Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = B. oleracea L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5294 KiB  
Article
Exploring the Regulatory Mechanism of Total Alkaloids from Portulaca oleracea L. in UC Treatment Based on Network Pharmacology
by Tianci Zhang, Linran Gao, Qianying Wang, Jiahui Zheng, Xinyu Wang, Meng Jiang, Kaixin Wu and Jinxia Ai
Int. J. Mol. Sci. 2025, 26(14), 6978; https://doi.org/10.3390/ijms26146978 - 20 Jul 2025
Viewed by 299
Abstract
This study aimed to investigate the potential mechanisms of action of total alkaloids from Portulaca oleracea L. (POL) on ulcerative colitis (UC) using a network pharmacology approach. Network pharmacology analysis identified two bioactive alkaloids within POL as primary anti-UC constituents, targeting 16 core [...] Read more.
This study aimed to investigate the potential mechanisms of action of total alkaloids from Portulaca oleracea L. (POL) on ulcerative colitis (UC) using a network pharmacology approach. Network pharmacology analysis identified two bioactive alkaloids within POL as primary anti-UC constituents, targeting 16 core therapeutic proteins and 113 UC-associated signaling pathways. To further explore the therapeutic effects, in vitro cell assays and in vivo animal experiments were conducted. In vitro, high concentrations of Portulaca oleracea total alkaloids (POAs) demonstrated dose-dependent cytotoxicity, significantly reducing Caco-2 cell viability and impairing migration. In a murine model of UC, disease induction led to substantial weight loss, elevated disease activity index (DAI) scores, colon shortening, and severe colonic tissue damage compared to controls. Furthermore, the UC group displayed significantly upregulated serum levels of pro-inflammatory cytokines, TNF-α and IL-1β, as well as increased protein and mRNA expression of TLR4 and NF-κB in colon tissues. Crucially, POAs treatment effectively ameliorated UC symptoms in mice, significantly reducing DAI scores, mitigating colon shortening, and markedly suppressing TLR4/NF-κB pathway activation. These findings strongly suggest that the therapeutic effects of POAs in UC are, at least in part, mediated by the inhibition of the TLR4/NF-κB signaling pathway, leading to a reduction in colonic inflammation. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

31 pages, 2699 KiB  
Article
Developmental and Temperature-Driven Variations in Metabolic Profile and Antioxidant Capacity of Broccoli (Brassica oleracea var. cymosa)
by Daria Gmižić and Ivana Šola
Plants 2025, 14(12), 1825; https://doi.org/10.3390/plants14121825 - 13 Jun 2025
Viewed by 478
Abstract
This study investigates the impact of high temperature (HT) on the metabolic profile, oxidative-stress parameters, and antioxidant capacity of broccoli (Brassica oleracea var. cymosa) at different developmental stages—microgreens, seedlings, and two organs at the mature stage (leaves and head). We used [...] Read more.
This study investigates the impact of high temperature (HT) on the metabolic profile, oxidative-stress parameters, and antioxidant capacity of broccoli (Brassica oleracea var. cymosa) at different developmental stages—microgreens, seedlings, and two organs at the mature stage (leaves and head). We used spectrophotometric and chromatographic methods to quantify the concentrations of different groups and individual phenolic compounds, L-ascorbic acids, soluble sugars, proteins, glucosinolates, nitrates, pigments, oxidative-stress parameters, and antioxidant capacity. The highest number of analyzed variables significantly impacted by HT was in mature broccoli heads, with the most substantial change being an increase in proline by 168%. The lowest number of variables susceptible to HT (66%) was in the leaves of mature broccoli. The most dramatic change observed in this study was an increase in proline in seedlings by 587%. Statistical analyses showed that developmental stage plays a dominant role in shaping metabolic profiles, while HT further modulates it. Based on the measured parameters, the average contribution of developmental stage to the variance was 75%, while temperature explained 39% of the variance. The highest proportion of variance caused by temperature was seen in proline (92%), followed by kaempferol (80%), chlorophyll a/b (76%), soluble sugars (73%), total flavonoids (65%), antioxidant capacity measured by DPPH (58%), and chlorophyll/carotenoids ratio (56%). Temperature explained more variance than developmental stage for the concentration of soluble sugars, total hydroxycinnamic acids, and total tannins, which indicates an important role of these metabolites’ groups in the response of broccoli to HTs. The interaction of developmental stage and temperature explained more variance than developmental stage alone for the concentration of total proanthocyanidins, hydroxycinnamic acids, and phenolic acids. These findings underscore the complexity of metabolic regulation in broccoli and emphasize the importance of considering both developmental stage and environmental conditions when assessing its nutritional and functional properties. Full article
Show Figures

