Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (539)

Search Parameters:
Keywords = BALB/C mouse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 752 KB  
Article
Blood–Brain Barrier Penetration of Novel 4-Trifluoromethyl-Coumarin Hybrids with Antibacterial Properties as Potential Brain Therapeutics in the Context of Spatially Diverse Healthcare Systems
by Paweł Kowalczyk, Dominik Koszelewski, Tomasz Misztal, Michał Szlis, Patrycja Młotkowska, Marcin Gołębiewski, Krzysztof Głowacz, Malwina Kocot, Michał Marczyk, Aleksandra Wypych, Apoloniusz Kurylczyk, Anna Krajewska-Pędzik and Ryszard Ostaszewski
Int. J. Mol. Sci. 2025, 26(19), 9655; https://doi.org/10.3390/ijms26199655 - 3 Oct 2025
Abstract
Effective treatment of central nervous system (CNS) infections remains a major challenge, as most therapeutic agents do not efficiently cross the blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB). Coumarin derivatives are of particular interest due to their broad pharmacological activity, favorable [...] Read more.
Effective treatment of central nervous system (CNS) infections remains a major challenge, as most therapeutic agents do not efficiently cross the blood–brain barrier (BBB) and the blood–cerebrospinal fluid barrier (BCSFB). Coumarin derivatives are of particular interest due to their broad pharmacological activity, favorable safety profile, and potential to penetrate biological barriers. Eight novel coumarin-based peptidomimetics functionalized with trifluoromethyl or methyl scaffolds were synthesized and evaluated as antimicrobial agents with the ability to cross the blood–brain barrier. Antimicrobial activity of the investigated compounds was tested against Staphylococcus aureus and multiple Escherichia coli strains (K12, R2, R3, R4) using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Cytotoxicity was assessed in vitro in BALB/c-3T3 mouse fibroblasts and αT3-1 pituitary gonadotrope cells using the MTT assay. In vivo studies were performed in sheep to assess transfer of the compounds from blood to cerebrospinal fluid (CSF). All synthesized derivatives demonstrated antimicrobial activity and acceptable cytotoxicity, comparable to those of clinically used antibiotics. CF3-modified coumarin peptidomimetics show promise as antimicrobial agents with the potential to penetrate the BBB/BCSFB. These findings support further investigation of coumarin-based scaffolds as a platform for the development of novel therapeutics for CNS infections. Full article
Show Figures

Graphical abstract

18 pages, 4107 KB  
Article
Intertypic Recombination Between Coxsackievirus A16 and Enterovirus A71 Structural and Non-Structural Genes Modulates Virulence and Protection Efficacy
by Hooi Yee Chang, Han Kang Tee, Kien Chai Ong, Kartini Jasni, Syahril Abdullah, I.-Ching Sam and Yoke Fun Chan
Vaccines 2025, 13(10), 1017; https://doi.org/10.3390/vaccines13101017 - 29 Sep 2025
Abstract
Background/Objectives: Enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot and mouth disease (HFMD), often co-circulating and occasionally undergoing genetic recombination. While natural recombinants often involve genomic regions encoding non-structural proteins, their effects on replication and pathogenesis [...] Read more.
Background/Objectives: Enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot and mouth disease (HFMD), often co-circulating and occasionally undergoing genetic recombination. While natural recombinants often involve genomic regions encoding non-structural proteins, their effects on replication and pathogenesis remain unclear. Methods: To address this, four chimera viruses (Chi-CCE, Chi-ECE, Chi-EEC, and Chi-CEC) were constructed with 5′UTR, capsid P1, and non-structural P2 and P3 genes, from CVA16 (denoted as C) or EV-A71 (denoted as E). These chimeras were tested for replication kinetics and cytopathic effects in rhabdomyosarcoma cells while in vivo virulence and protection efficacy were evaluated using a newborn BALB/c mouse model. Results: All chimeric viruses remained viable and exhibited higher replication than CVA16. In vivo, all chimeric viruses were avirulent except Chi-CCE and CVA16, which showed high virulence and viral titres in the brains and limbs of infected newborn mice. This suggests that 5′UTR and capsid P1 genes of CVA16 are critical genetic determinants of virulence. Notably, only the anti-inflammatory cytokine IL-10 was elevated, suggesting potential immune modulation during infection. Inactivated Chi-CCE immunisation conferred 100% protection against lethal CVA16 or mouse-adapted EV-A71 challenge revealing its potential as a bivalent vaccine candidate. Conclusions: Our study demonstrates that recombination between CVA16 and EV-A71 influences viral virulence and protection efficacy with implications for future development of multivalent vaccines. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

