Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = BMDC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2448 KiB  
Article
Lactobacillus johnsonii N6.2 Phospholipids Induce T Cell Anergy upon Cognate Dendritic Cell Interactions
by Alexandra E. Cuaycal, Monica F. Torrez Lamberti, Graciela L. Lorca and Claudio F. Gonzalez
Metabolites 2025, 15(5), 284; https://doi.org/10.3390/metabo15050284 - 22 Apr 2025
Cited by 1 | Viewed by 662
Abstract
Background/Objectives: Lactobacillus johnsonii N6.2 is a gut symbiont with probiotic properties. L. johnsonii N6.2 delayed the progression of type 1 diabetes (T1D) in diabetic-prone rats. The probiotic intake demonstrated immune cell modulation in healthy volunteers, leading to improved wellness and fewer reported [...] Read more.
Background/Objectives: Lactobacillus johnsonii N6.2 is a gut symbiont with probiotic properties. L. johnsonii N6.2 delayed the progression of type 1 diabetes (T1D) in diabetic-prone rats. The probiotic intake demonstrated immune cell modulation in healthy volunteers, leading to improved wellness and fewer reported symptoms like headaches and abdominal pain. These systemic immune-modulating benefits are attributed to L. johnsonii N6.2’s bioactive fractions, including extracellular vesicles (EVs) and purified phospholipids (PLs). We have previously shown that L. johnsonii N6.2 PLs modulate dendritic cell (DC) function towards a regulatory-like phenotype. Here, we further characterize the immune regulatory effects of L. johnsonii N6.2 PLs on adaptive immunity, specifically upon DC and T cell interactions. We hypothesized that PL-stimulated DCs suppress T cell-mediated responses to maintain tolerance in intra- and extra-intestinal sites. Methods: Bone marrow-derived dendritic cells (BMDCs) were generated from Sprague-Dawley rats and stimulated with L. johnsonii N6.2 PLs. Isogenic T cells were isolated from PBMCs obtained via terminal exsanguination. In vitro cellular assays, co-culture experiments, gene expression analysis by qRT-PCR, and flow cytometry assays were conducted to assess the immune regulatory effects of L. johnsonii N6.2 PLs. Results: The PL-stimulated BMDCs upregulated DC regulatory markers and exhibited an immature-like phenotype with reduced surface expression of maturation markers but increased surface migratory molecules (ICAM-1). These BMDCs presented immunosuppressive functions upon cognate T cell interactions and in the presence of TCR stimulation. Specifically, PL-stimulated BMCDs suppressed Th1 effector function and induced the expression of T cell anergy-related genes after co-culturing for 72 h. Conclusions: This study highlights the immune regulatory capacity of L. johnsonii N6.2’s bioactive components on adaptive immunity, specifically that of purified PLs on DC:T cell-mediated responses leading to immunosuppression. Our findings suggest that L. johnsonii N6.2-purified PLs play a role in regulating adaptive immunity, offering potential benefits for managing immune-related diseases like T1D. Full article
Show Figures

Figure 1

16 pages, 4270 KiB  
Article
Ferritin and Encapsulin Nanoparticles as Effective Vaccine Delivery Systems: Boosting the Immunogenicity of the African Swine Fever Virus C129R Protein
by Yue Zhang, Yi Ru, Longhe Zhao, Rongzeng Hao, Yang Yang, Yajun Li, Rong Zhang, Chenghui Jiang and Haixue Zheng
Viruses 2025, 17(4), 556; https://doi.org/10.3390/v17040556 - 11 Apr 2025
Cited by 1 | Viewed by 749
Abstract
Vaccination remains the most effective strategy for preventing infectious diseases. Subunit vaccines, which consist of antigenic components derived from pathogens, offer significant advantages in terms of biosafety, ease of preparation, and scalability. However, subunit vaccines often exhibit lower immunogenicity than whole-pathogen vaccines do. [...] Read more.
Vaccination remains the most effective strategy for preventing infectious diseases. Subunit vaccines, which consist of antigenic components derived from pathogens, offer significant advantages in terms of biosafety, ease of preparation, and scalability. However, subunit vaccines often exhibit lower immunogenicity than whole-pathogen vaccines do. To address this limitation, coupling antigens with nanoparticles has emerged as a promising strategy for enhancing immune responses by mimicking pathogen structures and improving antigen presentation. This study evaluated the stability of ferritin (F-nps) and encapsulin (E-nps) nanoparticles and their efficient uptake by bone-marrow-derived dendritic cells (BMDCs) in vitro. In vivo studies demonstrated their effective targeting of lymph nodes. The African swine fever virus C129R protein was conjugated to ferritin and encapsulin nanoparticles to assess its ability to enhance antigen-specific immune responses. In murine models, both F-nps and E-nps significantly increased the immunogenicity of the C129R antigen, highlighting their potential as effective vaccine delivery systems. These findings underscore the promise of ferritin and encapsulin nanoparticles as delivery platforms for enhancing antigen immunogenicity and pave the way for the development of nanoparticle-based vaccines. Full article
(This article belongs to the Special Issue Structure-Based Antiviral Drugs and Vaccine Design)
Show Figures