Graphical abstract

14 pages, 1327 KiB  
Article
Intraspecific Genetic Variability of Brassica cretica Lam. (Brassicaceae) Using SSR Markers
by Efthalia Stathi, Evangelia V. Avramidou, Panayiotis Trigas, Anastasios Katsileros, Ioannis Karavidas, Theodora Ntanasi, Georgia Ntatsi, Penelope J. Bebeli and Eleni Tani
Agronomy 2025, 15(5), 1201; https://doi.org/10.3390/agronomy15051201 - 15 May 2025
Viewed by 454
Abstract
Unraveling the evolutionary history of Brassica L. crops and their wild relatives remains a key challenge in plant evolutionary biology. Brassica cretica is considered the closest living relative of the cultivated B. oleracea. It is mainly distributed in the Aegean Islands and the [...] Read more.
Unraveling the evolutionary history of Brassica L. crops and their wild relatives remains a key challenge in plant evolutionary biology. Brassica cretica is considered the closest living relative of the cultivated B. oleracea. It is mainly distributed in the Aegean Islands and the neighboring mainland regions of Greece and Anatolia, and exhibits extensive phenotypic variability, obscuring its infraspecific classification. In this study, we analyzed five Greek populations of B. cretica and one B. oleracea botanical variety using SSR markers to assess genetic diversity and differentiation. High genetic diversity was detected within natural populations, with a mean of 21.9 alleles per locus and an expected heterozygosity of 0.647. Significant genetic differentiation (Fst = 0.812) revealed the presence of four distinct gene pools, partly supporting the current infraspecific classification of B. cretica. The cultivated plants cluster closely with B. cretica subsp. cretica, supporting the hypothesis of an Eastern Mediterranean origin. Our findings suggest that B. cretica subsp. cretica may have been introduced to suitable habitats or that cultivated plants may have reverted to a feral state in the Peloponnese, given the genetic similarity between populations from Crete and northern Peloponnese. The identified genetic diversity underscores the importance of B. cretica as a genetic resource for breeding programs and highlights the need for conservation, particularly for populations exhibited unique genetic traits. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 4815 KiB  
Article
Spinach Extract Reduces Kidney Damage in Diabetic Rats by Impairing the AGEs/RAGE Axis
by Javier Flores-Estrada, Agustina Cano-Martínez, Luz Ibarra-Lara, Adriana Jiménez, Carmen Palacios-Reyes, Luis J. Pinto García, María G. Ortiz-López, Olga Nelly Rodríguez-Peña and Luis Barbo Hernández-Portilla
Int. J. Mol. Sci. 2025, 26(10), 4730; https://doi.org/10.3390/ijms26104730 - 15 May 2025
Viewed by 628
Abstract
The interaction between advanced glycation end products (AGEs) and their RAGE receptor (AGEs/RAGE axis) triggers several signaling pathways that lead to the development of diabetic nephropathy (DN). One of the most studied AGEs is Nε-(1-Carboxymethyl)-L-lysine (CML). Spinacia oleracea is an edible plant with [...] Read more.
The interaction between advanced glycation end products (AGEs) and their RAGE receptor (AGEs/RAGE axis) triggers several signaling pathways that lead to the development of diabetic nephropathy (DN). One of the most studied AGEs is Nε-(1-Carboxymethyl)-L-lysine (CML). Spinacia oleracea is an edible plant with beneficial health properties, but its effect on the AGE/RAGE axis in kidney damage is unknown. Objective: We aimed to investigate the functional role of spinach methanolic extract (SME) on kidney damage in diabetic rats associated with the CML/RAGE axis. Methods: Forty adult male Wistar rats were used in this study and divided into four groups: control rats (CTRL), SME-administered CTRL (400 mg/kg; SME), streptozotocin-induced diabetic nephropathy rats (STZ), and SME-treated STZ (STZ-SME); treatments were administered daily. After 12 weeks, serum AGEs, creatinine in urine, and lipid peroxidation in kidneys were measured. The distribution and expression levels of inflammatory and fibrotic mediators and RAGE signaling were evaluated through immunohistochemistry (NOX4, CML, RAGE, nuclear NF-κB, TNF-α, IL-1β, TGF-β1, SMAD2/3, CTGF, and a-SMA) and immunolocalization of CML/RAGE. Results: Glycoside flavonoid derivatives, such as patuletin and spinacetin, were primarily identified in the extract. Kidneys from the STZ group showed altered morphology, dead cells in the proximal tubules, and increased oxidative stress markers; notably, these effects were improved by SME treatment (STZ-SME). The STZ-SME group showed a lower staining intensity for CML and RAGE, which was associated with a decrease in the expression of inflammatory and fibrotic factors compared with the STZ group. In all groups, the distribution of these markers varied among proximal tubule, glomerular, and interstitial cells. Conclusions: SME treatment may help to prevent or delay kidney damage in diabetic rats by regulating inflammatory and fibrotic processes associated with the AGEs/RAGE pathway, a mechanism involved in the development of nephropathy. Full article
(This article belongs to the Special Issue Dietary Antioxidants in Human Health)
Show Figures