14 pages, 2598 KB  
Article
Impact of Particulate Matter on the Exacerbation of Immunoglobulin A Nephropathy: An Animal Experimental Study
by Minhyeok Lee, Yeon Woo Lee, Daeun Kang, Ji Woong Son, Wan Jin Hwang, Sin Yung Woo, Mi Jin Hong, Yusin Pak, Se-Hee Yoon, Won Min Hwang, Sung-Ro Yun and Yohan Park
Int. J. Mol. Sci. 2025, 26(19), 9387; https://doi.org/10.3390/ijms26199387 - 25 Sep 2025
Abstract
Particulate matter (PM) exposure is linked to chronic kidney disease; however, its effect on immunoglobulin A (IgA) nephropathy (IgAN) remains unclear. We investigated whether PM exposure exacerbates IgAN in a mouse model. HIGA mice (IgAN model) and BALB/c controls were exposed to PM [...] Read more.
Particulate matter (PM) exposure is linked to chronic kidney disease; however, its effect on immunoglobulin A (IgA) nephropathy (IgAN) remains unclear. We investigated whether PM exposure exacerbates IgAN in a mouse model. HIGA mice (IgAN model) and BALB/c controls were exposed to PM in a sealed chamber for 13 weeks. Lung Toll-like receptor 9 (TLR9) expression, serum aberrantly glycosylated IgA, A proliferation-inducing ligand (APRIL) levels, mesangial IgA deposition, and kidney pathology were assessed. RNA sequencing of splenic B cells was performed to evaluate immune-related gene expression. PM exposure increased lung TLR9 expression in both strains, particularly around pigment-laden macrophages. HIGA mice showed elevated aberrant IgA and APRIL levels, with aggravated mesangial expansion and IgA deposition. Transcriptomic analysis revealed immune dysregulation in splenic B cells of PM-exposed HIGA mice. Our findings provide experimental evidence that PM exposure aggravates IgAN via TLR9-mediated mucosal immune activation, leading to aberrant IgA glycosylation and mesangial deposition. These findings emphasize that reducing PM exposure may benefit patients with IgAN. Full article
Show Figures

Figure 1

13 pages, 1710 KB  
Article
Dynamic Inverse Relationship Between Cell-Free DNA and Anti-dsDNA Antibodies in Experimental SLE Highlights the Potential for Targeted Immunomodulatory Therapy
by Mark M. Melamud, Evgeny A. Ermakov, Anna S. Tolmacheva, Georgy A. Nevinsky and Valentina N. Buneva
Pathophysiology 2025, 32(3), 48; https://doi.org/10.3390/pathophysiology32030048 - 16 Sep 2025
Viewed by 354
Abstract
Background/Objectives: The pathognomonic feature of systemic lupus erythematosus (SLE) is the formation of antibodies to double-stranded DNA (anti-dsDNA Abs). Cell-free DNA (cfDNA) has been suggested as one of the antigens for the generation of anti-dsDNA Abs, but the temporal changes in these [...] Read more.
Background/Objectives: The pathognomonic feature of systemic lupus erythematosus (SLE) is the formation of antibodies to double-stranded DNA (anti-dsDNA Abs). Cell-free DNA (cfDNA) has been suggested as one of the antigens for the generation of anti-dsDNA Abs, but the temporal changes in these biomarkers are not clear. In this study, the association of dynamic changes in total cfDNA and anti-dsDNA Abs levels in blood plasma during disease progression in a murine model of pristane-induced SLE was examined. Methods: The experimental group consisted of 12 BALB/c pristane-immunized mice; the control group included 8 PBS-treated mice. Blood samples were collected six times during the 38-week study (2 weeks before and 8, 14, 22, 28, and 36 weeks after immunization). Total cfDNA and anti-dsDNA Abs levels were determined at each time point. Results: Pristane-immunized mice showed a significant increase in the concentration of anti-dsDNA Abs. A 14-week delay in the formation of anti-dsDNA Abs was observed after an increase in the concentration of cfDNA in the experimental and control groups. Anti-dsDNA Abs and total cfDNA levels did not correlate at specific time points, but the change in cfDNA concentration from week 14 to week 28 was inversely correlated with the change in the anti-dsDNA Abs level over the same time period (R = −0.71, p = 0.009), i.e., the more the anti-dsDNA Abs level increased, the more the cfDNA concentration decreased. A direct correlation was shown between the increase in body weight of pristane-immunized mice and the increase in total cfDNA concentration in the blood from week 0 to week 14 (R = 0.6, p = 0.04). Conclusions: These findings demonstrate the dynamic nature of cfDNA and anti-dsDNA Abs levels and reciprocal dynamics of these markers in a pristane-induced mouse model of SLE. Full article
(This article belongs to the Section Cellular and Molecular Mechanisms)
Show Figures

