the SwissADME web tool, with the BOILED-Egg model indicating that HD and its Cu complex should be passively permeable via the blood-brain barrier and highly absorbed by the gastrointestinal tract (GIT), unlike the Ni, Co, Ag, and Zn complexes, which are predicted to show low GIT absorption. Molecular docking studies with the Caspase-3 enzyme (PDB code: 3GJQ) using the AutoDock 4.2 software demonstrated binding energies of −7.66, −8.36, −9.05, −8.62, −6.90, and −7.81 kcal/mol for HD and the Cu, Co, Ni, Ag, and Zn complexes, respectively, compared to −6.54 and −4.63 kcal/mol for TMP and 5-FU (5-fluorouracil), indicating a potential superior anticancer potential of the novel compounds. The anticancer activities of these complexes were evaluated using the MTT assay. The IC50 values for 5-FU, TMP, HD, Cu-HD, HD@ZnONPs, Cu-HD@ZnONPs, HD@AuNPs, and Cu-HD@AuNPs were found to be 32.53, 80.76, 114.7, 61.66, 77, 53.13, 55.06, and 50.81 µg/mL, respectively. Notably, all derivatives exhibited higher activity against the HepG-2 cancer cell line than TMP, except for HD, which showed similar effectiveness to TMP. Real-time PCR analysis revealed that the Au-HD@AuNPs and Cu-HD@AuNPs significantly increased caspase-3 inhibition by 4.35- and 4.5-fold and P53 expression by 3.05- and 3.41-fold, respectively, indicating enhanced pro-apoptotic gene expression and apoptosis induction in HepG2 cells. Our findings demonstrate that these novel derivatives possess significant anticancer properties, with some complexes showing superior activity compared to standard drugs such as 5-Fluorouracil (5-FU) and Trimethoprim (TMP). This study highlights the potential of these nanocomposites as promising candidates for cancer therapy. Full article
Show Figures

Figure 1

14 pages, 918 KB  
Article
Exploring the Potential of Duck Egg White Jelly: Enhancing Texture, Reducing Phosphate, and Innovating Emulsified Meat Snacks
by Nian-Yao Zheng, Yen-Po Chen, Yu-Cheng Liu, Jia-Shian Shiu, Lian-Ben Chang and Sheng-Yao Wang
Foods 2024, 13(23), 3892; https://doi.org/10.3390/foods13233892 - 2 Dec 2024
Cited by 1 | Viewed by 1888
Abstract
Duck egg white jelly, a protein-rich, alkali-induced gel, mirrors preserved duck egg white in appearance and properties, offering easier storage and utility, especially when excess egg white is available. This research focuses on incorporating duck egg white jelly into emulsified meat snacks to [...] Read more.
Duck egg white jelly, a protein-rich, alkali-induced gel, mirrors preserved duck egg white in appearance and properties, offering easier storage and utility, especially when excess egg white is available. This research focuses on incorporating duck egg white jelly into emulsified meat snacks to enhance texture while reducing the phosphate content. This study suggests that adding phosphate and duck egg white jelly increases raw meat paste pH, affecting its viscosity. With half the usual phosphate and either 3.0% or 6.0% jelly, the pH significantly increases compared to the control paste, containing 0.2% phosphate (p < 0.05). Viscosity remains unaffected in the group with 6.0% jelly and no phosphate versus the control (p > 0.05). The least favorable viscosity is observed in pastes without phosphate or jelly, suggesting that the jelly plays a similar role to phosphate. After boiling and shaping the pastes into emulsified meat snacks, their texture profiles and water-holding capacities were analyzed. Formulas with phosphate and jelly produced emulsified meat snacks with improved springiness, chewiness, reduced cooking loss, and decreased purge loss during storage. Color analysis showed no significant differences between the control and treatment groups (p > 0.05). Duck egg white jelly, when added, effectively reduces the phosphate content while enhancing texture and consumer acceptance of emulsified meat snacks. It serves as a versatile ingredient for low-phosphate, emulsified meat products, with potential for various meat combinations. Full article
(This article belongs to the Special Issue Processing and Nutritional Evaluation of Animal Products)
Show Figures

