Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = BIPV (Building Integrated Photovoltaic)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 274
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

33 pages, 7605 KiB  
Article
Dynamic Heat Transfer Modelling and Thermal Performance Evaluation for Cadmium Telluride-Based Vacuum Photovoltaic Glazing
by Changyu Qiu, Hongxing Yang and Kaijun Dong
Buildings 2025, 15(15), 2612; https://doi.org/10.3390/buildings15152612 - 23 Jul 2025
Viewed by 272
Abstract
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, [...] Read more.
Building-integrated photovoltaic (BIPV) windows present a viable path towards carbon neutrality in the building sector. However, conventional BIPV windows, such as semi-transparent photovoltaic (STPV) glazings, still suffer from inadequate thermal insulation, which limits their effectiveness across different climate conditions. To address this issue, the cadmium telluride-based vacuum PV glazing has been developed to enhance the thermal performance of BIPV applications. To fully understand the complex thermal behaviour under real-world operational scenarios, this study introduces a one-dimensional transient heat transfer model that can efficiently capture the time-dependent thermal dynamics of this novel glazing system. Based on the numerical solutions using the explicit finite difference method (FDM), the temperature profile of the vacuum PV glazing can be obtained dynamically. Consequently, the heat gain of the semi-transparent vacuum PV glazing can be calculated under time-varying outdoor and indoor conditions. The validated heat transfer model was applied under four different scenarios, viz. summer daytime, summer nighttime, winter daytime, and winter nighttime, to provide a detailed analysis of the dynamic thermal behaviour, including the temperature variation and the energy flow. The dynamic thermal characteristics of the vacuum PV glazing calculated by the transient heat transfer model demonstrate its excellent thermal insulation and solar control capabilities. Moreover, the thermal performance of vacuum PV glazing was compared with a standard double-pane window under various weather conditions of a typical summer day and a typical winter day. The results indicate that the vacuum PV glazing can effectively minimise both heat gain and heat loss. The fluctuation of the inner surface temperature can be controlled within a limited range away from the set point of the indoor room temperature. Therefore, the vacuum PV glazing contributes to stabilising the temperature of the indoor environment despite the fluctuating solar radiation and periodic outdoor temperature. It is suggested that the vacuum PV glazing has the potential to enhance the climate adaptability of BIPV windows under different climate backgrounds. Full article
(This article belongs to the Collection Renewable Energy in Buildings)
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 314
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

14 pages, 1306 KiB  
Article
Life Cycle Cost Optimization of Battery Energy Storage Systems for BIPV-Supported Smart Buildings: A Techno-Economic Analysis
by Hashem Amini Toosi
Sustainability 2025, 17(13), 5820; https://doi.org/10.3390/su17135820 - 24 Jun 2025
Viewed by 389
Abstract
Building-integrated photovoltaic (BIPV) systems coupled with energy storage systems offer promising solutions to reduce the dependency of buildings on non-renewable energy sources and provide the building sector with environmental benefits by reducing the buildings’ environmental footprint. Hence, the economic viability of such energy [...] Read more.
Building-integrated photovoltaic (BIPV) systems coupled with energy storage systems offer promising solutions to reduce the dependency of buildings on non-renewable energy sources and provide the building sector with environmental benefits by reducing the buildings’ environmental footprint. Hence, the economic viability of such energy systems must be further assessed, particularly regarding the market price and required initial investments. This paper aims to evaluate the net present cost (NPC) and saving-to-investment ratio (SIR) of the electrical storage system coupled with BIPV in smart residential buildings with a focus on optimum sizing of the battery systems under varying market price scenarios. Therefore, a parametric energy model of a residential building, a life cycle cost analysis approach, and a Monte Carlo analysis are carried out to elaborate the dynamism between the storage size, market price, and net present cost of the system over its life cycle. The results provide a decision-support tool to find the cost-optimum size of the battery systems and to realize the interplay between the battery system size, the market price, and the economic feasibility of the electrical storage system coupled with residential BIPV. In more detail, the results reveal that the economic viability thresholds of the battery systems’ market price are in the range of 250–300 €/kWh depending on the chosen life cycle cost indicators, while the cost-optimum size of the battery systems varies noticeably according to the market price of battery systems. Furthermore, the paper provides insight to designers, policymakers, manufacturers, and the market for developing scenarios to accelerate the implementation of energy storage systems in the building sector. Full article
Show Figures