Figure 1

13 pages, 4625 KB  
Article
Formulation, Optimization, and Evaluation of Transferosomes Co-Loaded with Methotrexate and Sorafenib for Anti-Arthritic Activity
by Muhammad Adnan, Lateef Ahmad, Muhammad Junaid Dar, Humzah Jamshaid, Muhammad Noman and Muhammad Faheem
Pharmaceutics 2025, 17(9), 1196; https://doi.org/10.3390/pharmaceutics17091196 - 15 Sep 2025
Viewed by 305
Abstract
Purpose: This study was designed to develop a nanoparticle-based methotrexate (MTX) and sorafenib (SRF)-loaded transferosome (MTX-SRF-TFS) for effective management of arthritis through the transdermal route. Methods: For the preparation of MTX-SRF-TFS, the thin-film hydration technique was selected and optimized using Box–Behnken Design. The [...] Read more.
Purpose: This study was designed to develop a nanoparticle-based methotrexate (MTX) and sorafenib (SRF)-loaded transferosome (MTX-SRF-TFS) for effective management of arthritis through the transdermal route. Methods: For the preparation of MTX-SRF-TFS, the thin-film hydration technique was selected and optimized using Box–Behnken Design. The particle size of the nanoparticles was determined using a Malvern Zeta sizer and electron microscopy. An in vivo skin retention and penetration study was also conducted to evaluate the designed delivery system. Furthermore, the therapeutic response of MTX-SRF-TFS was determined using the CFA-induced mouse model. Results: The optimized MTX-SRF-TFS formulation (F4), having an average particle size (PS) of 162.20 ± 2.89 nm and percent entrapment efficiency (%EE) of MTX and SRF of 92.16 ± 4.95 and 81.54 ± 3.23, respectively, was selected for further assessment. Due to the deformable nature of MTX-SRF-TFS, MTX and SRF penetrate more deeply into the cutaneous layers, exhibiting an enhanced transdermal effect, as shown by the results of ex vivo skin permeation and retention studies. Furthermore, in vivo anti-arthritic studies have shown the superior pharmacodynamic response of MTX and SRF when incorporated into transferosomes, as it caused a marked reduction in arthritic score and paw diameter in CFA-induced arthritis in BALB/c mice. Histopathology analysis and X-ray radiography also confirmed the findings that MTX-SRF-TFS has improved anti-arthritic response in contrast to plain MTX-SRF gel. Conclusions: The MTX-SRF-TFS is highly effective in managing CFA-induced arthritis, and the designed delivery system should be further evaluated on pharmacokinetic grounds to progress towards clinical studies. Full article
Show Figures

Graphical abstract

12 pages, 1867 KB  
Article
Progression of Trypanosoma cruzi Dm28c Strain Infection in a BALB/c Mouse Experimental Model
by María Azul de Hernández, Silvina Raquel Villar and Pamela Cribb
Parasitologia 2025, 5(3), 47; https://doi.org/10.3390/parasitologia5030047 - 9 Sep 2025
Viewed by 510
Abstract
Chagas disease, caused by Trypanosoma cruzi, presents a variety of clinical outcomes ranging from mild symptoms to Chagas cardiomyopathy, the most severe and life-threatening manifestation of the disease. The degree of virulence is influenced by both parasite and host factors. In this [...] Read more.
Chagas disease, caused by Trypanosoma cruzi, presents a variety of clinical outcomes ranging from mild symptoms to Chagas cardiomyopathy, the most severe and life-threatening manifestation of the disease. The degree of virulence is influenced by both parasite and host factors. In this study, we characterized a murine infection model using the T. cruzi Dm28c strain in BALB/c mice to assess disease progression. Infected mice showed a peak of parasitemia at 14 dpi, followed by a progressive decrease. Spleen weight increased up to sixfold compared to uninfected controls at 14 and 21 dpi, correlating with parasitemia levels. Histological analysis revealed focal inflammatory infiltrates in the heart starting at 7 dpi, with maximal intensity at 14 and 21 dpi. The expression of inflammatory cytokines (IFN-γ, IL-1β, TNF-α) and anti-inflammatory cytokines (IL-10, TGF-β) in the spleen showed a dynamic profile, with an early increase during the acute phase. Dm28c infection of BALB/c mice can be considered as a non-lethal Chagas disease experimental model, with detectable parasitemia during the acute phase and a controlled inflammatory response. Full article
Show Figures