Graphical abstract

19 pages, 1338 KB  
Article
Phytochemical Characterization Utilizing HS-SPME/GC-MS: Exploration of the Antioxidant and Enzyme Inhibition Properties of Essential Oil from Saudi Artemisia absinthium L.
by Hanan Y. Aati, Hala A. Attia, Arwa S. Alanazi, Luluh K. AL tamran and Juergen K. Wanner
Pharmaceuticals 2024, 17(11), 1460; https://doi.org/10.3390/ph17111460 - 31 Oct 2024
Cited by 1 | Viewed by 1859
Abstract
Background/Objectives: This study aimed to analyze the chemical composition and biological activities of Artemisia absinthium L. essential oil, focusing on its antioxidant and enzyme inhibition (α-amylase and urease) properties. Additionally, in vitro pharmacokinetic and pharmacodynamic evaluations were conducted through in silico molecular docking [...] Read more.
Background/Objectives: This study aimed to analyze the chemical composition and biological activities of Artemisia absinthium L. essential oil, focusing on its antioxidant and enzyme inhibition (α-amylase and urease) properties. Additionally, in vitro pharmacokinetic and pharmacodynamic evaluations were conducted through in silico molecular docking and BOILED-Egg models to assess its therapeutic potential and its potency in treating oxidative-stress-related diseases. Methods: The essential oil was isolated by the hydrodistillation (HD) of fresh plant material, and volatiles released from dried plant material were sampled via headspace solid-phase microextraction (HS-SPME), followed by a phytochemical profiling analysis through the GC-MS tool. Antioxidant capacity was assessed using DPPH, ABTS, FRAP, and nitric oxide scavenging assays, while enzyme inhibition activities were tested against α-amylase and urease. Molecular docking and BOILED-Egg models were used to evaluate compound interactions with NADPH oxidase and predict pharmacokinetic behavior, respectively. Results: HS-SPME and HD yielded 46 and 25 compounds, respectively, primarily terpenoids represented by camphor (26.4%) and cis-davanone (18.0%) in HS-SPME, while in the HD essential oil, cis-davanone (60.2%) and chamazulene (10.8%) were most prevalent. The antioxidant assays showed a strong activity, with a total antioxidant capacity of 821.8 mg ascorbic acid Eq/gm. The essential oil inhibited urease by 86.7% and α-amylase by 81.8%. Molecular docking showed strong binding affinities with NADPH oxidase, supporting the antioxidant results. Conclusions:A. absinthium EO demonstrated potent antioxidant and enzyme inhibitory activities, suggesting its therapeutic potential for treating enzyme-related disorders like diabetes mellitus and its possible use as a cure for many oxidative-stress-related diseases, thus validating the folkloric use of this plant. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

16 pages, 5672 KB  
Article
Naringin from Coffee Inhibits Foodborne Aspergillus fumigatus via the NDK Pathway: Evidence from an In Silico Study
by Shashanka K. Prasad, Smitha S. Bhat, Olga Koskowska, Jiraporn Sangta, Sheikh F. Ahmad, Ahmed Nadeem and Sarana Rose Sommano
Molecules 2023, 28(13), 5189; https://doi.org/10.3390/molecules28135189 - 4 Jul 2023
Cited by 9 | Viewed by 2247
Abstract
In the tropics, coffee has been one of the most extensively cultivated economic crops, especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of [...] Read more.
In the tropics, coffee has been one of the most extensively cultivated economic crops, especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of coffee refining. In the current experiment, we carried out in silico screening of the isolated Arabica coffee phytochemicals for antifungal activity against Aspergillus fumigatus: a foodborne fungus of great public health importance. As determined by the molecular docking interactions of the library compounds indicated, the best interactions were found to occur between the nucleoside-diphosphate kinase protein 6XP7 and the test molecules Naringin (−6.771 kcal/mol), followed by Epigallocatechin gallate (−5.687 kcal/mol). Therefore, Naringin was opted for further validation with molecular dynamic simulations. The ligand–protein complex RMSD indicated a fairly stable Naringin-NDK ligand–protein complex throughout the simulation period (2–16 Å). In ADME and gastrointestinal absorbability testing, Naringin was observed to be orally bioavailable, with very low intestinal absorption and a bioavailability score of 0.17. This was further supported by the boiled egg analysis data, which clearly indicated that the GI absorption of the Naringin molecule was obscure. We found that naringin could be harmful only when swallowed at a median lethal dose between 2000 and 5000 mg/kg. In accordance with these findings, the toxicity prediction reports suggested that Naringin, found especially in citrus fruits and tomatoes, is safe for human consumption after further investigation. Overall, Naringin may be an ideal candidate for developing anti-A. fumigatus treatments and food packaging materials. Thus, this study addresses the simultaneous problems of discarded coffee waste management and antifungal resistance to available medications. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