Figure 1

16 pages, 9628 KiB  
Article
Genome-Wide Identification of the NAC Gene Family in Brassica rapa (L.) and Expression Pattern Analysis of BrNAC2s
by Weiqiang Li, Fan Ping, Huixuan Jiang, Shuqing Zhang, Tong Zhao, Kaiwen Liu, Hongrui Yu, Iqbal Hussain, Xiliang Ren and Xiaolin Yu
Plants 2025, 14(6), 834; https://doi.org/10.3390/plants14060834 - 7 Mar 2025
Viewed by 943
Abstract
Flowers are one of the most important organs in plants. Their development serves as a key indicator of the transition from vegetative to reproductive growth and is regulated by various internal signals and environmental factors. NAC (NAM, ATAF, CUC) transcription factors (TFs) play [...] Read more.
Flowers are one of the most important organs in plants. Their development serves as a key indicator of the transition from vegetative to reproductive growth and is regulated by various internal signals and environmental factors. NAC (NAM, ATAF, CUC) transcription factors (TFs) play a crucial regulatory role in floral organ development; however, research on the analysis and identification of the NAC TF family in Chinese cabbage (Brassica rapa L.) remains limited. In this study, we performed a comprehensive genome-wide analysis of NACs in B. rapa and identified 279 members of the BrNAC gene family. Their physicochemical properties, domain structure, collinearity relation, and cis-regulatory elements were evaluated. Phylogenetic analysis indicates that NAC proteins from Arabidopsis, B. rapa, B. oleracea, and B. nigra can be classified into seven distinct clades. BrNACs exhibit a tissue-specific expression, and nine BrNACs being specifically expressed in the inflorescence. Furthermore, nine flower-related BrNACs were selected for RT-qPCR analysis to validate their expression profiles. BrNAC2s has been cloned to investigate their subcellular localization, and examine the expression patterns of their promoters in Arabidopsis inflorescences. BrNAC2a and BrNAC2c are highly expressed in stamens while BrNAC2b exhibits elevated expression in pistils and pedicel. Collectively, our findings enhance the understanding of the BrNAC family and provide a foundation for future studies on the molecular mechanisms of BrNACs in floral development. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