Graphical abstract

22 pages, 1773 KB  
Article
Comprehensive Analysis of the Impact of Weight Loss Thresholds on Mouse Models of Fatal Viral Infection
by Devin Kenney, Mao Matsuo, Giulia Unali, Alan Wacquiez, Mohsan Saeed and Florian Douam
Viruses 2025, 17(9), 1225; https://doi.org/10.3390/v17091225 - 7 Sep 2025
Viewed by 849
Abstract
Preclinical studies in virological research are pivotal to comprehend mechanisms of viral virulence and pathogenesis and evaluate antiviral therapies or vaccines. Mouse models, through access to various genetic strains and amenable reagents, along with their ease of implementation and cost-effectiveness, remain the gold [...] Read more.
Preclinical studies in virological research are pivotal to comprehend mechanisms of viral virulence and pathogenesis and evaluate antiviral therapies or vaccines. Mouse models, through access to various genetic strains and amenable reagents, along with their ease of implementation and cost-effectiveness, remain the gold standard for establishing go/no-go thresholds before advancing to non-human primate or clinical studies. In preclinical mouse studies, standardized weight loss thresholds (WLTs)—which correspond to an established percentage of weight change at which animals are humanely euthanized—are a routine metric to quantitatively evaluate the lethality of a viral pathogen and the effectiveness of antiviral countermeasures in preventing fatal viral disease. While it is recognized that WLTs can significantly impact the assessment of viral virulence, they are often established to meet existing ethical or methodological requirements, rather than being based on a specific scientific rationale. Here, we examine how various experimental variables—including mouse and viral strains and the sex ratio within a mouse cohort—influence the ability of a WLT to support the generation of robust mouse models of fatal viral infection. Using various mouse strains and viral pathogens, we report that variations in experimental conditions in mouse preclinical studies can significantly compromise the performance of a non-adjusted WLT to yield an accurate estimate of viral virulence. Our findings advocate for a robust adjustment of WLT to each experimental framework and associated variables to establish mouse models of fatal viral infection that can generate high-resolution data acquisition while upholding ethical standards. Overall, our study provides methodological insights to enhance the unbiased acquisition and benchmarking of viral virulence and antiviral efficacy data in mouse models. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

16 pages, 2878 KB  
Article
Molecular Identification of Trypanosoma cruzi Isolated from Wild Triatomines and Evaluation of Its Pathogenicity in Experimental Hosts
by Ana Lucía Torres-Barajas, Melissa Paola Rincón-González, Sandra Luz Martínez-Hernández, Martín Humberto Muñoz-Ortega, David Ibarra-Martínez, Eduardo Sánchez-García, Erick López-Macías, Alberto Aguayo-Acosta, Joel Horacio Elizondo-Luevano and David Alejandro Hernández-Marín
Parasitologia 2025, 5(3), 46; https://doi.org/10.3390/parasitologia5030046 - 2 Sep 2025
Viewed by 473
Abstract
Trypanosoma cruzi is a hemoflagellate protozoan and the causative agent of Chagas disease, also known as American trypanosomiasis. Transmission occurs through the feces of triatomine insects, its biological vector. It is estimated that around 7 million people are infected across Mexico, Central America, [...] Read more.
Trypanosoma cruzi is a hemoflagellate protozoan and the causative agent of Chagas disease, also known as American trypanosomiasis. Transmission occurs through the feces of triatomine insects, its biological vector. It is estimated that around 7 million people are infected across Mexico, Central America, and South America. This study aimed to identify and characterize T. cruzi isolates obtained from wild triatomine vectors collected in Aguascalientes, Mexico. Molecular identification was performed at different developmental stages—epimastigotes in culture media, metacyclic trypomastigotes in triatomine feces, and amastigotes in mouse cardiac tissue—using endpoint PCR targeting satDNA and mtCytB regions. In addition, next-generation sequencing was employed to analyze variable regions of kinetoplast DNA minicircles. The pathogenicity of the isolated and identified T. cruzi strain was assessed in a murine model, where trypomastigote stages were detected in peripheral blood and amastigote stages in muscle tissue. Molecular analyses confirmed the presence of T. cruzi across different developmental stages from wild vectors, demonstrating that the isolated wild strain possesses pathogenic potential when completing its life cycle in an experimental mammalian host, specifically BALB/c mice. Full article
Show Figures

