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Abstract: In the tropics, coffee has been one of the most extensively cultivated economic crops,
especially Arabica coffee (Coffea arabica L.). The coffee pulp, which includes phytochemicals with
a proven antifungal action, is one of the most insufficiently utilized and neglected byproducts of
coffee refining. In the current experiment, we carried out in silico screening of the isolated Arabica
coffee phytochemicals for antifungal activity against Aspergillus fumigatus: a foodborne fungus
of great public health importance. As determined by the molecular docking interactions of the
library compounds indicated, the best interactions were found to occur between the nucleoside-
diphosphate kinase protein 6XP7 and the test molecules Naringin (−6.771 kcal/mol), followed by
Epigallocatechin gallate (−5.687 kcal/mol). Therefore, Naringin was opted for further validation
with molecular dynamic simulations. The ligand–protein complex RMSD indicated a fairly stable
Naringin-NDK ligand–protein complex throughout the simulation period (2–16 Å). In ADME and
gastrointestinal absorbability testing, Naringin was observed to be orally bioavailable, with very low
intestinal absorption and a bioavailability score of 0.17. This was further supported by the boiled egg
analysis data, which clearly indicated that the GI absorption of the Naringin molecule was obscure.
We found that naringin could be harmful only when swallowed at a median lethal dose between
2000 and 5000 mg/kg. In accordance with these findings, the toxicity prediction reports suggested
that Naringin, found especially in citrus fruits and tomatoes, is safe for human consumption after
further investigation. Overall, Naringin may be an ideal candidate for developing anti-A. fumigatus
treatments and food packaging materials. Thus, this study addresses the simultaneous problems of
discarded coffee waste management and antifungal resistance to available medications.

Keywords: coffee; Aspergillus fumigatus; nucleoside diphosphate kinase; in silico; antifungal

1. Introduction

Aspergillus fumigatus (A. fumigatus), a saprophytic and thermophilic ascomycete fun-
gus, reportedly causes the most serious diseases in humans among all the foodborne
Filamentous Fungal Human Pathogens (FFHPs) [1]. Accounting for as much as 85–95%
of the invasive aspergillosis instances, A. fumigatus is regarded as the most dangerous
fungal pathogen to be found in food [2]. Within the Aspergillus species, A. fumigatus is
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regarded as the biggest threat when trailed by A. flavus, A. niger, A. terrus and A. nidu-
lans. Invasive aspergillosis caused by the A. fumigatus is one of the foremost reasons for
decease in those patients suffering from hematological malignancies and those undergoing
chemotherapy [3] and hematopoietic cell transplantations [4]. This deadly human pathogen
can be found in baked goods, beans, beverages and chocolates–staple cereals such as maize,
rice, barley, and wheat–dairy, fruits, herbs and spices, meat, fish, and eggs, nuts, seeds,
and vegetables, with the second highest prevalence only next to A. flavus [1]. Gliotoxin
(GTX), a dipeptide virulence factor that is mainly produced by A. fumigatus, is known
for the creation of reactive oxygen species (ROS) through reactions associated with redox
cycling, which led to immunosuppression and necrosis [5,6]. In addition, GTX has been
reported to show an alteration in tight junction structures and to cause neuronal damage
by impairing the human blood–brain barrier via cytotoxicity towards the astrocytes [7].
GTX, at concentrations lower than 250 ng/mL, was found to inhibit inflammatory cell
activation and signal transduction between the leukocytes and other phagocytic white
blood cells at lower concentrations [8]. Meanwhile, at higher concentrations, it reportedly
induced leukocyte apoptosis [9]. Owing to these immune-suppressing capabilities of the
toxin, Ráduly Z et al. (2020) indicated that A. fumigatus had the potential to evade the
immune responses and enhance AIDS and substance-induced immunodeficiencies due
to GTX poisoning [10]. Fumagillin, first isolated in 1949 from A. fumigatus, is a myco-
toxin encoded in chromosome 8 of the fungus [11–13]. This toxin was found to bind to
the methionine aminopeptidase (MetAP) type 2 enzyme, inactivating it irreversibly [14],
thereby inhibiting neutrophil functions [15], eryptosis [16], damaging lung epithelia [17],
and anti-angiogenesis [14]. Given the potential hazard of A. fumigatus contamination in
food, there is a mounting necessity for food-grade antifungal drugs and preservatives to
address both public health and food security concerns.

