Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = B family DNA polymerase (PolB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4180 KiB  
Article
Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity
by Sebastian Dorawa, Olesia Werbowy, Magdalena Plotka, Anna-Karina Kaczorowska, Joanna Makowska, Lukasz P. Kozlowski, Olafur H. Fridjonsson, Gudmundur O. Hreggvidsson, Arnthór Aevarsson and Tadeusz Kaczorowski
Int. J. Mol. Sci. 2022, 23(14), 7945; https://doi.org/10.3390/ijms23147945 - 19 Jul 2022
Cited by 5 | Viewed by 3725
Abstract
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of [...] Read more.
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

13 pages, 2603 KiB  
Article
DNA Polymerase B1 Binding Protein 1 Is Important for DNA Repair by Holoenzyme PolB1 in the Extremely Thermophilic Crenarchaeon Sulfolobus acidocaldarius
by Hiroka Miyabayashi, Hiroyuki D. Sakai and Norio Kurosawa
Microorganisms 2021, 9(2), 439; https://doi.org/10.3390/microorganisms9020439 - 20 Feb 2021
Cited by 2 | Viewed by 3160
Abstract
DNA polymerase B1 (PolB1) is a member of the B-family DNA polymerase family and is a replicative DNA polymerase in Crenarchaea. PolB1 is responsible for the DNA replication of both the leading and lagging strands in the thermophilic crenarchaeon Sulfolobus acidocaldarius. Recently, [...] Read more.
DNA polymerase B1 (PolB1) is a member of the B-family DNA polymerase family and is a replicative DNA polymerase in Crenarchaea. PolB1 is responsible for the DNA replication of both the leading and lagging strands in the thermophilic crenarchaeon Sulfolobus acidocaldarius. Recently, two subunits, PolB1-binding protein (PBP)1 and PBP2, were identified in Saccharolobus solfataricus. Previous in vitro studies suggested that PBP1 and PBP2 influence the core activity of apoenzyme PolB1 (apo-PolB1). PBP1 contains a C-terminal acidic tail and modulates the strand-displacement synthesis activity of PolB1 during the synthesis of Okazaki fragments. PBP2 modestly enhances the DNA polymerase activity of apo-PolB1. These subunits are present in Sulfolobales, Acidilobales, and Desulfurococcales, which belong to Crenarchaea. However, it has not been determined whether these subunits are essential for the activity of apo-PolB1. In this study, we constructed a pbp1 deletion strain in S. acidocaldarius and characterized its phenotypes. However, a pbp2 deletion strain was not obtained, indicating that PBP2 is essential for replication by holoenzyme PolB1. A pbp1 deletion strain was sensitive to various types of DNA damage and exhibited an increased mutation rate, suggesting that PBP1 contribute to the repair or tolerance of DNA damage by holoenzyme PolB1. The results of our study suggest that PBP1 is important for DNA repair by holoenzyme PolB1 in S. acidocaldarius. Full article
Show Figures

Figure 1

25 pages, 3768 KiB  
Article
Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution
by Camille Samson, Pierre Legrand, Mustafa Tekpinar, Jef Rozenski, Mikhail Abramov, Philipp Holliger, Vitor B. Pinheiro, Piet Herdewijn and Marc Delarue
Biomolecules 2020, 10(12), 1647; https://doi.org/10.3390/biom10121647 - 8 Dec 2020
Cited by 10 | Viewed by 4389
Abstract
Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively [...] Read more.
Archaeal DNA polymerases from the B-family (polB) have found essential applications in biotechnology. In addition, some of their variants can accept a wide range of modified nucleotides or xenobiotic nucleotides, such as 1,5-anhydrohexitol nucleic acid (HNA), which has the unique ability to selectively cross-pair with DNA and RNA. This capacity is essential to allow the transmission of information between different chemistries of nucleic acid molecules. Variants of the archaeal polymerase from Thermococcus gorgonarius, TgoT, that can either generate HNA from DNA (TgoT_6G12) or DNA from HNA (TgoT_RT521) have been previously identified. To understand how DNA and HNA are recognized and selected by these two laboratory-evolved polymerases, we report six X-ray structures of these variants, as well as an in silico model of a ternary complex with HNA. Structural comparisons of the apo form of TgoT_6G12 together with its binary and ternary complexes with a DNA duplex highlight an ensemble of interactions and conformational changes required to promote DNA or HNA synthesis. MD simulations of the ternary complex suggest that the HNA-DNA hybrid duplex remains stable in the A-DNA helical form and help explain the presence of mutations in regions that would normally not be in contact with the DNA if it were not in the A-helical form. One complex with two incorporated HNA nucleotides is surprisingly found in a one nucleotide-backtracked form, which is new for a DNA polymerase. This information can be used for engineering a new generation of more efficient HNA polymerase variants. Full article
Show Figures