10 pages, 407 KiB  
Article
Impact of Cooking Techniques on the Dietary Fiber Profile in Selected Cruciferous Vegetables
by Karolina Nowak, Sascha Rohn and Michał Halagarda
Molecules 2025, 30(3), 590; https://doi.org/10.3390/molecules30030590 - 27 Jan 2025
Cited by 1 | Viewed by 2780
Abstract
Cruciferous vegetables of the plant order Brassicales are an attractive dietary component and a valuable source of fiber. However, the nutritional–physiological properties are different when comparing soluble and insoluble fibers. Another significant impact is the transformation of fibers by different influencing factors during [...] Read more.
Cruciferous vegetables of the plant order Brassicales are an attractive dietary component and a valuable source of fiber. However, the nutritional–physiological properties are different when comparing soluble and insoluble fibers. Another significant impact is the transformation of fibers by different influencing factors during food preparation. Cruciferous vegetables, especially, are dominantly processed to soften the matrix. As a result, during cooking, the polysaccharides are dissolved, swelled, or degraded to a certain extent, influencing the composition and the nutritional–physiological properties. The aim of the present study was to analyze the impact of different cooking procedures on changes in the dietary fiber content profile of three different plants: white cauliflower (Brassica oleracea L. var. botrytis), broccoli (B. oleracea L. var. italica), and Brussels sprouts (B. oleracea L. var. gemmifera). The sample material was subjected to direct (“in the water”) and steam cooking. The dietary fiber content and the content of its fractions were determined using an enzymatic analysis method. The results of the research show that the cooking process had a significant influence on the content of dietary fiber fractions in cruciferous vegetables. The concentration of insoluble dietary fiber decreased, whereas the content of soluble dietary fiber increased. When considering the average influence of each process, both steam cooking and direct cooking had a similar impact on changes in the concentrations of dietary fiber fractions. It can therefore be concluded that, when considering dietary fiber content, both processes can be equally well chosen as a thermal treatment for cruciferous vegetables. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods, 2nd Edition)
Show Figures

Figure 1

21 pages, 7226 KiB  
Article
Genome-Wide Identification, Conservation, and Expression Pattern Analyses of the BBR-BPC Gene Family Under Abiotic Stress in Brassica napus L.
by Long Wang, Wei Chen, Zhi Zhao, Huaxin Li, Damei Pei, Zhen Huang, Hongyan Wang and Lu Xiao
Genes 2025, 16(1), 36; https://doi.org/10.3390/genes16010036 - 29 Dec 2024
Viewed by 1353
Abstract
Background: The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. Brassica napus L. (B. napus), commonly known as oilseed rape, is an allopolyploid plant [...] Read more.
Background: The BBR-BPC gene family is a relatively conservative group of transcription factors, playing a key role in plant morphogenesis, organ development, and responses to abiotic stress. Brassica napus L. (B. napus), commonly known as oilseed rape, is an allopolyploid plant formed by the hybridization and polyploidization of Brassica rapa L. (B. rapa) and Brassica oleracea L. (B. oleracea), and is one of the most important oil crops. However, little is known about the characteristics, conservation, and expression patterns of this gene family in B. napus, especially under abiotic stress. Methods: To explore the characteristics and potential biological roles of the BBR-BPC gene family members in B. napus, we conducted identification based on bioinformatics and comparative genomics methods. We further analyzed the expression patterns through RNA-seq and qRT-PCR. Results: We identified 25 BBR-BPC members, which were classified into three subfamilies based on phylogenetic analysis, and found them to be highly conserved in both monocots and dicots. The conserved motifs revealed that most members contained Motif 1, Motif 2, Motif 4, and Motif 8. After whole-genome duplication (WGD), collinearity analysis showed that BBR-BPC genes underwent significant purifying selection. The promoters of most BBR-BPC genes contained cis-acting elements related to light response, hormone induction, and stress response. RNA-seq and qRT-PCR further indicated that BnBBR-BPC7, BnBBR-BPC15, BnBBR-BPC20, and BnBBR-BPC25 might be key members of this family. Conclusions: This study provides a theoretical foundation for understanding the potential biological functions and roles of the BBR-BPC gene family, laying the groundwork for resistance breeding in B. napus. Full article
(This article belongs to the Special Issue Genes and Genomics of Plants Under Abiotic Stresses)
Show Figures