Figure 1

18 pages, 1654 KiB  
Article
The Role of Dendritic Cells in Adaptive Immune Response Induced by OVA/PDDA Nanoparticles
by Daniele R. Pereira, Yunys Pérez-Betancourt, Bianca C. L. F. Távora, Geraldo S. Magalhães, Ana Maria Carmona-Ribeiro and Eliana L. Faquim-Mauro
Vaccines 2025, 13(1), 76; https://doi.org/10.3390/vaccines13010076 - 16 Jan 2025
Cited by 1 | Viewed by 1202
Abstract
Background/Objective: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a [...] Read more.
Background/Objective: Cationic polymers were shown to assemble with negatively charged proteins yielding nanoparticles (NPs). Poly-diallyl-dimethyl-ammonium chloride (PDDA) combined with ovalbumin (OVA) yielded a stable colloidal dispersion (OVA/PDDA-NPs) eliciting significant anti-OVA immune response. Dendritic cells (DCs), as sentinels of foreign antigens, exert a crucial role in the antigen-specific immune response. Here, we aimed to evaluate the involvement of DCs in the immune response induced by OVA/PDDA. Methods: In vivo experiments were used to assess the ability of OVA/PDDA-NPs to induce anti-OVA antibodies by ELISA, as well as plasma cells and memory B cells using flow cytometry. Additionally, DC migration to draining lymph nodes following OVA/PDDA-NP immunization was evaluated by flow cytometry. In vitro experiments using bone marrow-derived DCs (BM-DCs) were used to analyze the binding and uptake of OVA/PDDA-NPs, DC maturation status, and their antigen-presenting capacity. Results: Our data confirmed the potent effect of OVA/PDDA-NPs inducing anti-OVA IgG1 and IgG2a antibodies with increased CD19+CD138+ plasma cells and CD19+CD38+CD27+ memory cells in immunized mice. OVA/PDDA-NPs induced DC maturation and migration to draining lymph nodes. The in vitro results showed higher binding and the uptake of OVA/PDDA-NPs by BM-DCs. In addition, the NPs were able to induce the upregulation of costimulatory and MHC-II molecules on DCs, as well as TNF-α and IL-12 production. Higher OVA-specific T cell proliferation was promoted by BM-DCs incubated with OVA/PDDA-NPs. Conclusions: The data showed the central role of DCs in the induction of antigen-specific immune response by OVA-PDDA-NPs, thus proving that these NPs are a potent adjuvant for subunit vaccine design. Full article
(This article belongs to the Special Issue Vaccines Targeting Dendritic Cells)
Show Figures