Figure 1

17 pages, 1047 KiB  
Article
Role of RadA and DNA Polymerases in Recombination-Associated DNA Synthesis in Hyperthermophilic Archaea
by Gaëlle Hogrel, Yang Lu, Nicolas Alexandre, Audrey Bossé, Rémi Dulermo, Sonoko Ishino, Yoshizumi Ishino and Didier Flament
Biomolecules 2020, 10(7), 1045; https://doi.org/10.3390/biom10071045 - 14 Jul 2020
Cited by 8 | Viewed by 4548
Abstract
Among the three domains of life, the process of homologous recombination (HR) plays a central role in the repair of double-strand DNA breaks and the restart of stalled replication forks. Curiously, main protein actors involved in the HR process appear to be essential [...] Read more.
Among the three domains of life, the process of homologous recombination (HR) plays a central role in the repair of double-strand DNA breaks and the restart of stalled replication forks. Curiously, main protein actors involved in the HR process appear to be essential for hyperthermophilic Archaea raising interesting questions about the role of HR in replication and repair strategies of those Archaea living in extreme conditions. One key actor of this process is the recombinase RadA, which allows the homologous strand search and provides a DNA substrate required for following DNA synthesis and restoring genetic information. DNA polymerase operation after the strand exchange step is unclear in Archaea. Working with Pyrococcus abyssi proteins, here we show that both DNA polymerases, family-B polymerase (PolB) and family-D polymerase (PolD), can take charge of processing the RadA-mediated recombination intermediates. Our results also indicate that PolD is far less efficient, as compared with PolB, to extend the invaded DNA at the displacement-loop (D-loop) substrate. These observations coincide with previous genetic analyses obtained on Thermococcus species showing that PolB is mainly involved in DNA repair without being essential probably because PolD could take over combined with additional partners. Full article
(This article belongs to the Collection Archaea: Diversity, Metabolism and Molecular Biology)
Show Figures

Graphical abstract

13 pages, 14750 KiB  
Article
Co-Isolation and Characterization of Two Pandoraviruses and a Mimivirus from a Riverbank in Japan
by Motohiro Akashi and Masaharu Takemura
Viruses 2019, 11(12), 1123; https://doi.org/10.3390/v11121123 - 4 Dec 2019
Cited by 16 | Viewed by 7178
Abstract
Giant viruses, like pandoraviruses and mimiviruses, have been discovered from diverse environments, and their broad global distribution has been established. Here, we report two new isolates of Pandoravirus spp. and one Mimivirus sp., named Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. [...] Read more.
Giant viruses, like pandoraviruses and mimiviruses, have been discovered from diverse environments, and their broad global distribution has been established. Here, we report two new isolates of Pandoravirus spp. and one Mimivirus sp., named Pandoravirus hades, Pandoravirus persephone, and Mimivirus sp. isolate styx, co-isolated from riverbank soil in Japan. We obtained nearly complete sequences of the family B DNA polymerase gene (polB) of P. hades and P. persephone; the former carried two known intein regions, while the latter had only one. Phylogenetic analysis revealed that the two new pandoravirus isolates are closely related to Pandoravirus dulcis. Furthermore, random amplified polymorphic DNA analysis revealed that P. hades and P. persephone might harbor different genome structures. Based on phylogenetic analysis of the partial polB sequence, Mimivirus sp. isolate styx belongs to mimivirus lineage A. DNA staining suggested that the Pandoravirus spp. asynchronously replicates in amoeba cells while Mimivirus sp. replicates synchronously. We also observed that P. persephone- or Mimivirus sp. isolate styx-infected amoeba cytoplasm is extruded by the cells. To the best of our knowledge, we are the first to report the isolation of pandoraviruses in Asia. In addition, our results emphasize the importance of virus isolation from soil to reveal the ecology of giant viruses. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

20 pages, 1133 KiB  
Review
Mammalian DNA Polymerase Kappa Activity and Specificity
by Hannah R. Stern, Jana Sefcikova, Victoria E. Chaparro and Penny J. Beuning
Molecules 2019, 24(15), 2805; https://doi.org/10.3390/molecules24152805 - 1 Aug 2019
Cited by 25 | Viewed by 7415
Abstract
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer [...] Read more.
DNA polymerase (pol) kappa is a Y-family translesion DNA polymerase conserved throughout all domains of life. Pol kappa is special6 ized for the ability to copy DNA containing minor groove DNA adducts, especially N2-dG adducts, as well as to extend primer termini containing DNA damage or mismatched base pairs. Pol kappa generally cannot copy DNA containing major groove modifications or UV-induced photoproducts. Pol kappa can also copy structured or non-B-form DNA, such as microsatellite DNA, common fragile sites, and DNA containing G quadruplexes. Thus, pol kappa has roles both in maintaining and compromising genomic integrity. The expression of pol kappa is altered in several different cancer types, which can lead to genome instability. In addition, many cancer-associated single-nucleotide polymorphisms have been reported in the POLK gene, some of which are associated with poor survival and altered chemotherapy response. Because of this, identifying inhibitors of pol kappa is an active area of research. This review will address these activities of pol kappa, with a focus on lesion bypass and cellular mutagenesis. Full article
(This article belongs to the Special Issue Structural and Functional Aspects of DNA Polymerases)
Show Figures