Graphical abstract

15 pages, 1072 KB  
Article
Iron Ions Increase the Thermal Stability In Vitro and Activity In Vivo of the 447R Mutant Form of Mouse Tryptophan Hydroxylase 2
by Polina D. Komleva, Ekatherina I. Terentieva, Arseniy E. Izyurov and Alexander V. Kulikov
Int. J. Mol. Sci. 2025, 26(17), 8188; https://doi.org/10.3390/ijms26178188 - 23 Aug 2025
Viewed by 547
Abstract
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxytryptophan (5-HTP) the first and rate-limiting step of serotonin (5-HT) synthesis in the mammalian brain. Some mutations in the Tph2 gene reducing TPH2 activity are associated with hereditary depressive disorders. The P447R substitution in the mouse [...] Read more.
Tryptophan hydroxylase 2 (TPH2) hydroxylates L-tryptophan to L-5-hydroxytryptophan (5-HTP) the first and rate-limiting step of serotonin (5-HT) synthesis in the mammalian brain. Some mutations in the Tph2 gene reducing TPH2 activity are associated with hereditary depressive disorders. The P447R substitution in the mouse TPH2 molecule reduces its thermal stability in vitro and its activity in the brain. The effects of iron ions on thermal stability in vitro and the activity in the brain of the mutant TPH2 were investigated. In the in vitro experiment effects of 0.01, 0.05, and 0.2 mM of FeSO4 and FeCl3 on the enthalpy (ΔH) and Gibbs free energy (ΔG) of thermal denaturation of the mutant TPH2 extracted from the midbrain of Balb/c mice were assayed. All FeSO4 concentrations and 0.05 and 0.2 mM concentrations of FeCl3 increased these thermodynamic characteristics of the mutant TPH2. Repeated (for 7 days) intramuscular administration of Fe(III) hydroxide dextran complex (15 and 30 mg/kg/day) increased TPH2 activity in the hippocampus, but not in the midbrain in Balb/c mice. Repeated (for 7 days) intramuscular administration of Fe(III) hydroxide dextran complex (15 and 30 mg/kg/day) together with thiamine (8 mg/kg/day) and cyanocobalamin (0.8 mg/kg/day) increased TPH2 activity in the hippocampus, while 30 mg/kg of Fe(III) hydroxide dextran also increased the enzyme activity in the midbrain in Balb/c mice. These results are the first evidence for chaperone-like effects of iron ions on thermal stability in vitro and activity in the brain of the mutant TPH2. Full article
(This article belongs to the Special Issue Protein Stability Research: 2nd Edition)
Show Figures

Figure 1

15 pages, 10651 KB  
Article
Systemic Inflammatory Burden Causes Liver Injury in H1N1-Infected Mice
by Junbin Wang, Qing Huang, Yun Yang, Cong Tang, Wenhai Yu, Yanan Zhou, Daoju Wu, Bai Li, Hao Yang, Haixuan Wang, Lei Ma and Shuaiyao Lu
Viruses 2025, 17(8), 1132; https://doi.org/10.3390/v17081132 - 18 Aug 2025
Viewed by 755
Abstract
Clinical evidence has associated H1N1 influenza with liver impairment, yet the underlying mechanisms remain poorly understood. Here, we investigated H1N1-induced liver damage and its potential mechanisms using a BALB/c mouse infection model. Pathological examination and serum aspartate transaminase (AST) and alanine transaminase (ALT) [...] Read more.
Clinical evidence has associated H1N1 influenza with liver impairment, yet the underlying mechanisms remain poorly understood. Here, we investigated H1N1-induced liver damage and its potential mechanisms using a BALB/c mouse infection model. Pathological examination and serum aspartate transaminase (AST) and alanine transaminase (ALT) were assessed. Messenger ribonucleic acid-sequence was used to analyze the transcriptomic changes in tissues. Multiple inflammatory cytokines in tissues and inflammatory cells in the blood were detected on the fifth day post-infection. Our results showed that H1N1 infection caused significant liver pathology and elevated serum AST/ALT levels. Transcriptomic analysis revealed significant alterations in liver gene expression profiles following H1N1 infection, particularly in genes associated with inflammatory responses, including those involved in monocyte adhesion/activation and neutrophil/macrophage infiltration. Marked increases in inflammatory mediators were observed in lungs, serum, and liver, accompanied by systemic changes in circulating inflammatory cells, indicating H1N1 triggered a robust systemic inflammatory response. These findings suggest that H1N1-induced liver damage may be associated with the systemic inflammatory response induced by H1N1 and changes in liver gene regulation. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