Figure 1

14 pages, 3616 KiB  
Article
A Structural Effect of the Antioxidant Curcuminoids on the Aβ(1–42) Amyloid Peptide
by Angelo Santoro, Antonio Ricci, Manuela Rodriquez, Michela Buonocore and Anna Maria D’Ursi
Antioxidants 2025, 14(1), 53; https://doi.org/10.3390/antiox14010053 - 5 Jan 2025
Cited by 3 | Viewed by 1077
Abstract
Investigating amyloid–β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1–42) peptide to misfold in solution, correlated to the [...] Read more.
Investigating amyloid–β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1–42) peptide to misfold in solution, correlated to the aetiology of Alzheimer’s disease (AD), is one of the main hindrances to characterising its aggregation kinetics in a cell-mimetic environment. Moreover, the Aβ(1–42) aggregation triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), leading to cellular dysfunction and multiple cell death modalities, exacerbated by reactive oxygen species (ROS), which damage cellular components and trigger inflammation. Antioxidants like curcumin, a derivative of Curcuma longa, help mitigate ER stress by scavenging ROS and enhancing antioxidant enzymes. Furthermore, evidence in the literature highlights the effect of curcumin on the secondary structure of Aβ(1–42). This explorative study investigates the Aβ(1–42) peptide conformational behaviour in the presence of curcumin and six derivatives using circular dichroism (CD) to explore their interactions with lipid bilayers, potentially preventing aggregate formation. The results suggest that the synthetic tetrahydrocurcumin (THC) derivative interacts with the amyloid peptide in all the systems presented, while cyclocurcumin (CYC) and bisdemethoxycurcumin (BMDC) only interact when the peptide is in a less stable conformation. Molecular dynamics simulations helped visualise the curcuminoids’ effect in an aqueous system and hypothesise the importance of the peptide surface exposition to the solvent, differently modulated by the curcumin derivatives. Full article
Show Figures

Figure 1

13 pages, 3073 KiB  
Article
Anti-Inflammatory Effect of Fucoidan from Costaria costata Inhibited Lipopolysaccharide-Induced Inflammation in Mice
by Wei Zhang, Peter C. W. Lee and Jun-O Jin
Mar. Drugs 2024, 22(9), 401; https://doi.org/10.3390/md22090401 - 2 Sep 2024
Cited by 2 | Viewed by 1921
Abstract
Seaweed extracts, especially fucoidan, are well known for their immune-modulating abilities. In this current study, we extracted fucoidan from Costaria costata, a seaweed commonly found in coastal Asia, and examined its anti-inflammatory effect. Fucoidan was extracted from dried C. costata (FCC) using [...] Read more.
Seaweed extracts, especially fucoidan, are well known for their immune-modulating abilities. In this current study, we extracted fucoidan from Costaria costata, a seaweed commonly found in coastal Asia, and examined its anti-inflammatory effect. Fucoidan was extracted from dried C. costata (FCC) using an alcohol extraction method at an extraction rate of 4.5 ± 0.21%. The extracted FCC comprised the highest proportion of carbohydrates, along with sulfate and uronic acid. The immune regulatory effect of FCC was examined using bone marrow-derived dendritic cells (BMDCs). Pretreatment with FCC dose-dependently decreased the lipopolysaccharide (LPS)-induced upregulation of co-stimulatory molecules and major histocompatibility complex. In addition, FCC prevented morphological changes in LPS-induced BMDCs. Moreover, treatment of LPS-induced BMDCs with FCC suppressed the secretion of pro-inflammatory cytokines. In C57BL/6 mice, oral administration of FCC suppressed LPS-induced lung inflammation, reducing the secretion of pro-inflammatory cytokines in the bronchoalveolar lavage fluid. Finally, the administration of FCC suppressed LPS-induced sepsis. Therefore, FCC could be developed as a health supplement based on the observed anti-inflammatory effects. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Figure 1