Figure 1

28 pages, 2364 KiB  
Review
Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration
by Miriam Romero-Muñoz and Margarita Pérez-Jiménez
Plants 2024, 13(22), 3247; https://doi.org/10.3390/plants13223247 - 19 Nov 2024
Cited by 1 | Viewed by 3228
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic [...] Read more.
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context. Full article
Show Figures

Figure 1

20 pages, 2816 KiB  
Article
Phytotoxic Activity of Sesquiterpene Lactones-Enriched Fractions from Cynara cardunculus L. Leaves on Pre-Emergent and Post-Emergent Weed Species and Putative Mode of Action
by Daniela Rosa, Carlos Rial, Teresa Brás, Rosa M. Varela, Francisco A. Macías and Maria F. Duarte
Plants 2024, 13(19), 2758; https://doi.org/10.3390/plants13192758 - 1 Oct 2024
Viewed by 1108
Abstract
Sesquiterpene lactones (SLs) are compounds that are highly produced in Cynara cardunculus leaves, known for their phytotoxic activity. This study aims to assess SL-enriched fractions’ (cynaropicrin, aguerin B, and grosheimin) phytotoxic potentials and putative modes of action, compared to an initial extract, using [...] Read more.
Sesquiterpene lactones (SLs) are compounds that are highly produced in Cynara cardunculus leaves, known for their phytotoxic activity. This study aims to assess SL-enriched fractions’ (cynaropicrin, aguerin B, and grosheimin) phytotoxic potentials and putative modes of action, compared to an initial extract, using two approaches: first, against a panel of nine weed species in pre-emergence, and then on Portulaca oleracea L.’s post-emergency stage. The SL-enriched fractions demonstrated greater phytotoxic activity when compared with the C. cardunculus leaf initial extract. The SL-enriched fractions had higher activity at root growth inhibition over the panel tested, doubling the activity in five of them at 800 ppm. Regarding the post-emergence bioassay, the SL-enriched fractions had a higher influence on the plants’ growth inhibition (67% at 800 ppm). The SL-effects on the plants’ metabolisms were evidenced. The total chlorophyll content was reduced by 65% at 800 ppm. Oxidative stress induction was observed because of the enhancement in MDA levels at 800 ppm compared to control (52%) and the decrease in SOD-specific activity from 4.20 U/mg protein (400 ppm) to 1.74 U/mg protein (800 ppm). The phytotoxic effects of the SL-enriched fractions suggest that they could be used for a future bioherbicide development. Full article
(This article belongs to the Special Issue Phytochemical and Biological Activity of Plant Extracts)
Show Figures

Figure 1

20 pages, 5048 KiB  
Article
Transcriptome-Based Screening of Candidate Low-Temperature-Associated Genes and Analysis of the BocARR-B Transcription Factor Gene Family in Kohlrabi (Brassica oleracea L. var. caulorapa L.)
by Shuanling Bian, Dengkui Shao, Qingsheng Zhao, Quanhui Li and Yanjing Ren
Int. J. Mol. Sci. 2024, 25(17), 9261; https://doi.org/10.3390/ijms25179261 - 27 Aug 2024
Viewed by 1121
Abstract
Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has [...] Read more.
Low temperature is a significant abiotic stress factor that not only impacts plant growth, development, yield, and quality but also constrains the geographical distribution of numerous wild plants. Kohlrabi (Brassica oleracea L. var. caulorapa L.) belongs to the Brassicaceae family and has a short growing period. In this study, a total of 196,642 unigenes were obtained from kohlrabi seedlings at low temperatures; of these, 52,836 unigenes were identified as differentially expressed genes. Transcription factor family members ARR-B, C3H, B3-ARF, etc. that had a high correlation with biochemical indicators related to low temperature were identified. A total of nineteen BocARR-B genes (named BocARR-B1BocARR-B19) were obtained, and these genes were distributed unevenly across seven chromosomes. Nineteen BocARR-B genes searched four conserved motifs and were divided into three groups. The relative expression level analysis of 19 BocARR-B genes of kohlrabi showed obvious specificity in different tissues. This study lays a foundation and provides new insight to explain the low-temperature resistance mechanism and response pathways of kohlrabi. It also provides a theoretical basis for the functional analysis of 19 BocARR-B transcription factor gene family members. Full article
(This article belongs to the Special Issue Advance in Plant Abiotic Stress)
Show Figures