19 pages, 6418 KB  
Article
Quantitative Lipidome Analysis of Boiled Chicken Egg Yolk under Different Heating Intensities
by Wei Luo, Jinghui Wang, Yan Chen, Qionglian Zhang, Jinqiu Wang and Fang Geng
Molecules 2023, 28(12), 4601; https://doi.org/10.3390/molecules28124601 - 7 Jun 2023
Cited by 7 | Viewed by 3166
Abstract
The effects of the four heating intensities (hot-spring egg yolk, HEY; soft-boiled egg yolk, SEY; normal-boiled egg yolk, NEY; and over-boiled egg yolk, OEY) on lipidomes of boiled egg yolks were investigated. The results indicated that four heating intensities had no significant effect [...] Read more.
The effects of the four heating intensities (hot-spring egg yolk, HEY; soft-boiled egg yolk, SEY; normal-boiled egg yolk, NEY; and over-boiled egg yolk, OEY) on lipidomes of boiled egg yolks were investigated. The results indicated that four heating intensities had no significant effect on the total abundance of lipids and lipid categories except for bile acids, lysophosphatidylinositol, and lysophosphatidylcholine. However, of all the 767 lipids quantified, the differential abundance of 190 lipids was screened among the egg yolk samples at four heating intensities. Soft-boiling and over-boiling altered the assembly structure of the lipoproteins through thermal denaturation and affected the binding of lipids and apoproteins, resulting in an increase in low-to-medium-abundance triglycerides. The decreased phospholipid and increased lysophospholipid and free fatty acid in HEY and SEY suggests potential hydrolysis of phospholipids under relatively low-intensity heating. Results provide new insights into the effect of heating on the lipid profiles of egg yolk and would support the public’s choice of cooking method for egg yolks. Full article
(This article belongs to the Special Issue Application of Metabolomics for Food and Beverages Analysis)
Show Figures

Figure 1

23 pages, 6113 KB  
Article
A Novel Ambroxol-Derived Tetrahydroquinazoline with a Potency against SARS-CoV-2 Proteins
by Alena I. Krysantieva, Julia K. Voronina and Damir A. Safin
Int. J. Mol. Sci. 2023, 24(5), 4660; https://doi.org/10.3390/ijms24054660 - 28 Feb 2023
Cited by 17 | Viewed by 3373
Abstract
We report synthesis of a novel 1,2,3,4-tetrahydroquinazoline derivative, named 2-(6,8-dibromo-3-(4-hydroxycyclohexyl)-1,2,3,4-tetrahydroquinazolin-2-yl)phenol (1), which was obtained from the hydrochloride of 4-((2-amino-3,5-dibromobenzyl)amino)cyclohexan-1-ol (ambroxol hydrochloride) and salicylaldehyde in EtOH. The resulting compound was produced in the form of colorless crystals of the composition 1∙0.5EtOH. [...] Read more.
We report synthesis of a novel 1,2,3,4-tetrahydroquinazoline derivative, named 2-(6,8-dibromo-3-(4-hydroxycyclohexyl)-1,2,3,4-tetrahydroquinazolin-2-yl)phenol (1), which was obtained from the hydrochloride of 4-((2-amino-3,5-dibromobenzyl)amino)cyclohexan-1-ol (ambroxol hydrochloride) and salicylaldehyde in EtOH. The resulting compound was produced in the form of colorless crystals of the composition 1∙0.5EtOH. The formation of the single product was confirmed by the IR and 1H spectroscopy, single-crystal and powder X-ray diffraction, and elemental analysis. The molecule of 1 contains a chiral tertiary carbon of the 1,2,3,4-tetrahydropyrimidine fragment and the crystal structure of 1∙0.5EtOH is a racemate. Optical properties of 1∙0.5EtOH were revealed by UV-vis spectroscopy in MeOH and it was established that the compound absorbs exclusively in the UV region up to about 350 nm. 1∙0.5EtOH in MeOH exhibits dual emission and the emission spectra contains bands at about 340 and 446 nm upon excitation at 300 and 360 nm, respectively. The DFT calculations were performed to verify the structure as well as electronic and optical properties of 1. ADMET properties of the R-isomer of 1 were evaluated using the SwissADME, BOILED-Egg, and ProTox-II tools. As evidenced from the blue dot position in the BOILED-Egg plot, both human blood–brain barrier penetration and gastrointestinal absorption properties are positive with the positive PGP effect on the molecule. Molecular docking was applied to examine the influence of the structures of both R-isomer and S-isomer of 1 on a series of the SARS-CoV-2 proteins. According to the docking analysis results, both isomers of 1 were found to be active against all the applied SARS-CoV-2 proteins with the best binding affinities with Papain-like protease (PLpro) and nonstructural protein 3 (Nsp3_range 207–379-AMP). Ligand efficiency scores for both isomers of 1 inside the binding sites of the applied proteins were also revealed and compared with the initial ligands. Molecular dynamics simulations were also applied to evaluate the stability of complexes of both isomers with Papain-like protease (PLpro) and nonstructural protein 3 (Nsp3_range 207–379-AMP). The complex of the S-isomer with Papain-like protease (PLpro) was found to be highly unstable, while the other complexes are stable. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