9 pages, 3297 KiB  
Article
Development of the PD9-9 Monoclonal Antibody for Identifying Porcine Bone Marrow-Derived Dendritic Cells
by Sang Eun Kim, Young Kyu Kim, Keon Bong Oh and Jeong Ho Hwang
Life 2024, 14(9), 1054; https://doi.org/10.3390/life14091054 - 23 Aug 2024
Viewed by 1200
Abstract
The purpose of this study was to develop a monoclonal antibody (mAb) that can identify porcine dendritic cells (DCs) that have differentiated from bone marrow progenitor cells. Hybridoma technology was used to obtain mAbs, and bone marrow-derived DCs (BMDCs) were employed as immunogens [...] Read more.
The purpose of this study was to develop a monoclonal antibody (mAb) that can identify porcine dendritic cells (DCs) that have differentiated from bone marrow progenitor cells. Hybridoma technology was used to obtain mAbs, and bone marrow-derived DCs (BMDCs) were employed as immunogens for producing antibodies. The generated PD9-9 mAbs exhibited considerable reactivity towards porcine BMDCs with applications in flow cytometry and immunostaining. The antibody was composed of heavy immunoglobulin gamma-1 chains and light kappa chains. The PD9-9 mAb recognized fully differentiated porcine BMDCs and cells undergoing DC differentiation. In contrast, bone marrow cells and macrophages were not recognized by PD9-9. In addition, the PD9-9 mAb promoted porcine DC proliferation. Consequently, the PD9-9 mAb may be a biomarker for porcine DCs and will be advantageous for investigating porcine DC biology. Full article
(This article belongs to the Special Issue Feature Papers in Animal Science: 3rd Edition)
Show Figures

Graphical abstract

18 pages, 2022 KiB  
Article
Novel Dairy Fermentates Have Differential Effects on Key Immune Responses Associated with Viral Immunity and Inflammation in Dendritic Cells
by Dearbhla Finnegan, Claire Connolly, Monica A. Mechoud, Jamie A. FitzGerald, Tom Beresford, Harsh Mathur, Lorraine Brennan, Paul D. Cotter and Christine E. Loscher
Foods 2024, 13(15), 2392; https://doi.org/10.3390/foods13152392 - 29 Jul 2024
Cited by 1 | Viewed by 2485
Abstract
Fermented foods and ingredients, including furmenties derived from lactic acid bacteria (LAB) in dairy products, can modulate the immune system. Here, we describe the use of reconstituted skimmed milk powder to generate novel fermentates from Lactobacillus helveticus strains SC232, SC234, SC212, and SC210, [...] Read more.
Fermented foods and ingredients, including furmenties derived from lactic acid bacteria (LAB) in dairy products, can modulate the immune system. Here, we describe the use of reconstituted skimmed milk powder to generate novel fermentates from Lactobacillus helveticus strains SC232, SC234, SC212, and SC210, and from Lacticaseibacillus casei strains SC209 and SC229, and demonstrate, using in vitro assays, that these fermentates can differentially modulate cytokine secretion via bone-marrow-derived dendritic cells (BMDCs) when activated with either the viral ligand loxoribine or an inflammatory stimulus, lipopolysaccharide. Specifically, we demonstrate that SC232 and SC234 increase cytokines IL-6, TNF-α, IL-12p40, IL-23, IL-27, and IL-10 and decrease IL-1β in primary bone-marrow-derived dendritic cells (BMDCs) stimulated with a viral ligand. In contrast, exposure of these cells to SC212 and SC210 resulted in increased IL-10, IL-1β, IL-23, and decreased IL-12p40 following activation of the cells with the inflammatory stimulus LPS. Interestingly, SC209 and SC229 had little or no effect on cytokine secretion by BMDCs. Overall, our data demonstrate that these novel fermentates have specific effects and can differentially enhance key immune mechanisms that are critical to viral immune responses, or can suppress responses involved in chronic inflammatory conditions, such as ulcerative colitis (UC), and Crohn’s disease (CD). Full article
Show Figures