Figure 1

23 pages, 3663 KiB  
Article
A Study on the Optimization of Photovoltaic Installations on the Facades of Semi-Outdoor Substations
by Xiaohui Wu, Yanfeng Wang, Yufei Tan and Ping Su
Sustainability 2025, 17(12), 5460; https://doi.org/10.3390/su17125460 - 13 Jun 2025
Viewed by 478
Abstract
This paper explores the optimal configuration strategies for building-integrated photovoltaic (BIPV) systems in response to the low-carbon transformation needs of semi-outdoor substations, aiming to reconcile the contradiction between photovoltaic (PV) power generation efficiency and indoor environmental control in industrial buildings. Taking a 220 [...] Read more.
This paper explores the optimal configuration strategies for building-integrated photovoltaic (BIPV) systems in response to the low-carbon transformation needs of semi-outdoor substations, aiming to reconcile the contradiction between photovoltaic (PV) power generation efficiency and indoor environmental control in industrial buildings. Taking a 220 kV semi-outdoor substation of the China Southern Power Grid as a case study, a building energy consumption–PV power generation coupling model was established using EnergyPlus software. The impacts of three PV wall constructions and different building orientations on a transformer room and an air-conditioned living space were analyzed. The results show the EPS-filled PV structure offers superior passive thermal performance and cooling energy savings, making it more suitable for substation applications with high thermal loads. Building orientation plays a decisive role in the net energy performance, with an east–west alignment significantly enhancing the PV module’s output and energy efficiency due to better solar exposure. Based on current component costs, electricity prices, and subsidies, the BIPV system demonstrates a moderate annual return, though the relatively long payback period presents a challenge for widespread adoption. East–west orientations offer better returns due to their higher solar exposure. It is recommended to adopt east–west layouts in EPS-filled PV construction to optimize both energy performance and economic performance, while further shortening the payback period through technical and policy support. This study provides an optimized design path for industrial BIPV module integration and aids power infrastructure’s low-carbon shift. Full article
Show Figures

Figure 1

21 pages, 2175 KiB  
Article
Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation
by Ana Marcos-Castro, Carlos Sanz-Saiz, Jesús Polo and Nuria Martín-Chivelet
Appl. Sci. 2025, 15(12), 6579; https://doi.org/10.3390/app15126579 - 11 Jun 2025
Viewed by 526
Abstract
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical [...] Read more.
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical output according to the installed power and the solar irradiation, thus accounting for the power losses the PV system undergoes. Among the different parameters affecting PR, module temperature and the angle of incidence of irradiance are the most dependent on the BIPV application due to the varied module positioning. This paper assesses the suitability of several BIPV temperature models and determines the angular losses for any possible module positioning. The proposed methodology is easy to replicate and results in polar heatmap graphs to estimate PR at the desired location as a function of the tilt and azimuth angles of the modules. The calculations require irradiance, ambient temperature, and wind speed data, which can easily be obtained worldwide. Dynamic sky conditions are addressed through filters that smooth out quickly changing input data to avoid high and low peaks. The developed graphs are helpful in the decision-making process for BIPV designs by allowing the designer to estimate the expected PR of the BIPV system for any possible position of the modules on the building envelope, reducing the effect of uncertainties and resulting in more accurate and better predictions of the system’s output energy. The method applied to a BIPV façade in Madrid showed a deviation of less than 3% between the estimated and monitored PRs; the PR values ranged between 0.74 and 0.82, depending on the BIPV application and module position. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Graphical abstract