22 pages, 2684 KB  
Article
Integration of LC-MS-Based and GC-MS-Based Metabolic Profiling to Reveal the Effects of Domestication and Boiling on the Composition of Duck Egg Yolks
by Yong Tian, Guoqin Li, Xizhong Du, Tao Zeng, Li Chen, Wenwu Xu, Tiantian Gu, Zhengrong Tao and Lizhi Lu
Metabolites 2023, 13(1), 135; https://doi.org/10.3390/metabo13010135 - 16 Jan 2023
Cited by 5 | Viewed by 3161
Abstract
Egg yolks contain abundant lipids, proteins, and minerals that provide not only essential nutrients for embryonic development but also cheap sources of nutrients for consumers worldwide. Previous composition analyses of egg yolks primarily focused on nutrients such as lipids and minerals. However, few [...] Read more.
Egg yolks contain abundant lipids, proteins, and minerals that provide not only essential nutrients for embryonic development but also cheap sources of nutrients for consumers worldwide. Previous composition analyses of egg yolks primarily focused on nutrients such as lipids and minerals. However, few studies have reported the effects of domestication and heating on yolk composition and characteristics. The objective of this study was to investigate the impact of domestication and boiling on the metabolite contents of egg yolks via untargeted metabolomics using GC-MS and LC-MS. In this study, eggs were collected from Fenghua teals, captive mallards, and Shaoxing ducks. Twelve duck eggs (half raw and half cooked) were randomly selected from each variety, and the egg yolks were separated for metabolic profiling. The analysis identified 1205 compounds in the egg yolks. Domestication generated more differential metabolites than boiling, which indicated that the changes in the metabolome of duck egg yolk caused by domestication were greater than those caused by boiling. In a comparative analysis of domestic and mallard ducks, 48 overlapping differential metabolites were discovered. Among them, nine metabolites were upregulated in domesticated ducks, including monoolein, emodin, daidzein, genistein, and glycitein, which may be involved in lipid metabolism; some of them may also act as phytoestrogens (flavonoids). Another 39 metabolites, including imethylethanolamine, harmalan, mannitol, nornicotine, linoleic acid, diphenylamine, proline betaine, alloxanthin, and resolvin d1, were downregulated by domestication and were linked to immunity, anti-inflammatory, antibacterial, and antioxidant properties. Furthermore, four overlapping differential metabolites that included amino acids and dipeptides were discovered in paired comparisons of the raw and boiled samples. Our findings provided new insights into the molecular response of duck domestication and supported the use of metabolomics to examine the impact of boiling on the composition of egg yolks. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