Graphical abstract

13 pages, 5977 KiB  
Article
Delta-9-Tetrahydrocannabinol Blocks Bone Marrow-Derived Macrophage Differentiation through Elimination of Reactive Oxygen Species
by Taylor H. Carter, Chloe E. Weyer-Nichols, Jeffrey I. Garcia-Sanchez, Kiesha Wilson, Prakash Nagarkatti and Mitzi Nagarkatti
Antioxidants 2024, 13(8), 887; https://doi.org/10.3390/antiox13080887 - 23 Jul 2024
Cited by 3 | Viewed by 2338
Abstract
Macrophages are vital components of the immune system and serve as the first line of defense against pathogens. Macrophage colony-stimulating factor (M-CSF) induces macrophage differentiation from bone marrow-derived cells (BMDCs). Δ9-tetrahydrocannabiol (THC), a phytocannabinoid from the Cannabis plant, has profound anti-inflammatory properties with [...] Read more.
Macrophages are vital components of the immune system and serve as the first line of defense against pathogens. Macrophage colony-stimulating factor (M-CSF) induces macrophage differentiation from bone marrow-derived cells (BMDCs). Δ9-tetrahydrocannabiol (THC), a phytocannabinoid from the Cannabis plant, has profound anti-inflammatory properties with significant effects on myeloid cells. To investigate the effect of THC on macrophage differentiation, we cultured BMDCs with M-CSF in the presence of THC. Interestingly, THC markedly blocked the differentiation of BMDCs into CD45 + CD11b + F4/80+ macrophages. The effect of THC was independent of cannabinoid receptors CB1, and CB2, as well as other potential receptors such as GPR18, GPR55, and Adenosine 2A Receptor. RNA-seq analysis revealed that the THC-treated BMDCs displayed a significant increase in the expression of NRF2-ARE-related genes. KEGG pathway analysis revealed that the expression profiles of THC-treated cells correlated with ferroptosis and glutathione metabolism pathways. Fluorescence-based labile iron assays showed that the THC-treated BMDCs had significantly increased iron levels. Finally, THC-exposed BMDCs showed decreased levels of intracellular ROS. THC has the unique molecular property to block the Fenton Reaction, thus preventing the increase in intracellular ROS that is normally induced by high iron levels. Together, these studies demonstrated that THC blocks M-CSF-induced macrophage differentiation by inhibiting ROS production through both the induction of NRF2-ARE-related gene expression and the prevention of ROS formation via the Fenton Reaction. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

13 pages, 6365 KiB  
Article
TLR7 Agonist-Loaded Gadolinium Oxide Nanotubes Promote Anti-Tumor Immunity by Activation of Innate and Adaptive Immune Responses
by Xiupeng Wang, Motohiro Hirose and Xia Li
Vaccines 2024, 12(4), 373; https://doi.org/10.3390/vaccines12040373 - 1 Apr 2024
Cited by 2 | Viewed by 1648
Abstract
Improving the delivery of biomolecules to DCs and lymph nodes is critical to increasing their anti-tumor efficacy, reducing their off-target side effects, and improving their safety. In this study, Gd2O3 nanotubes with lengths of 70–80 nm, diameters of 20–30 nm, [...] Read more.
Improving the delivery of biomolecules to DCs and lymph nodes is critical to increasing their anti-tumor efficacy, reducing their off-target side effects, and improving their safety. In this study, Gd2O3 nanotubes with lengths of 70–80 nm, diameters of 20–30 nm, and pore sizes of up to 18 nm were synthesized using a facile one-pot solvothermal method. The Gd2O3 nanotubes showed good adsorption capacity of OVA and TLR7a, with a loading efficiency of about 100%. The Gd2O3 nanotubes showed pH-sensitive degradation and biomolecule release properties; the release of gadolinium ions, OVA, and TLR7a was slow at pH 7.4 and fast at pH 5. The Gd2O3 nanotubes showed 2.6–6.0 times higher payload retention around the injection site, 3.1 times higher cellular uptake, 1.7 times higher IL1β secretion, 1.4 times higher TNFα secretion by BMDCs, and markedly enhanced draining lymph node delivery properties. The combination of OVA, TLR7a, and Gd2O3 nanotubes significantly inhibited tumor growth and increased survival rate compared with only OVA-TLR7a, only OVA, and saline. The Gd2O3 nanotubes are biocompatible and can also be used as radiation sensitizers. Full article
(This article belongs to the Special Issue Vaccine-Induced Anti-tumor Immunity)
Show Figures