14 pages, 2902 KiB  
Article
A Cost-Effective and Reliable Junction-Box–Integrated Rapid Shutdown System for BIPV Applications
by Joon-Young Jeon, Minkook Kim, Myungwoo Son, Ju-Hee Kim, Young-Dal Lee and Yong-Hyun Kim
Energies 2025, 18(11), 2983; https://doi.org/10.3390/en18112983 - 5 Jun 2025
Viewed by 480
Abstract
In response to fire safety risks associated with photovoltaic (PV) systems and evolving rapid shutdown requirements, this paper proposes a cost-effective and reliable rapid shutdown solution integrated directly into the PV module junction box. The system employs analog circuitry triggered by an external [...] Read more.
In response to fire safety risks associated with photovoltaic (PV) systems and evolving rapid shutdown requirements, this paper proposes a cost-effective and reliable rapid shutdown solution integrated directly into the PV module junction box. The system employs analog circuitry triggered by an external pulse-width modulation (PWM) signal, with optocoupler isolation and a controlled short-circuit method to rapidly reduce the module output voltage. Simulation and experimental results confirm that the output voltage is reduced to approximately 2 V within 280 ms, satisfying the U.S. National Electrical Code (NEC) 690.12 requirements. This junction-box–integrated approach eliminates the complexity of conventional module-level power electronics (MLPE) systems and offers a highly practical alternative for building-integrated photovoltaic (BIPV) applications where partial shading is minimal. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

57 pages, 1567 KiB  
Review
Building Integrated Photovoltaic Systems: Characteristics and Power Management
by Carlos Andrés Ramos-Paja, Luz Adriana Trejos-Grisales and Sergio Ignacio Serna-Garcés
Processes 2025, 13(6), 1650; https://doi.org/10.3390/pr13061650 - 24 May 2025
Viewed by 917
Abstract
Building Integrated Photovoltaic (BIPV) systems have emerged as an option to design Net Zero Energy Buildings (NZEB), thus helping to meet sustainable development goals. Based on an exhaustive review of papers, this work identifies characteristics and solutions to address power management issues in [...] Read more.
Building Integrated Photovoltaic (BIPV) systems have emerged as an option to design Net Zero Energy Buildings (NZEB), thus helping to meet sustainable development goals. Based on an exhaustive review of papers, this work identifies characteristics and solutions to address power management issues in BIPV systems through three key approaches: (1) configurations of photovoltaic arrays, (2) MPPT methods, and (3) granularity level of the MPPT action. The analysis also highlights the advantages of deploying DC buses alongside conventional AC infrastructure to reduce conversion losses. This work also provides information concerning the trends in design and performance of BIPV systems, which is useful as a background for researchers and designers. In addition, the cross-coupling phenomena occurring in distributed MPPT solutions for BIPV systems is explained and evaluated in order to propose a mitigation strategy. These findings offer practical guidelines for developing more efficient BIPV systems that effectively support the transition to sustainable buildings and cities. Full article
Show Figures

Figure 1

42 pages, 2459 KiB  
Review
Climate-Responsive Design of Photovoltaic Façades in Hot Climates: Materials, Technologies, and Implementation Strategies
by Xiaohui Wu, Yanfeng Wang, Shile Deng and Ping Su
Buildings 2025, 15(10), 1648; https://doi.org/10.3390/buildings15101648 - 14 May 2025
Cited by 2 | Viewed by 1561
Abstract
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. [...] Read more.
With the intensification of global climate change, buildings in hot climate zones face increasing challenges related to high energy consumption and thermal comfort. Building integrated photovoltaic (BIPV) façades, which combine power generation and energy saving potential, require further optimization in their climate-adaptive design. Most existing studies primarily focus on the photoelectric conversion efficiency of PV modules, yet there is a lack of systematic analysis of the coupled effects of temperature, humidity, and solar radiation intensity on PV performance. Moreover, the current literature rarely addresses the regional material degradation patterns, integrated cooling solutions, or intelligent control systems suitable for hot and humid climates. There is also a lack of practical, climate specific design guidelines that connect theoretical technologies with real world applications. This paper systematically reviews BIPV façade design strategies following a climate zoning framework, summarizing research progress from 2019 to 2025 in the areas of material innovation, thermal management, light regulation strategies, and parametric design. A climate responsive strategy is proposed to address the distinct challenges of humid hot and dry hot climates. Finally, this study discusses the barriers and challenges of BIPV system applications in hot climates and highlights future research directions. Unlike previous reviews, this paper offers a multi-dimensional synthesis that integrates climatic classification, material suitability, passive and active cooling strategies, and intelligent optimization technologies. It further provides regionally differentiated recommendations for façade design and outlines a unified framework to guide future research and practical deployment of BIPV systems in hot climates. Full article
Show Figures