With the increasing instance of A. fumigatus infections and reports of antifungal re-
sistance, there has been a necessity to identify and develop novel antifungal agents. With
the focus now more oriented toward understanding the molecular intricacies underlying
the propagation of the fungus, there are new avenues open to identify potential drug
targets which could inhibit fungal growth and development. The A. fumigatus nucleoside-
diphosphate kinase (NDK) enzyme catalyzes the final step of nucleotide biosynthesis by
phosphorylating the nucleoside-diphosphates (NDPs) to nucleoside-triphosphates (NTPs)
is an essential enzyme for the survival of the fungus. Regarding the antifungal activity
evaluation, the biosynthesis of nucleotide purine and salvage pathways have been exten-
sively studied against fungi of clinical importance, such as C. neoformans, C. albicans, and A.
fumigatus. They all indicated a correlation between the disruption of the purine biosynthesis
pathway and the subsequent attenuation of virulence in the fungi [18,19]. NDK was found
to exhibit the preferential nucleoside selectivity of adenine nucleosides over their cytosine
counterparts, making them an attractive target for novel antifungal agents [20] and making
them the target of choice for this study.

Coffee, a tropical cash crop found across the continents of Asia, America, and Africa, is
a beverage of choice globally. Coffee has been generated in quantities as high as 171 million
(60 kg) bags in the current year, and 98 million bags of Coffea arabica alone were cultivated in
the year 2022 [21]. Coffee phytochemicals have been reported for their bioactivity ranging
from antioxidant to neuroprotective activities [22]. Calheiros D et al. (2023) reported
the antifungal activity of coffee against dermatophytes belonging to Candida spp. and
Trichophyton spp. [23]. Another study focused on the use of fresh and spent Robusta coffee
on the Areca catechu leaf sheath for the packaging of different foods, concluding that coffee
phytochemicals exhibited significant antifungal activity against Aspergillus spp., Penicillium
spp., and Eurotium spp. [24]. Sangta J et al. (2021) conducted an evaluation of Arabica coffee
pulp phytochemicals for their antifungal activity against Alternaria brassicicola, Pestalotiopsis
sp. and Paramyrothecium breviseta, which were found to infest vegetables, fruits, and coffee,
respectively. The polyphenol composition of the above study comprised flavonoids such
as epigallocatechin gallate (31.8%), naringin (9.63%), epicatechin gallate (8.66%), catechin
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(2.2%), gallocatechin gallate (0.12%), quercetin (5.42%), and phenolic acids and caffeine
alkaloids such as caffeic acid (68.1%), caffeine (21.59%), p-coumaric acid (11.04%), rosmarinic
acid (6.41%), o-coumaric acid (6.24%), and gallic acid (2.41%) [25]. All the above-identified
phytochemicals were used to prepare the ligand library for the current study.

Over the past few decades, computational techniques have developed into useful tools
for drug-related investigations. Bioinformatics is the application of these techniques to
biochemical phenomena. Using bioinformatics, drug design can be more precisely and
accurately guided by the knowledge of new chemical structures, functions, and targets.
Since 1980, the concept of the “rational use of drugs” (structure-guided drug design) has
gained popularity. It involves the creation of target proteins and small molecules in silico
as the basis for novel medication development [26]. The advantages of computational
approaches include minimal costs and quick information gathering. To streamline the
process of scientific inquiry, they can be supplemented by an experimental study. In this
manner, bioinformatics aids in broadening the scope of experimental findings and vice
versa. The entire compound library can be evaluated against the drug target in high
throughput screening. Secondary assays are necessary to confirm the location of action for
drugs in more complicated systems, such as a complex biological cell-based test, whose
activity depends on the target [27].