Figure 1

20 pages, 2869 KiB  
Article
Unveiling a Shield of Hope: A Novel Multiepitope-Based Immunogen for Cross-Serotype Cellular Defense against Dengue Virus
by Nilanshu Manocha, Daphné Laubreton, Xavier Robert, Jacqueline Marvel, Virginie Gueguen-Chaignon, Patrice Gouet, Prashant Kumar and Madhu Khanna
Vaccines 2024, 12(3), 316; https://doi.org/10.3390/vaccines12030316 - 16 Mar 2024
Cited by 2 | Viewed by 2490
Abstract
Dengue virus (DENV) infection continues to be a public health challenge, lacking a specific cure. Vaccination remains the primary strategy against dengue; however, existing live-attenuated vaccines display variable efficacy across four serotypes, influenced by host serostatus and age, and predominantly inducing humoral responses. [...] Read more.
Dengue virus (DENV) infection continues to be a public health challenge, lacking a specific cure. Vaccination remains the primary strategy against dengue; however, existing live-attenuated vaccines display variable efficacy across four serotypes, influenced by host serostatus and age, and predominantly inducing humoral responses. To address this limitation, this study investigates a multiepitope-based immunogen designed to induce robust cellular immunity across all DENV serotypes. The chimeric immunogen integrates H-2d specific MHC-I binding T-cell epitopes derived from conserved domains within the DENV envelope protein. Immuno-informatics analyses supported its stability, non-allergenic nature, and strong MHC-I binding affinity as an antigen. To assess the immunogenicity of the multiepitope, it was expressed in murine bone-marrow-derived dendritic cells (BMDCs) that were used to prime mice. In this experimental model, simultaneous exposure to T-cell epitopes from all four DENV serotypes initiated distinct IFNγ-CD8 T-cell responses for different serotypes. These results supported the potential of the multiepitope construct as a vaccine candidate. While the optimization of the immunogen design remains a continuous pursuit, this proof-of-concept study provides a starting point for evaluating its protective efficacy against dengue infection in vivo. Moreover, our results support the development of a multiepitope vaccine that could trigger a pan-serotype anti-dengue CD8 response. Full article
Show Figures

Figure 1

20 pages, 4191 KiB  
Article
CD112 Supports Lymphatic Migration of Human Dermal Dendritic Cells
by Neda Haghayegh Jahromi, Anastasia-Olga Gkountidi, Victor Collado-Diaz, Katharina Blatter, Aline Bauer, Lito Zambounis, Jessica Danielly Medina-Sanchez, Erica Russo, Peter Runge, Gaetana Restivo, Epameinondas Gousopoulos, Nicole Lindenblatt, Mitchell P. Levesque and Cornelia Halin
Cells 2024, 13(5), 424; https://doi.org/10.3390/cells13050424 - 28 Feb 2024
Cited by 1 | Viewed by 2165
Abstract
Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism’s immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement [...] Read more.
Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism’s immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement within the lymphatic vasculature. In this study, we investigated the contribution of CD112, an adhesion molecule that we recently found to be highly expressed in murine LECs, to this process. Performing in vitro assays in the murine system, we found that transmigration of bone marrow-derived dendritic cells (BM-DCs) across or adhesion to murine LEC monolayers was reduced when CD112 was absent on LECs, DCs, or both cell types, suggesting the involvement of homophilic CD112–CD112 interactions. While CD112 was highly expressed in murine dermal LECs, CD112 levels were low in endogenous murine dermal DCs and BM-DCs. This might explain why we observed no defect in the in vivo lymphatic migration of adoptively transferred BM-DCs or endogenous DCs from the skin to dLNs. Compared to murine DCs, human monocyte-derived DCs expressed higher CD112 levels, and their migration across human CD112-expressing LECs was significantly reduced upon CD112 blockade. CD112 expression was also readily detected in endogenous human dermal DCs and LECs by flow cytometry and immunofluorescence. Upon incubating human skin punch biopsies in the presence of CD112-blocking antibodies, DC emigration from the tissue into the culture medium was significantly reduced, indicating impaired lymphatic migration. Overall, our data reveal a contribution of CD112 to human DC migration. Full article
(This article belongs to the Special Issue Innate Immunity in Health and Disease)
Show Figures