Figure 1

10 pages, 7894 KiB  
Article
A Study on Prevention of Fire Proliferation in Building-Type Solar Modules
by Yong Chan Jung, Min Ji Song, Hee Kyung Park, Min Chul Lee and Soo Yeol Lee
Fire 2025, 8(5), 194; https://doi.org/10.3390/fire8050194 - 12 May 2025
Viewed by 2482
Abstract
To prevent the vertical spread of fire from flammable components in Building-Integrated Photovoltaic (BIPV) modules during building fires, we applied a fire-resistant (FR) coating technology to the surface of BIPV modules, which are commonly used in Zero Energy Buildings (ZEBs). By applying an [...] Read more.
To prevent the vertical spread of fire from flammable components in Building-Integrated Photovoltaic (BIPV) modules during building fires, we applied a fire-resistant (FR) coating technology to the surface of BIPV modules, which are commonly used in Zero Energy Buildings (ZEBs). By applying an acrylic FR coating to the BIPV module, we quantitatively evaluated the influence of heat damage before and after the FR coating, the average propagation rate of flames, and the module failure time in a combustion environment. The results demonstrate that the flame-blocking function and fire diffusion prevention effect of the FR coating are excellent in all combustion environments. Particularly, flame damage is minimized under the condition of an FR coating with a thickness of at least 50 μm. The current work suggests fire resistance mechanisms in various combustion environments and provides the applicability of FR coating technology on BIPV modules for fire non-proliferation. Full article
(This article belongs to the Special Issue Photovoltaic and Electrical Fires: 2nd Edition)
Show Figures

Figure 1

41 pages, 5266 KiB  
Review
BIM-Based Framework for Photovoltaic Systems: Advancing Technologies, Overcoming Challenges, and Enhancing Sustainable Building Performance
by Josivan Leite Alves, Rachel Perez Palha and Adiel Teixeira de Almeida Filho
Sustainability 2025, 17(8), 3695; https://doi.org/10.3390/su17083695 - 19 Apr 2025
Cited by 3 | Viewed by 1480
Abstract
Building-integrated photovoltaic systems (BIPVs) is a strategy to achieve energy self-sufficiency in buildings. However, photovoltaic (PV) energy production presents challenges due to its intermittent nature, characterized by variations and uncertainties associated with solar radiation and interference from the building’s surroundings. Therefore, building information [...] Read more.
Building-integrated photovoltaic systems (BIPVs) is a strategy to achieve energy self-sufficiency in buildings. However, photovoltaic (PV) energy production presents challenges due to its intermittent nature, characterized by variations and uncertainties associated with solar radiation and interference from the building’s surroundings. Therefore, building information modeling (BIM) enables energy simulations and solar performance analyses during the design phase of buildings. In this context, this paper aims to identify the key strategies for integrating BIM and photovoltaic energy production systems and how these approaches support the development of sustainable projects. A systematic literature review was conducted, combined with bibliometric analysis, content analysis, and coding of 63 articles. Results indicate an annual research growth rate of 19.62%, with contributions from 268 authors and an international co-authorship rate of 22.22%. Core research trends in the BIM-PV context were identified through thematic maps, highlighting four dimensions—BIPV applications, parametric tools for energy simulation, challenges, and potential benefits—divided into 32 codes. The findings are synthesized into four theoretical propositions structured in an integrative framework. Additionally, five key applications of BIM-PV integration are mapped, along with their addressed problems and the limitations in establishing theoretical and managerial contributions. Full article
Show Figures