20 pages, 923 KB  
Article
Effect of Pulsed Electromagnetic Field (PEMF) on Pressure Ulcer in BALB/c and C57BL/6 Mice
by Sang-Hyeon Yoo, Eunju Han, Ju-Eun Hong, Jiyun Hong, Ha-Neul Jang, So-Min Kim, Minseob Eom, Yongheum Lee and Ki-Jong Rhee
Appl. Sci. 2025, 15(16), 9071; https://doi.org/10.3390/app15169071 - 18 Aug 2025
Viewed by 885
Abstract
Pressure ulcers (PUs) are localized injuries caused by prolonged mechanical loading and ischemia, often leading to delayed healing and high recurrence rates. Although conventional treatments aim to support tissue repair, their efficacy remains limited, prompting interest in noninvasive therapies such as the pulsed [...] Read more.
Pressure ulcers (PUs) are localized injuries caused by prolonged mechanical loading and ischemia, often leading to delayed healing and high recurrence rates. Although conventional treatments aim to support tissue repair, their efficacy remains limited, prompting interest in noninvasive therapies such as the pulsed electromagnetic field (PEMF). The PEMF has been reported to enhance cellular proliferation, re-epithelialization, and collagen remodeling, but its effects in pressure ulcer models, particularly concerning genetic background, remain unclear. This study investigated the therapeutic effects of the PEMF in a murine pressure ulcer model established by ischemia and reperfusion injury induced with externally attached magnets in two mouse strains, BALB/c and C57BL/6. The PEMF (10 Hz, 24 h per day) was used to treat PU-induced mice from day 4 to day 15 in BALB/c mice and to day 14 in C57BL/6 mice. Wound healing was assessed by gross morphological observation, histological analysis, and digital quantification of epidermal lesion length and collagen-positive area. In BALB/c mice, PEMF-treated wounds showed a modest trend toward improved re-epithelialization and collagen deposition, although the differences were not statistically significant. In contrast, C57BL/6 mice exhibited a significantly shorter length of epidermal lesion in the PEMF group on day 14, indicating enhanced epidermal regeneration. Collagen analysis showed comparable levels between treated and control groups in both strains, with no significant differences observed. To further assess the cellular response to PEMF, a scratch wound assay was conducted using HaCaT cells. Quantitative analysis demonstrated that PEMF treatment accelerated cell migration and wound closure in vitro. These findings suggest that PEMF enhances epidermal regeneration and keratinocyte mobility, with therapeutic responses potentially influenced by genetic background. This study supports the potential application of PEMF in pressure ulcer treatment and underscores the importance of strain selection in preclinical wound healing research. Full article
Show Figures