Figure 1

11 pages, 1224 KiB  
Communication
Effects of Heat Stress and Lipopolysaccharides on Gene Expression in Chicken Immune Cells
by Guang Yang, Xinyi Zhou, Shutao Chen, Anfang Liu, Lingbin Liu, Haiwei Wang, Qigui Wang and Xi Lan
Animals 2024, 14(4), 532; https://doi.org/10.3390/ani14040532 - 6 Feb 2024
Viewed by 1893
Abstract
Prolonged exposure to high temperatures and humidity can trigger heat stress in animals, leading to subsequent immune suppression. Lipopolysaccharides (LPSs) act as upstream regulators closely linked to heat stress, contributing to their immunosuppressive effects. After an initial examination of transcriptome sequencing data from [...] Read more.
Prolonged exposure to high temperatures and humidity can trigger heat stress in animals, leading to subsequent immune suppression. Lipopolysaccharides (LPSs) act as upstream regulators closely linked to heat stress, contributing to their immunosuppressive effects. After an initial examination of transcriptome sequencing data from individual samples, 48 genes displaying interactions were found to potentially be associated with heat stress. Subsequently, to delve deeper into this association, we gathered chicken bone marrow dendritic cells (BMDCs). We combined heat stress with lipopolysaccharides and utilized a 48 × 48 Fluidigm IFC quantitative microarray to analyze the patterns of gene changes under various treatment conditions. The results of the study revealed that the combination of heat stress and LPSs in a coinfection led to reduced expressions of CRHR1, MEOX1, and MOV10L1. These differentially expressed genes triggered a pro-inflammatory response within cells via the MAPK and IL-17 signaling pathways. This response, in turn, affected the intensity and duration of inflammation when experiencing synergistic stimulation. Therefore, LPSs exacerbate the immunosuppressive effects of heat stress and prolong cellular adaptation to stress. The combination of heat stress and LPS stimulation induced a cellular inflammatory response through pathways involving cAMP, IL-17, MAPK, and others, consequently leading to decreased expression levels of CRHR1, MEOX1, and MOV10L1. Full article
(This article belongs to the Special Issue Genetics and Breeding Advances in Poultry Health and Production)
Show Figures

Figure 1

22 pages, 16957 KiB  
Article
Ectromelia Virus Affects the Formation and Spatial Organization of Adhesive Structures in Murine Dendritic Cells In Vitro
by Zuzanna Biernacka, Karolina Gregorczyk-Zboroch, Iwona Lasocka, Agnieszka Ostrowska, Justyna Struzik, Małgorzata Gieryńska, Felix N. Toka and Lidia Szulc-Dąbrowska
Int. J. Mol. Sci. 2024, 25(1), 558; https://doi.org/10.3390/ijms25010558 - 31 Dec 2023
Cited by 1 | Viewed by 1936
Abstract
Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present [...] Read more.
Ectromelia virus (ECTV) is a causative agent of mousepox. It provides a suitable model for studying the immunobiology of orthopoxviruses, including their interaction with the host cell cytoskeleton. As professional antigen-presenting cells, dendritic cells (DCs) control the pericellular environment, capture antigens, and present them to T lymphocytes after migration to secondary lymphoid organs. Migration of immature DCs is possible due to the presence of specialized adhesion structures, such as podosomes or focal adhesions (FAs). Since assembly and disassembly of adhesive structures are highly associated with DCs’ immunoregulatory and migratory functions, we evaluated how ECTV infection targets podosomes and FAs’ organization and formation in natural-host bone marrow-derived DCs (BMDC). We found that ECTV induces a rapid dissolution of podosomes at the early stages of infection, accompanied by the development of larger and wider FAs than in uninfected control cells. At later stages of infection, FAs were predominantly observed in long cellular extensions, formed extensively by infected cells. Dissolution of podosomes in ECTV-infected BMDCs was not associated with maturation and increased 2D cell migration in a wound healing assay; however, accelerated transwell migration of ECTV-infected cells towards supernatants derived from LPS-conditioned BMDCs was observed. We suggest that ECTV-induced changes in the spatial organization of adhesive structures in DCs may alter the adhesiveness/migration of DCs during some conditions, e.g., inflammation. Full article
(This article belongs to the Special Issue Virus–Host Interaction and Cell Restriction Mechanisms 2.0)
Show Figures