Figure 1

18 pages, 10474 KiB  
Article
Genome-Wide Identification and Molecular Evolutionary History of the Whirly Family Genes in Brassica napus
by Long Wang, Zhi Zhao, Huaxin Li, Damei Pei, Qianru Ma, Zhen Huang, Hongyan Wang and Lu Xiao
Plants 2024, 13(16), 2243; https://doi.org/10.3390/plants13162243 - 13 Aug 2024
Cited by 2 | Viewed by 1464
Abstract
Whirly transcription factors are unique to plants, playing pivotal roles in managing leaf senescence and DNA repair. While present in various species, their identification in Brassica napus L. (B. napus) and their differences during hybridization and polyploidy has been elusive. [...] Read more.
Whirly transcription factors are unique to plants, playing pivotal roles in managing leaf senescence and DNA repair. While present in various species, their identification in Brassica napus L. (B. napus) and their differences during hybridization and polyploidy has been elusive. Addressing this, our study delves into the functional and evolutionary aspects of the Whirly gene family during the emergence of B. napus, applying bioinformatics and comparative genomics. We identified six Whirly genes in B. napus. In Brassica rapa L. (B. rapa), three Whirly genes were identified, while four were found in Brassica oleracea L. (B. oleracea). The results show that the identified Whirly genes not only have homology but also share the same chromosomal positions. Phylogenetic analysis indicates that Whirly genes in monocots and dicots exhibit high conservation. In the evolutionary process, the Whirly gene family in B. napus experienced events of intron/exon loss. Collinearity insights point to intense purifying selection post-duplication. Promoter regions housed diverse cis-acting elements linked to photoresponse, anaerobic initiation, and methyl jasmonate responsiveness. Notably, elements tied to abscisic acid signaling and meristem expression were prominent in diploid ancestors but subdued in tetraploid B. napus. Tissue-specific expression unveiled analogous patterns within subfamily genes. Subsequent qRT-PCR analysis spotlighted BnAWHY1b’s potential significance in abiotic stress response, particularly drought. These findings can be used as theoretical foundations to understand the functions and effects of the Whirly gene family in B. napus, providing references for the molecular mechanism of gene evolution between this species and its diploid ancestors. Full article
(This article belongs to the Special Issue Mitigation Strategies and Tolerance of Plants to Abiotic Stresses)
Show Figures