High throughput and other compound screens are designed and carried out in order to
uncover compounds that interact with the therapeutic target. Chemistry programs are then
executed to strengthen the potency, selectivity, and physiochemical nature of the molecule.
Additionally, information is still being gathered to back up the claim that treating illnesses
by intervening at the drug target could be successful. A number of naturally available
sources (plants and microbes) have been thus investigated via computational techniques for
their various bioactive nature, including antibacterial, antiviral, antifungal and anti-cancer
properties [28–33]. Many such identified phytocompounds, with further validation, could
potentially be developed into novel drugs.

2. Results
2.1. Molecular Docking

The molecular docking interactions of the library compounds (Figure 1) indicated
the best interactions occurring between the NDK protein 6XP7 and the test molecules
naringin with a formation of 7 hydrogen bonds for the amino acids LYS11, HIE117, ASP120,
ASP53, HIE50 amino acids, and 1 Pi-Pi Stalking bond with the PHE59. A glide score of
−6.771 kcal/mol was recorded for this interaction, followed by epigallocatechin gallate
with a lower glide score of −5.687 kcal/mol, 7 hydrogen bonds [LYS11, ASN114, GLY118,
ARG87, GLU128] and 1 salt bridge [LYS11] with the protein. It is interesting to note that
although both ligands displayed the same number of interactions with the chosen NDK
protein [7], their glide g scores were varied. The other molecules, including epicatechin
gallate, caffeine, catechin, gallocatechin gallate, quercetin, caffeic acid, p-coumaric acid,
rosmarinic acid, o-coumaric acid, and gallic acid, were each found to have interactions
involving 5H and −4.376 kcal/mol, 5H and −5.742 kcal/mol, 5H and −5.705 kcal/mol,
4H, 1 pi-cation and −5.835 kcal/mol, 5H, 2 salt bridge and −4.186 kcal/mol, 2H and
−4.759 kcal/mol, 2H and −4.658 kcal/mol, 3H, 2 salt bridge and −6.072 kcal/mol, 3H,
2 salt bridge and −4.725 kcal/mol, and 3H, 2 salt bridge and −4.927 kcal/mol for the
interactions and glide scores, respectively.

2.2. Molecular Dynamics Simulation

Of all the interactions observed above, the best-docked complex of NDK against
Naringin opted for an MD simulation. This simulation was carried out for a total duration
of 100 ns, throughout which the stability of the protein, ligand (Naringin), and the protein–
ligand complex was observed via parameters such as the Root Mean Square Deviation and
fluctuation, amino acid contacts between the protein and ligand, changes occurring in the
structure of the protein, and the properties of Naringin.
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2.3. RMSD

The Root Mean Square Deviation (RMSD) is a quantitative measure that can under-
stand the similarity between two superimposed atomic coordinates. In this study, the
protein RMSD value ranged between 0.8 and 3.2 Å, with one outlying peak at 6.4 Å indicat-
ing a stable protein throughout the 100 ns simulation period (Figure 2). The ligand–protein
complex RMSD ranged between 2 and 16 Å, indicating a fairly stable Naringin-NDK
ligand–protein complex throughout the 100 ns simulation period (Figure 2).

2.4. Protein RMSF

The Root Mean Square Fluctuation (RMSF) correlated to the time-average position
of a particle, indicating the average deviation undergone by the particle over a particular
period from its reference position. The point of interaction between amino acids was mostly
stabilized between 0.6 and 1.8 Å, with fluctuating high peaks at 4.2, 4.8 and 5.4 Å (Figure 3).

2.5. Total Secondary Structures (SSE)

The SSE measure indicated the positional changes that occurred in the secondary
structural elements of the protein, which were subjected to MD simulation. The SSEs of
the NDK protein during the 100 ns simulation period were tracked, which revealed 32.41%
Helixes and 14.75 strands, making up a 47.16% Total SSE, as indicated (helixes in red and
strands in blue) (Figure 4).