Figure 1

23 pages, 3795 KB  
Article
Exploring Gene Expression Changes in Murine Female Genital Tract Tissues Following Single and Co-Infection with Nippostrongylus brasiliensis and Herpes Simplex Virus Type 2
by Roxanne Pillay, Pragalathan Naidoo and Zilungile L. Mkhize-Kwitshana
Pathogens 2025, 14(8), 795; https://doi.org/10.3390/pathogens14080795 - 8 Aug 2025
Viewed by 631
Abstract
Background and Aim: The immunological interactions between soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2), particularly in the context of co-infection, are poorly understood. Next-generation sequencing (NGS) offers a powerful approach to explore these complex immune responses and uncover potential therapeutic [...] Read more.
Background and Aim: The immunological interactions between soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2), particularly in the context of co-infection, are poorly understood. Next-generation sequencing (NGS) offers a powerful approach to explore these complex immune responses and uncover potential therapeutic targets. This study leveraged NGS and bioinformatic tools to investigate transcriptional changes and immunological pathways in female genital tract (FGT) tissues of BALB/c mice acutely infected with Nippostrongylus brasiliensis (Nb), HSV-2, or co-infected. Methods: Total RNA was harvested from FGT tissues of BALB/c mice infected with Nb, HSV-2, co-infected with both pathogens, and uninfected controls. Differentially expressed genes (DEGs) were identified by comparing uninfected versus infected FGT tissues in R using edgeR and limma packages. Immune-related genes were identified by intersecting DEGs in each group-wise comparison with immune function gene sets derived from the Mouse Genome Informatics (MGI) database. Functional and pathway enrichment analyses were performed with g: Profiler and protein–protein interaction networks were built using the STRING database and visualized with Cytoscape. Key hub genes and significant gene modules were identified using the Cytoscape plugins CytoHubba and MCODE, followed by further functional analysis of these modules. Results: NGS analysis revealed distinct gene expression profiles in response to single infection with Nb or HSV-2, with both showing significant differences when uninfected controls were compared to infected FGT tissues at a 5% false discovery rate. Notably, there were no significant differences in gene expression profiles between uninfected and co-infected FGT tissues. In the comparison of uninfected versus Nb-infected FGT tissues, 368 DEGs were identified, with 356 genes upregulated and 12 downregulated. Several immune-related genes, such as Ptprc, Ccl11, Ccr2, and Cx3cr1, were significantly altered. Pathway analysis of DEGs, hub genes, and significant modules indicated modulation of immune and defense responses. Notably, Nb infection induced a robust Th2-dominant immune response in the FGT, with downregulation of pro-inflammatory genes. This likely reflects helminth-driven modulation that may impair protective Th1 responses and highlights the systemic impact of Nb on the FGT immunity. In the comparison of uninfected versus HSV-2-infected FGT tissues, 140 DEGs were identified, with 121 upregulated and 19 downregulated. Immune-related genes, including Ldlr, Camk1d, Lrp8 and Epg5, were notably altered. HSV-2 infection led to early and predominant downregulation of immune genes, consistent with viral immune evasion strategies. In addition, functional analysis revealed enrichment in cell cycle and sterol biosynthesis pathways, suggesting that HSV-2 modulates host metabolism to support viral replication while influencing immune responses. In co-infection, no significant transcriptional changes were observed, potentially reflecting immune antagonism where Nb-induced Th2 responses may suppress HSV-2-driven Th1 immune responses. Conclusions: This preliminary study offers insights into the gene expression responses in the FGT to acute single and co-infection with Nb and HSV-2. Together, these findings reveal distinct transcriptomic changes in the FGT following Nb and HSV-2 infection, with co-infection potentially leading to immune antagonism and transcriptional equilibrium. This highlights the complex interplay between helminth- and virus-induced immune modulation in shaping FGT immunity. By leveraging NGS, this study highlights important immune-related pathways and serves as a foundation for further investigations into the mechanistic roles of DEGs in immunity to these pathogens, with potential implications for developing novel therapeutic strategies. Full article
(This article belongs to the Special Issue Immunity and Immunoregulation in Helminth Infections)
Show Figures

Graphical abstract

12 pages, 1252 KB  
Article
Low Dietary Folate Increases Developmental Delays in the Litters of Mthfr677TT Mice
by Karen E. Christensen, Marie-Lou Faquette, Vafa Keser, Alaina M. Reagan, Aaron T. Gebert, Teodoro Bottiglieri, Gareth R. Howell and Rima Rozen
Nutrients 2025, 17(15), 2536; https://doi.org/10.3390/nu17152536 - 1 Aug 2025
Viewed by 609
Abstract
Background/Objectives: Low folate intake before and during pregnancy increases the risk of neural tube defects and other adverse outcomes. Gene variants such as MTHFR 677C>T (rs1801133) may increase risks associated with suboptimal folate intake. Our objective was to use BALB/cJ Mthfr677C>T [...] Read more.
Background/Objectives: Low folate intake before and during pregnancy increases the risk of neural tube defects and other adverse outcomes. Gene variants such as MTHFR 677C>T (rs1801133) may increase risks associated with suboptimal folate intake. Our objective was to use BALB/cJ Mthfr677C>T mice to evaluate the effects of the TT genotype and low folate diets on embryonic development and MTHFR protein expression in pregnant mice. Methods: Female 677CC (mCC) and 677TT (mTT) mice were fed control (2 mg folic acid/kg (2D)), 1 mg folic acid/kg (1D) and 0.3 mg folic acid/kg (0.3D) diets before and during pregnancy. Embryos and maternal tissues were collected at embryonic day 10.5. Embryos were examined for developmental delays and defects. Methyltetrahydrofolate (methylTHF) and total homocysteine (tHcy) were measured in maternal plasma, and MTHFR protein expression was evaluated in maternal liver. Results: MethylTHF decreased due to the experimental diets and mTT genotype. tHcy increased due to 0.3D and mTT genotype; mTT 0.3D mice had significantly higher tHcy than the other groups. MTHFR expression was lower in mTT liver than mCC. MTHFR protein expression increased due to low folate diets in mCC mice, whereas in mTT mice, MTHFR expression increased only due to 1D. Developmental delays were increased in the litters of mTT mice fed 1D and 0.3D. Conclusions: The Mthfr677C>T mouse models the effects of the MTHFR 677TT genotype in humans and provides a folate-responsive model for examination of the effects of folate intake and the MTHFR 677C>T variant during gestation. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