Figure 1

16 pages, 3871 KiB  
Article
Economic Analysis of Biofuel Production in Agrophotovoltaic Systems Using Building-Integrated Photovoltaics in South Korea
by Youngjin Kim and Sojung Kim
Energies 2025, 18(8), 1949; https://doi.org/10.3390/en18081949 - 11 Apr 2025
Viewed by 527
Abstract
Agrophotovoltaic (APV) systems represent innovative agricultural farms and solar power plants, capable of producing electricity and crops simultaneously. Since the solar radiation required to optimize harvests varies by crop type, traditional PV panels face challenges in efficiently adjusting the shading ratio of APV [...] Read more.
Agrophotovoltaic (APV) systems represent innovative agricultural farms and solar power plants, capable of producing electricity and crops simultaneously. Since the solar radiation required to optimize harvests varies by crop type, traditional PV panels face challenges in efficiently adjusting the shading ratio of APV systems. This study evaluates the economic viability of APV systems integrated with building-integrated photovoltaic (BIPV) systems for biofuel production. Specifically, it assesses the production forecast for corn-based biofuel—demand for which is rising due to the mixed-fuel use policy of the Korean government—and the economic feasibility of production in the APV system enhanced by BIPV integration (i.e., the APV–BIPV system). To this end, LCOE (levelized cost of energy) and NPV (net present value) are employed as performance indicators. Additionally, yield data from corn and corn stover harvested in actual APV facilities are utilized to predict bioenergy production. Consequently, the study will analyze the impact of renewable energy production from the proposed APV–BIPV system on achieving the Korean government’s renewable energy production goals and will provide guidelines on the potential benefits for farmers involved in renewable energy production and energy crop harvesting. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 20193 KiB  
Article
Heat Transfer Analysis of Ventilated Photovoltaic Wall Panels with Curved Ribs for Different Parametric Cavity Structures
by Na Song, Xitong Xu, Yongxiao Zheng, Jikui Miao and Hongwen Yu
Buildings 2025, 15(7), 1184; https://doi.org/10.3390/buildings15071184 - 4 Apr 2025
Viewed by 585
Abstract
Photovoltaic (PV) wall panels are an integral part of Building-Integrated Photovoltaics (BIPV) and have great potential for development. However, inadequate heat dissipation can reduce power generation efficiency. To reduce the temperature of photovoltaic wall panels and improve the photovoltaic conversion efficiency, this paper [...] Read more.
Photovoltaic (PV) wall panels are an integral part of Building-Integrated Photovoltaics (BIPV) and have great potential for development. However, inadequate heat dissipation can reduce power generation efficiency. To reduce the temperature of photovoltaic wall panels and improve the photovoltaic conversion efficiency, this paper constructs a computational fluid dynamics (CFD) numerical model of ventilated photovoltaic wall panels and verifies it, then simulates and analyzes the effects of three cavity structure forms on the thermal performance of photovoltaic wall panels and optimizes the dimensional parameters of the curved-ribbed cavity structure. The average surface temperatures of flat-plate, rectangular-ribbed, and arc-ribbed cavity structure PV wall panels were 59.42 °C, 57.56 °C, and 55.39 °C, respectively, under natural ventilation conditions. Among them, the arc-ribbed cavity structure PV wall panels have the best heat dissipation effect. Further studies have shown that the curvature, rib height, width, and spacing of the curved ribs significantly affect the heat dissipation performance of the photovoltaic panels. Compared to the flat-plate cavity structure, the parameter-optimized curved-rib cavity structure significantly reduces the average surface temperature of PV panels. As solar radiation intensity increases, the optimized structure’s heat dissipation effect strengthens, achieving a 6 °C temperature reduction at 1000 W/m2 solar radiation. Full article
(This article belongs to the Topic Advances in Solar Heating and Cooling)
Show Figures