2.6. Ligand RMSF

The RMSF of Naringin indicated that it was made of 40 atoms, with some interaction
atomic fluctuations in the atoms between 2 and 14. Ligand RMSF was found to be stabilized
between 4 and 6 Å, which suggested a few atomic fluctuations (Figure 5).
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2.7. Ligand Interactions

The NDK amino acid residue ASP120 formed Hydrogen bonds, while PHE59 and
VAL111 formed hydrophobic bonds with the Naringin molecule for more than 30% of the
simulation time in the chosen trajectory (0.00 to 100.00 ns) (Figure 6). A timeline depiction
of the communications and contacts can be observed in the graph with the upper panel
depicting the total quantity of precise contacts between the protein and ligand and the
second panel representing the residues that network with the ligand in each trajectory
frame (Figure 7).
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Figure 7. Ligand-Protein (Amino acid) contacts over a simulation duration of 100 ns.

The Solvent Accessible Surface Area during this interaction ranged between 300 and
600 Å2, while the polar surface area was between 375 and 420 Å2, and the radius of gyration
(rGyr) ranged between 5.25 and 5.5 Å. The ligand RMSD varied from 0.8 to 2.4 Å during
the simulation period of 100 ns (Figure 8).
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2.8. ADME and Gastrointestinal Absorbability

The ADME and GI absorbability of the ligands throws light on the drug-likeness
and safety of these molecules keeping in mind human and animal consumption. Of
the selected phytochemicals in this study, epigallocatechin gallate, naringin, epicatechin
gallate and rosmarinic acid were found to have a No/low gastrointestinal absorption.
Meanwhile, o-coumaric acid and p-coumaric acid were predicted to have blood-brain
permeability. Naringin (Figure 9) was observed to be orally bioavailable with very low
intestinal absorption. It was found to be impermeable in the brain and skin. Naringin was
a water-soluble molecule with a bioavailability score of 0.17 (Supplementary Table S1).
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2.9. Boiled Egg Analysis

To reconfirm the ADME findings, we carried out the boiled egg analysis of the test
molecules to understand their permeability through the blood–brain barrier and the GI
tract. We found that the boiled egg analysis results were in concurrence with the ADME
findings (Figure 10). Naringin was found to be out of range for both the yellow and white
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regions of the plot, indicating that the molecule was unabsorbable in the GI tract and could
not penetrate the brain. Epigallocatechin gallate, epicatechin gallate and rosmarinic acid
showed poor gastrointestinal absorption and brain access. Gallic acid, catechin, quercetin,
caffeic acid and caffeine (found in the white region of the Boil-egg plot) were predicted to
have a high probability of passive absorption in the gastrointestinal tract. O-coumaric acid
and p-coumaric acid were found to be highly penetrable into the brain (found in the yellow
region of the boiled egg plot).
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Gallate; Molecule 6—Catechin; Molecule 7—Gallocatechin gallate; Molecule 8—Quercetin; Molecule
9—Caffeic acid; Molecule 10—Caffeine; Molecule 11—p-Coumaric acid; Molecule 12—Rosmarinic acid.
Points located in the yellow region indicate the blood–brain barrier permeability, whereas points in
the white region indicate absorption in the GI tract. Naringin is out of both yellow and white regions,
indicating no blood–brain barrier permeability and no GI absorption. Epigallocatechin gallate and
Gallocatechin gallate were found to be out of range.

2.10. Toxicity Prediction

To test the food-grade safety of Naringin to humans and animals, we carried out the
toxicity prediction. It was found to belong to Class V of toxicity, meaning that it could be
harmful only when swallowed with a median lethal dose between 2000 and 5000 mg/kg
(Figure 11).
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Furthermore, Naringin was also found to be non-hepatotoxic, non-carcinogenic, non-
mutagenic and non-cytotoxic.