Figure 1

16 pages, 15377 KiB  
Article
The Potential Role of Moringa oleifera Lam. Leaf Proteins in Moringa Allergy by Functionally Activating Murine Bone Marrow-Derived Dendritic Cells and Inducing Their Differentiation toward a Th2-Polarizing Phenotype
by Chuyu Xi, Wenjie Li, Xiaoxue Liu, Jing Xie, Shijun Li, Yang Tian and Shuang Song
Nutrients 2024, 16(1), 7; https://doi.org/10.3390/nu16010007 - 19 Dec 2023
Cited by 2 | Viewed by 2266
Abstract
Moringa oleifera leaves are an inexpensive substitute for staple foods. Despite limited data, Moringa oleifera leaf protein (Mo-Pr) may be allergenic in BALB/c mice. In mouse models and allergic patients, dendritic cells (DCs) may be involved in food allergy. In addition, some allergens, [...] Read more.
Moringa oleifera leaves are an inexpensive substitute for staple foods. Despite limited data, Moringa oleifera leaf protein (Mo-Pr) may be allergenic in BALB/c mice. In mouse models and allergic patients, dendritic cells (DCs) may be involved in food allergy. In addition, some allergens, including food allergens, can directly activate DCs and induce Th2 polarization. We investigated whether Mo-Pr can modulate the functional profile of murine bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs were obtained from mouse bone marrow cultured with granulocyte–macrophage colony-stimulating factor (GM-CSF) for 7 days and then treated with lipopolysaccharide (LPS) or Mo-Pr. BMDC phenotypes were evaluated via flow cytometry, cytokine production was assessed using ELISA, the expression of key genes was studied using qRT-PCR, the effects on T-cell differentiation were investigated using mixed lymphocyte reaction (MLR), and transcriptional changes in BMDCs were investigated using RNA-Seq. Mo-Pr-specific IgE was investigated in recipient serum after BMDC transfer. Mo-Pr treatment significantly induced BMDC maturation, increased the expression of CD80/86 and MHC II, resulted in the production of IL-12 and TNF-α, and induced T-cell differentiation. Mo-Pr treatment stimulated BMDCs’ expression of the Th2 promoters OX40L and TIM-4, induced the production of the Th2-type chemokines CCL22 and CCL17, and decreased the Th1/Th2 ratio in vitro. Healthy recipients of Mo-Pr-treated BMDCs produced Mo-Pr-specific IgE. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

15 pages, 6790 KiB  
Article
Notch Signaling Regulates the Function and Phenotype of Dendritic Cells in Helicobacter pylori Infection
by Qiaoyuan Liu, Chuxi Chen, Yunxuan He, Wenhao Mai, Shipeng Ruan, Yunshan Ning and Yan Li
Microorganisms 2023, 11(11), 2818; https://doi.org/10.3390/microorganisms11112818 - 20 Nov 2023
Cited by 5 | Viewed by 2267
Abstract
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic [...] Read more.
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic cells (BMDCs) were pretreated in the absence or presence of Notch signaling inhibitor DAPT prior to H. pylori stimulation and the levels of Notch components, cytokines and surface markers as well as the differentiation of CD4+ T cells in co-culture were measured using quantitative real-time PCR (qRT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Compared with the control, the mRNA expression of all Notch receptors and Notch ligands Dll4 and Jagged1 was up-regulated in H. pylori-stimulated BMDCs. The blockade of Notch signaling by DAPT influenced the production of IL-1β and IL-10 in H. pylori-pulsed BMDCs, and reduced the expression of Notch1, Notch3, Notch4, Dll1, Dll3 and Jagged2. In addition, DAPT pretreatment decreased the expression of maturation markers CD80, CD83, CD86, and major histocompatibility complex class II (MHC-II) of BMDCs, and further skewed Th17/Treg balance toward Treg. Notch signaling regulates the function and phenotype of DCs, thus mediating the differentiation of CD4+ T cells during H. pylori infection. Full article
Show Figures

Figure 1

Back to TopTop