14 pages, 842 KB  
Article
Immunoenhancing Effects of Jeju Agastache rugosa Extracts on NK Cell Activity and Lymphocyte Proliferation in Cyclophosphamide-Induced Immunosuppression
by Sung Jin Kim, Seong-Il Kang, Nari Lee, Jung Min Oh, Hiyoung Kim, Mi-Gi Lee, Ji Hoon Song and Myoung-Sook Shin
Pharmaceuticals 2025, 18(8), 1129; https://doi.org/10.3390/ph18081129 - 28 Jul 2025
Viewed by 546
Abstract
Background/objectives: This study evaluated the immunoenhancing effects of Agastache rugosa extract in a cyclophosphamide-induced immunosuppressed mouse model. Methods: Jeju A. rugosa was processed via hot water extraction and 20% ethanol extraction. For immunosuppression induction, 7-week-old male BALB/c mice received intraperitoneal CPA injections (150 [...] Read more.
Background/objectives: This study evaluated the immunoenhancing effects of Agastache rugosa extract in a cyclophosphamide-induced immunosuppressed mouse model. Methods: Jeju A. rugosa was processed via hot water extraction and 20% ethanol extraction. For immunosuppression induction, 7-week-old male BALB/c mice received intraperitoneal CPA injections (150 mg/kg, day −3; 110 mg/kg, day −1), followed by oral administration of hot water extract (ARE-W) and ethanol extract (ARE-E) at 100 and 300 mg/kg for 14 days. Oral administration of ARE-W and ARE-E was started on day 0, immediately following the final CPA injection on day −1. Immune function was assessed through body weight changes, spleen weight, NK cell activity, IFN-γ production, and splenic lymphocyte proliferation. Results: Results demonstrated that CPA treatment induced comprehensive immune dysfunction, while A. rugosa extracts significantly ameliorated these immunosuppressive conditions. Notably, ARE-W (300 mg/kg) significantly enhanced NK cell cytotoxicity against tumor cells and IFN-γ production compared to the CPA group, and effectively restored spleen weight and lymphocyte proliferation. ARE-E also exhibited dose-dependent immune function recovery; however, ARE-W showed superior efficacy across most immune parameters. Conclusions: These findings suggest that A. rugosa extract, particularly ARE-W, effectively restores immune function in immunosuppressed conditions, indicating potential application as a natural functional material for ameliorating immunosuppression caused by cancer treatment or immune diseases. Full article
(This article belongs to the Special Issue Natural Products in Health Promotion and Disease Prevention 2025)
Show Figures

Figure 1

20 pages, 4727 KB  
Article
Developing a Novel Fermented Milk with Anti-Aging and Anti-Oxidative Properties Using Lactobacillus kefiranofaciens HL1 and Lactococcus lactis APL015
by Sheng-Yao Wang, Wei-Chen Yen, Yen-Po Chen, Jia-Shian Shiu and Ming-Ju Chen
Nutrients 2025, 17(15), 2447; https://doi.org/10.3390/nu17152447 - 27 Jul 2025
Viewed by 1003
Abstract
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing [...] Read more.
Background/Objectives: Lactobacillus kefiranofaciens HL1, isolated from kefir, exhibits antioxidant and anti-aging activities, defined here as improved cognitive function and reductions in oxidative stress and inflammatory markers. However, its poor milk viability limits application. This study developed a novel fermented milk by co-culturing HL1 with Lactococcus lactis subsp. cremoris APL015 (APL15) to enhance fermentation and health benefits. Methods: HL1 and APL15 were co-cultured to produce fermented milk (FM), and fermentation performance, microbial viability, texture, and syneresis were evaluated. A D-galactose-induced aging BALB/c mouse model was used to assess cognitive function, oxidative stress, inflammation, antioxidant enzyme activity, and gut microbiota after 8 weeks of oral administration. Results: FM reached pH 4.6 within 16 h, with high viable counts (~109 CFU/mL) for both strains. HL1 viability and texture were maintained, with smooth consistency and low syneresis. In vivo, FM improved cognitive behavior (Y-maze, Morris water maze), reduced oxidative damage (MDA), lowered IL-1β and TNF-α, and enhanced brain SOD levels. FM-fed mice exhibited increased short-chain fatty acid producers, higher cecal butyrate, and reduced Clostridium perfringens. Conclusions: The co-cultured fermented milk effectively delivers HL1 and provides antioxidant, anti-inflammatory, and anti-aging effects in vivo, likely via gut–brain axis modulation. It shows promise as a functional food for healthy aging. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

Back to TopTop