3. Discussion

Coffee has been a widely consumed plant variety across the globe. There have also
been growing concerns regarding coffee waste management to achieve the sustainability of
the coffee production chain [34,35]. Coffee pulp is the main by-product, which represents
half of a coffee cherry [36]. It accounts for up to 29% of the total dry weight [36].

On the other hand, there are equally deep concerns regarding the management of
foodborne fungi [37,38] and increasing events of antifungal resistance in them [39,40]. In
particular, A. fumigatus has been repeatedly reported as resistant to first-line azole antifungal
drugs. However, there is a limited understanding of the genetic mechanisms underlying the
development of fungal resistance, which raises concerns about the potential emergence of
opportunistic fungal superinfections [40]. The focus has now been on the identification of
novel drug targets across unconventional pathways occurring across fungal biosystems to
reduce the possibilities of infection while also keeping in mind antifungal resistance. The
protein nucleoside diphosphate kinase (NDK) has been identified to be one such potential
target owing to its importance in the nucleotide biosynthesis of the organism [20]. In a
former study conducted by Sangta J, et al. (2021), phytochemicals recovered from the Coffea
arabica pulp, which was identified using Quadrupole Time-of-Flight Mass Spectrometer
reportedly demonstrated antifungal activity against Alternaria brassicicola, Pestalotiopsis sp.
and Paramyrothecium breviseta [25,41]. A number of researchers have tried to ascertain the
bioactive nature of Coffea arabica L., with an aim to identify the specific compounds that are
responsible for the bioactivity. This plant has been observed to have nearly a 12% protein
content, including the presence of polyphenols such as epigallocatechin gallate, naringin,
epicatechin gallate, catechin, gallocatechin gallate, and quercetin, phenolic acids and caffeine
alkaloids such as p-coumaric acid, caffeic acid, caffeine, rosmarinic acid, o-coumaric acid,
and gallic acid with significant antifungal properties [25]. In continuation of these findings,
we carried out the in silico screening of isolated phytochemicals for their antifungal activity
against the A. fumigatus foodborne fungus, which is of great public health importance [41].

During this study, we found that the molecular docking interactions of selected phyto-
chemicals against the NDK protein revealed successful interactions with the highest glide
score of −6.771 kcal/mol for Naringin, followed by Rosmarinic acid (−6.072 kcal/mol).
While Naringin and Epigallocatechin gallate both showed seven hydrogen bonding interac-
tions, the glide score for the Epigallocatechin gallate–6XP7 interactions was −5.687 kcal/mol,
and hence, Naringin was opted for further validation with molecular dynamic simulations.
The lowest number of interactions was observed for Caffeine with 6XP7, demonstrating
only two hydrogen bonds. The lowest glide score of −4.186 kcal/mol was observed for the
caffeic acid–6XP7 complex. Hydrogen bonds, occurring between the ligand and proteins,
have always been crucial in determining the specificity of observed interactions. Adding to
this, interactions involving hydrogen bonds, pi–pi stacking, and salt bridges were found to
be crucial when attributed to the increased inhibitory value of the ligand. The docking glide
score and MD simulation, including RMSD and RMSF findings, indicated these interactions
to be in a range from moderate to strong [42]. The molecular dynamic simulations of the
Naringin-6XP7 complex revealed a stable protein–ligand complex throughout the entire
duration of the simulation [29,43]. It also helped when studying the stability of the amino
acid contacts in both the protein and Naringin through the simulated period. The study
conducted by Santa et al. focused on the composition of the coffee pulp and employed high-
performance liquid chromatography to analyze its components through which Naringin
was identified as a constituent of the coffee pulp. The integration of this in silico approach
with the experimental findings of Santa et al.’s research, could help validate and enhance
the reliability of these findings, contributing to a more comprehensive understanding of the
topic at hand. This experimental evidence strengthens the argument by providing empirical
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support for the presence of Naringin in coffee pulp and provides a basis for the further
validation of the antifungal nature of this compound in vitro.