11 pages, 4404 KB  
Communication
Structural Activity and HAD Inhibition Efficiency of Pelargonidin and Its Glucoside—A Theoretical Approach
by Rangasamy Praveena, Athinarayanan Balasankar, Kanakaraj Aruchamy, Taehwan Oh, Veerababu Polisetti, Subramaniyan Ramasundaram and Kandasamy Anbazhakan
Molecules 2022, 27(22), 8016; https://doi.org/10.3390/molecules27228016 - 18 Nov 2022
Cited by 4 | Viewed by 2595
Abstract
Anthocyanins are an important pharmaceutical ingredient possessing diet regulatory, antioxidant, anticancer, antidiabetic, anti-obesity, antimicrobial, and anti-inflammatory properties. Pelargonidin is an important anthocyanin-based orange-red flavonoid compound used in drugs for treating hypoglycemia, retinopathy, skeletal myopathy, etc. The main sources of pelargonidin are strawberries and [...] Read more.
Anthocyanins are an important pharmaceutical ingredient possessing diet regulatory, antioxidant, anticancer, antidiabetic, anti-obesity, antimicrobial, and anti-inflammatory properties. Pelargonidin is an important anthocyanin-based orange-red flavonoid compound used in drugs for treating hypoglycemia, retinopathy, skeletal myopathy, etc. The main sources of pelargonidin are strawberries and food products with red pigmentation. There is a lack of evidence for supporting its use as an independent supplement. In the present study, pelargonidin and pelargonidin-3-O-glucoside are studied for their structural properties using quantum chemical calculations based on density functional theory. The results confirmed that the parent compound and its glycosylated derivative acted as good electron donors. Electrostatic potential, frontier molecular orbitals, and molecular descriptor analyses also substantiated their electron donating properties. Furthermore, based on the probability, a target prediction was performed for pelargonidin and pelargonidin-3-O-glucoside. Hydroxyacyl-coenzyme A dehydrogenase was chosen as an enzymatic target of interest, since the presence work focuses on glucuronidated compounds and their efficacy over diabetes. Possible interactions between these compounds and a target with nominable binding energies were also evaluated. Further, the structural stability of these two compounds were also analyzed using a molecular dynamics simulation. Full article
(This article belongs to the Special Issue Computational Strategy for Drug Design)
Show Figures

Figure 1

29 pages, 6631 KB  
Article
A Novel Ibuprofen Derivative and Its Complexes: Physicochemical Characterization, DFT Modeling, Docking, In Vitro Anti-Inflammatory Studies, and DNA Interaction
by Abbas M. Abbas, Ahmed Aboelmagd, Safaa M. Kishk, Hossam H. Nasrallah, Warren Christopher Boyd, Haitham Kalil and Adel S. Orabi
Molecules 2022, 27(21), 7540; https://doi.org/10.3390/molecules27217540 - 3 Nov 2022
Cited by 17 | Viewed by 4833
Abstract
A novel derivative of ibuprofen and salicylaldehyde N′-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by 1HNMR, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), [...] Read more.
A novel derivative of ibuprofen and salicylaldehyde N′-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by 1HNMR, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl·2H2O, [Ni(L)2], [Co(L)2]·H2O, [Gd(L)2(H2O)2](NO3)·2H2O and [Sm(L)2(H2O)2](NO3)·2H2O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT Homo sapiens). The binding energies were −7.52, −9.41, −9.51, −8.09, −10.04, and −8.05 kcal/mol for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, which suggests the enhancement of anti-inflammatory behaviors compared with the binding energy of ibuprofen (−5.38 kcal/mol). The anti-inflammatory properties of the new compounds were assessed in vitro using the western blot analysis method and the enzyme-linked immunosorbent assay (ELISA), consistent with the outcomes obtained from docking. The half-maximal inhibitory concentration (IC50) values are 4.9, 1.7, 3.7, 5.6, 2.9, and 2.3 µM for HL and the Co, Ni, Cu, Sm, and Gd complexes, respectively, showing that they are more effective inhibitors of COX2 than ibuprofen (IC50 = 31.4 µM). The brain or intestinal estimated permeation method (BOILED-Egg) showed that HL and its Co complex have high gastrointestinal absorption, while only the free ligand has high brain penetration. The binding constants of Co, Cu, and Gd complexes with DNA were recorded as 2.20 × 104, 2.27 × 106, and 4.46 × 103 M−1, respectively, indicating the intercalator behavior of interaction. The newly synthesized ibuprofen derivative and its metal complexes showed greater anti-inflammatory activity than ibuprofen. Full article
(This article belongs to the Special Issue Applications of Metal Complexes)
Show Figures

Figure 1

Back to TopTop