Figure 1

18 pages, 3485 KiB  
Article
Computational Insight of Oleracone L, Portulacatone B, and Portulacatal from Portulaca oleracea L. as Potential Anticholinesterase Inhibitors for Alzheimer’s
by Shifaa O. Alshammari
Processes 2024, 12(7), 1456; https://doi.org/10.3390/pr12071456 - 12 Jul 2024
Cited by 6 | Viewed by 1357
Abstract
Alzheimer’s disease, characterized by a decline in cognitive functions, is frequently associated with decreased levels of acetylcholine due to the overactivity of acetylcholinesterase (AChE). Inhibiting AChE has been a key therapeutic strategy in treating Alzheimer’s disease, yet the search for effective inhibitors, particularly [...] Read more.
Alzheimer’s disease, characterized by a decline in cognitive functions, is frequently associated with decreased levels of acetylcholine due to the overactivity of acetylcholinesterase (AChE). Inhibiting AChE has been a key therapeutic strategy in treating Alzheimer’s disease, yet the search for effective inhibitors, particularly from natural sources, continues due to their potential for fewer side effects. In this context, three new alkaloids—oleracone L, portulacatone B, and portulacatal—extracted from Portulaca oleracea L., have recently shown promising anticholinesterase activity in vitro. However, no experimental or computational studies have yet explored their binding potential. This study represents the first comprehensive in silico analysis of these compounds, employing ADME prediction, molecular docking, molecular dynamics simulations, and MM-PBSA calculations to assess their therapeutic potential. The drug-likeness was evaluated based on Lipinski, Pfizer, Golden Triangle, and GSK rules, with all three alkaloids meeting these criteria. The ADME profiles suggested that these alkaloids can effectively cross the blood–brain barrier, a critical requirement for Alzheimer’s treatment. Molecular docking studies revealed that oleracone L had the highest binding affinity (−10.75 kcal/mol) towards AChE, followed by portulacatal and portulacatone B, demonstrating significant interactions with crucial enzyme residues. Molecular dynamics simulations over 200 ns confirmed the stability of these interactions, with RMSD values below 2 Å for all complexes, indicating stable binding throughout the simulation period. RMSF and the radius of gyration analyses further corroborated the minimal impact of these alkaloids on the enzyme’s overall flexibility and compactness. Moreover, MM-PBSA calculations provided additional support for the binding efficacy, showing that oleracone L, with the most favorable binding energy, could be a superior inhibitor, potentially due to its stronger and more consistent hydrogen bonding and favorable electrostatic interactions compared to the other studied alkaloids. These computational findings highlight the binding efficiency and potential therapeutic viability of these alkaloids as AChE inhibitors, suggesting they could be promising candidates for Alzheimer’s disease treatment. The study underscores the importance of further validation through in vitro and in vivo experiments to confirm these predictions. Full article
Show Figures

Figure 1

15 pages, 5926 KiB  
Article
Fermented Purslane (Portulaca oleracea L.) Supplementation Enhances Growth and Immune Function Parallel to the Regulation of Gut Microbial Butyrate Production in Weaned Piglets
by Lei Xu, Ge Gao, Zian Zhou, Zixi Wei, Wenjuan Sun, Yanpin Li, Xianren Jiang, Jingang Gu, Xilong Li and Yu Pi
Microorganisms 2024, 12(7), 1403; https://doi.org/10.3390/microorganisms12071403 - 11 Jul 2024
Cited by 4 | Viewed by 2069
Abstract
Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding [...] Read more.
Weaning is a challenging period for piglets, characterized by stress-related growth checks, compromised immunity, and gut dysbiosis. Purslane (Portulaca oleracea L.), known for its rich content of antioxidants, has potential as a functional feed ingredient. This study investigates the effects of feeding fermented purslane (FP) on the growth performance, immune function, intestinal microbiota, and metabolic profiles of weaned piglets. Forty-eight weaned piglets were randomly divided into two groups, with eight pens in each group and three pigs in each pen: a control diet (CON group) and a diet supplemented with 0.20% FP (FP group). The experiment lasted 28 days. The results show that FP supplementation did not affect the average daily feed intake (ADFI) but significantly increased the average daily gain (ADG) during the initial 14 days post-weaning. FP supplementation decreased diarrhea occurrence, with a pronounced reduction from days 10 to 13 (p < 0.05). Immunologically, the FP group had a trend towards reduced serum IgA levels on day 14 (p < 0.10). Importantly, the serum concentrations of the pro-inflammatory cytokine IL-6 were significantly reduced on both days 14 and 28 post-weaning. The antioxidative analysis showed increased serum superoxide dismutase (SOD) and decreased catalase (CAT) activities on day 14 (p < 0.05). In addition, FP supplementation significantly decreased serum diamine oxidase (DAO) activity and D-lactate levels by day 28, indicating a potential improvement in gut integrity. Fecal microbiota assessment demonstrated a distinctive clustering of microbial communities between the FP and CON groups, with an increase in the abundance of Clostridium_sensu_stricto_1, Tyzzerella, and Prevotellaceae_NK3B31_group and a decrease in Lactobacillus, Bacillus, and Subdoligranulum in the FP group (p < 0.05). Functional predictions suggested that the relative abundance of microbial butyrate synthesis enzymes (EC 2.7.2.7 and EC 2.3.1.19) was significantly enhanced by FP treatment. This modulation was further corroborated by elevated fecal butyrate levels (p < 0.05). In summary, dietary supplementation with FP promotes early-growth performance and has beneficial effects on immune function and intestinal health in weaned piglets. The enhancements may be attributed to distinct microbiota compositional changes and targeted modulation of microbial butyrate metabolism, which are crucial for piglet post-weaning adaptation and overall health. Full article
(This article belongs to the Special Issue Nutritional Regulation on Gut Microbiota, 2nd Edition)
Show Figures