Naringin, a flavone glycoside, has been reported for its biomedical significance
and for its antioxidant, anti-inflammatory, antiviral, bone regenerative, and potential
to inhibit/reduce neurodegeneration, genetic damage, cardiovascular diseases, and hu-
man malignancies [44]. Naringin has demonstrated substantial antifungal action against
C. albicans [45], Botrytis cinerea, Trichoderma glaucum, and Aspergillus fumigatus [46],
Aspergillus parasiticus, Aspergillus flavus, Fusarium semitectum and Penicillium expansum [47].
Nonetheless, no recent studies have investigated the anti-Aspergillus fumigatus activity of the
molecule to ascertain the underlying mechanistic basis to indicate a possible consideration
toward its interactions with the NDK.

The ADME and gastrointestinal absorbability of Naringin indicated that the molecule
was orally bioavailable with very low possibilities of intestinal absorption. This was further
supported by the boiled egg analysis data, which clearly indicated that the GI absorption
of the Naringin molecule was obscure. Drug-target molecules which target body parts
other than the brain should ideally be impermeable to the brain to avoid psychotropic
side effects. Naringin has been reported to be non-toxic for Sprague Dawley rats with
no-observed-adverse-effect-level (NOAEL) in the molecule being >1250 mg/kg/day of the
rodent upon exposure for 13 weeks [48] and 6 months [49]. In a similar study, naringin
was demonstrated to have a good safety profile in beagle dogs with a NOAEL of at least
500 mg/kg/day when administered per os [50]. Naringin was also reported to be of low
toxicity when employed as a sensory additive in animal feed [51]. In alignment with
these findings, the toxicity prediction reports indicated that Naringin was safe for human
consumption upon further investigation.

However, the findings of the current study should be validated with appropriate
in vitro and in vivo antifungal experimentation, which could lead to the development of a
plant-based non-toxic, antifungal agent to combat A. fumigatus infections.

4. Materials and Methods

The current study was performed using an in silico approach involving compound
library preparation based on a review of the literature, molecular docking, molecular
dynamics simulations, ADME (Absorption, Distribution, Metabolism, and Excretion),
gastrointestinal (GI) absorbability, and toxicity evaluation for the lead molecule [35,52,53].

4.1. Molecular Docking
4.1.1. Protein Preparation

The crystal structure of the protein NDK from Aspergillus fumgiatus (PDB ID: 6XP7)
(Figure 12) with a resolution of 2.2 Å, with 3 chains of a 162-length amino acid sequence
was chosen from RCSB PDB and was obtained directly onto the Maestro workspace (V
13.1, Trial version issued by Schrodinger India to JSS Academy of Higher Education and
Research, Mysore) from the Protein data bank. The protein preparation wizard panel,
under GLIDE in Maestro V 13.1 of Schrodinger, was utilized to perform the assessment
and refine the protein structure [54]. Chain A was retained and utilized for molecular
docking studies. In addition to filling the missing loops and side chains using the PRIME
module, the preparation of the protein structure included the removal of water molecules,
the addition of hydrogen atoms, the assignment of bond order, and the deletion of other
heteroatoms with the pH set at 7.5. Further, the optimization of the protein structure was
carried out, and the energy minimization was achieved using an OPLS3e force field with a
constraint of 0.30 Å RMSD.
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4.1.2. Receptor Grid Generation

The prepared protein chain was further used to generate a grid box. The grid box was
defined around the pre-bound ligand in such a way that the center of the docked ligand
was in identical dimensions to the binding box. Glide’s standard precision mode (SP) was
employed for the rigid receptor docking technique, which was founded on the OPLS-3e
force field and scaling factor 1.0 [54].

4.1.3. Ligand Preparation

The Caffea arabica phytochemicals isolated and identified in previous research as per
Sangta J, et al. (2021) were used to prepare a library of compounds for the in silico eval-
uation of anti-A. fumigatus properties. The structures of the compounds epigallocatechin
gallate, naringin, epicatechin gallate, catechin, gallocatechin gallate, quercetin, caffeic acid,
caffeine, p-coumaric acid, rosmarinic acid, o-coumaric acid, and gallic acid, were obtained
in a .sdf format from Pubchem and were transformed into 3D structures using the Mae-
stro Schrödinger 13.1 Ligprep module. The Ligprep assigned proper bond ordering and
corrected the protonation and ionization states of the ligands. The minimization of energy
was carried out at a stable pH of 7.5, with specific chirality.