Figure 1

23 pages, 3816 KiB  
Article
Towards Zero-Energy Buildings: A Comparative Techno-Economic and Environmental Analysis of Rooftop PV and BIPV Systems
by Mohammad Hassan Shahverdian, Mohammadreza Najaftomaraei, Arash Fassadi Chimeh, Negin Yavarzadeh, Ali Sohani, Ramtin Javadijam and Hoseyn Sayyaadi
Buildings 2025, 15(7), 999; https://doi.org/10.3390/buildings15070999 - 21 Mar 2025
Cited by 2 | Viewed by 914
Abstract
The integration of photovoltaic (PV) systems in buildings is crucial for reducing reliance on conventional energy sources while promoting sustainability. This study evaluates and compares three energy generation systems: rooftop PV, building-integrated photovoltaics (BIPV), and a hybrid combination of both. The analysis covers [...] Read more.
The integration of photovoltaic (PV) systems in buildings is crucial for reducing reliance on conventional energy sources while promoting sustainability. This study evaluates and compares three energy generation systems: rooftop PV, building-integrated photovoltaics (BIPV), and a hybrid combination of both. The analysis covers energy production, economic feasibility through the levelized cost of electricity (LCOE), and environmental impact by assessing unreleased carbon dioxide (UCD). A residential building in Kerman, Iran, serves as the case study. The results indicate that rooftop PV exhibits the lowest LCOE at USD 0.023/kWh, while BIPV has a higher LCOE of USD 0.077/kWh due to installation complexities. The hybrid system, combining both technologies, achieves a balance with an LCOE of USD 0.05/kWh while maximizing energy generation at 16.2 MWh annually. Additionally, the hybrid system reduces CO2 emissions by 9.7 tons per year, surpassing the standalone rooftop PV (5.0 tons) and BIPV (4.7 tons). The findings highlight the synergistic benefits of integrating both PV systems, ensuring higher self-sufficiency and enhanced environmental impact. This research underscores the necessity of comprehensive urban energy planning to optimize renewable energy utilization and accelerate the transition toward zero-energy buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

50 pages, 16380 KiB  
Review
Progress in Thin-Film Photovoltaics: A Review of Key Strategies to Enhance the Efficiency of CIGS, CdTe, and CZTSSe Solar Cells
by Sivabalan Maniam Sivasankar, Carlos de Oliveira Amorim and António F. da Cunha
J. Compos. Sci. 2025, 9(3), 143; https://doi.org/10.3390/jcs9030143 - 20 Mar 2025
Cited by 3 | Viewed by 1258
Abstract
Thin-film solar cells (TFSCs) represent a promising frontier in renewable energy technologies due to their potential for cost reduction, material efficiency, and adaptability. This literature review examines the key materials and advancements that make up TFSC technologies, with a focus on Cu(In,Ga)Se2 [...] Read more.
Thin-film solar cells (TFSCs) represent a promising frontier in renewable energy technologies due to their potential for cost reduction, material efficiency, and adaptability. This literature review examines the key materials and advancements that make up TFSC technologies, with a focus on Cu(In,Ga)Se2 (CIGS), cadmium telluride (CdTe), and Cu2ZnSnS4 (CZTS) and its sulfo-selenide counterpart Cu2ZnSn(S,Se)4 (CZTSSe). Each material’s unique properties—including tuneable bandgaps, high absorption coefficients, and low-cost scalability—make them viable candidates for a wide range of applications, from building-integrated photovoltaics (BIPV) to portable energy solutions. This review explores recent progress in the enhancement of power conversion efficiency (PCE), particularly through bandgap engineering, alkali metal doping, and interface optimization. Key innovations such as silver (Ag) alloying in CIGS, selenium (Se) alloying in CdTe, and sulfur (S) to Se ratio optimization in CZTSSe have driven PCE improvements and expanded the range of practical uses. Additionally, the adaptability of TFSCs for roll-to-roll manufacturing on flexible substrates has further cemented their role in advancing renewable energy adoption. Challenges remain, including environmental concerns, but ongoing research addresses these limitations, paving the way for TFSCs to become a crucial technology for transitioning to sustainable energy systems. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

Back to TopTop