Figure 1

21 pages, 11935 KiB  
Article
Gene Regulatory Network Controlling Flower Development in Spinach (Spinacia oleracea L.)
by Yaying Ma, Wenhui Fu, Suyan Wan, Yikai Li, Haoming Mao, Ehsan Khalid, Wenping Zhang and Ray Ming
Int. J. Mol. Sci. 2024, 25(11), 6127; https://doi.org/10.3390/ijms25116127 - 1 Jun 2024
Cited by 3 | Viewed by 2178
Abstract
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as [...] Read more.
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach. Full article
(This article belongs to the Special Issue Functional and Structural Genomics Studies for Plant Breeding)
Show Figures

Figure 1

17 pages, 1384 KiB  
Article
Effect of the Intensity and Spectral Quality of LED Light on Growth and Quality of Spinach Indoors
by Alejandro Martínez-Moreno, Antonio Frutos-Tortosa, Huertas Diaz-Mula, Teresa Carmen Mestre and Vicente Martínez
Horticulturae 2024, 10(4), 411; https://doi.org/10.3390/horticulturae10040411 - 19 Apr 2024
Cited by 5 | Viewed by 4056
Abstract
In recent years, much effort has been devoted to understanding the response of plants to different light properties, largely due to advances in the light-emitting diode (LED) industry. This work studied the effect of different light intensities and qualities on yield or quality [...] Read more.
In recent years, much effort has been devoted to understanding the response of plants to different light properties, largely due to advances in the light-emitting diode (LED) industry. This work studied the effect of different light intensities and qualities on yield or quality of indoor hydroponic spinach (Spinacia oleracea L.). Two trials were carried out at two different times. The intensity assay was carried out with the same type of light (AP673L, Valoya Ltd., Helsinki, Finland) at different luminous intensities (150, 290, and 430 µmol m−2 s−1). In the second trial, four different luminance spectra (Valoya Ltd., Helsinki, Finland) were used (NS12, AP67, AP673L, G2). Then, the fresh and dry weight, nutritional status, and concentration of primary metabolites were determined. Both lights parameters induced changes in vegetative performance and other physiological traits, as well as their quality and nutritional composition (minerals, organic acids, sugars, and amino acids). The increase in light intensity increased Fv’/Fv’, fresh weight, leaf area, chlorophyll fluorescence parameters, and potassium concentration. The light intensity effectively controlled nitrate accumulation in an inverse relationship. The effect of the light spectrum on spinach characteristics was not clearly observed when multivariate statistics were applied to the data. No linear relationship was found between the different R/B ratios. This is perhaps due to commercial lights having a complex combination of wavelengths, in addition to the main R/B proportion. Within the overall results, 6 R/B presented the best results for the indoor cultivation of spinach. More studies are needed, since breeding for controlled environments shifts the focus of the desired crop attributes towards rapid growth and harvest quality instead of stress adaptability. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

Back to TopTop