4.1.4. Molecular Docking

The protein was immobile, whereas the ligands were flexible during the docking
process. A regular precision mode was used for docking. Molecular docking was executed
after synthesizing the ligand and protein and defining the grid in place of the pre-existing
ligand on the protein. GLIDE was used to dock the identified ligands with the protein’s X-
ray crystal structure. The best compounds for each target were chosen based on their glide
g score, thermodynamic ideal energy value, the types of interactions, bonding potential,
and conformations.

4.2. Molecular Dynamics Simulation

Based on various parameters of molecular docking, the best-docked molecule was
selected for further validation. This technique is a bioinformatic method that simulates the
actual movements of the atoms in the protein–ligand complex for a set duration. It is used
to study the movement of the protein–ligand complex in a solvent system. The best-docked
model of the docked complex was used to achieve this using the DESMOND v 13.1 System
Builder workflow. The best pose with an appropriate glide score obtained from molecular
docking was further taken up for the molecular dynamics simulation using the DESMOND
v 13.1 System Builder workflow. The boundary was set at 10 × 10 × 10 Å orthorhombic
box, and the TIP3P water model of the solvent system was introduced using the OPLS4
force field. These proteins were neutralized with the addition of salt ions (sodium and
Chlorine) in order to balance the overall charge of the system. A molecular simulation
was run for 100 ns at the recording energy interval of a 12 ps simulation run. The whole
system contained 20,692 atoms. The pressure and temperature were sustained at 1.01325 bar
and 300 K, respectively. The results were analyzed with the help of a simulated interaction
diagram tool that was built within the DESMOND panel to generate a report.
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4.3. Prediction of ADME Properties

ADME (Absorption, distribution, metabolism and excretion) parameters, pharmacoki-
netic, drug-like properties, and the medicinal chemistry friendliness of selected phytochem-
icals were performed using the SWISS ADME tool by the Swiss Institute of Bioinformatics
(http://www.swissadme.ch/index.php (accessed on 2 April 2023)). The canonical smiles
of the 12 molecules were obtained from the Pubchem database and were added to the web
browser and run for the calculation of ADME properties. Further, a boiled-egg plot of the
12 molecules was obtained from the same tool to identify and represent the molecules that
had the capability to cross the blood–brain barrier and to be absorbed via the gut.

4.4. Toxicity Prediction

For the estimation of toxicity in small molecules, such as acute toxicity, hepatotoxicity,
cytotoxicity, carcinogenicity, mutagenicity, and immunotoxicity, the ProTox-II tool by The
Charite University of Medicine, Berlin, Germany (https://tox-new.charite.de/protox_II/
(accessed on 2 April 2023)) was used. These molecules were classified based on their toxicity
ranging from Class I to VI and from fatal to non-toxic depending on the lethal dose calculations,
which ranged from an LD50 value lower than 5 (Class I) to an LD50 value of more than 5000
(Class VI) The 6 classes of toxicity ranged from fatal if swallowed to non-toxic.

5. Conclusions

These findings were made as a part of this study, and earlier reports indicate that
Naringin from coffee pulp is a good antifungal candidate that acts via the NDK pathway
to inhibit A. fumigatus. Upon the necessary in vitro and in vivo investigations to ascertain
the mechanistic basis of the observed bioactivity and toxicity, Naringin may be an ideal
candidate to produce anti-Aspergillus fumigatus treatments and packaging material for foods
and food products. Thereby, this could address the dual concerns of spent coffee waste
management and antifungal resistance to the available first-line Azole drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28135189/s1. Supplementary Table S1: ADME and Boiled-
egg plot analysis of coffee phytochemicals.
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