Graphical abstract

16 pages, 7694 KiB  
Article
Degenerate PCR Primers to Reveal the Diversity of Giant Viruses in Coastal Waters
by Yanze Li, Pascal Hingamp, Hiroyasu Watai, Hisashi Endo, Takashi Yoshida and Hiroyuki Ogata
Viruses 2018, 10(9), 496; https://doi.org/10.3390/v10090496 - 13 Sep 2018
Cited by 22 | Viewed by 9696
Abstract
“Megaviridae” is a proposed family of giant viruses infecting unicellular eukaryotes. These viruses are ubiquitous in the sea and have impact on marine microbial community structure and dynamics through their lytic infection cycle. However, their diversity and biogeography have been poorly characterized due [...] Read more.
“Megaviridae” is a proposed family of giant viruses infecting unicellular eukaryotes. These viruses are ubiquitous in the sea and have impact on marine microbial community structure and dynamics through their lytic infection cycle. However, their diversity and biogeography have been poorly characterized due to the scarce detection of Megaviridae sequences in metagenomes, as well as the limitation of reference sequences used to design specific primers for this viral group. Here, we propose a set of 82 degenerated primers (referred to as MEGAPRIMER), targeting DNA polymerase genes (polBs) of Megaviridae. MEGAPRIMER was designed based on 921 Megaviridae polBs from sequenced genomes and metagenomes. By applying this primer set to environmental DNA meta-barcoding of a coastal seawater sample, we report 5595 non-singleton operational taxonomic units (OTUs) of Megaviridae at 97% nucleotide sequence identity. The majority of the OTUs were found to form diverse clades, which were phylogenetically distantly related to known viruses such as Mimivirus. The Megaviridae OTUs detected in this study outnumber the giant virus OTUs identified in previous individual studies by more than an order of magnitude. Hence, MEGAPRIMER represents a useful tool to study the diversity of Megaviridae at the population level in natural environments. Full article
(This article belongs to the Special Issue Viruses of Microbes V: Biodiversity and Future Applications)
Show Figures

Figure 1

11 pages, 660 KiB  
Review
Domain Structures and Inter-Domain Interactions Defining the Holoenzyme Architecture of Archaeal D-Family DNA Polymerase
by Ikuo Matsui, Eriko Matsui, Kazuhiko Yamasaki and Hideshi Yokoyama
Life 2013, 3(3), 375-385; https://doi.org/10.3390/life3030375 - 5 Jul 2013
Cited by 4 | Viewed by 7372
Abstract
Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology [...] Read more.
Archaea-specific D-family DNA polymerase (PolD) forms a dimeric heterodimer consisting of two large polymerase subunits and two small exonuclease subunits. According to the protein-protein interactions identified among the domains of large and small subunits of PolD, a symmetrical model for the domain topology of the PolD holoenzyme is proposed. The experimental evidence supports various aspects of the model. The conserved amphipathic nature of the N-terminal putative α-helix of the large subunit plays a key role in the homodimeric assembly and the self-cyclization of the large subunit and is deeply involved in the archaeal PolD stability and activity. We also discuss the evolutional transformation from archaeal D-family to eukaryotic B-family polymerase on the basis of the structural information. Full article
(This article belongs to the Special Issue Extremophiles and Extreme Environments)
Show Figures

Figure 1

18 pages, 338 KiB  
Article
Effects of Intermediates between Vitamins K2 and K3 on Mammalian DNA Polymerase Inhibition and Anti-Inflammatory Activity
by Yoshiyuki Mizushina, Jun Maeda, Yasuhiro Irino, Masayuki Nishida, Shin Nishiumi, Yasuyuki Kondo, Kazuyuki Nishio, Kouji Kuramochi, Kazunori Tsubaki, Isoko Kuriyama, Takeshi Azuma, Hiromi Yoshida and Masaru Yoshida
Int. J. Mol. Sci. 2011, 12(2), 1115-1132; https://doi.org/10.3390/ijms12021115 - 10 Feb 2011
Cited by 10 | Viewed by 9755
Abstract
Previously, we reported that vitamin K3 (VK3), but not VK1 or VK2 (=MK-4), inhibits the activity of human DNA polymerase γ (pol γ). In this study, we chemically synthesized three intermediate compounds between VK2 and VK3 [...] Read more.
Previously, we reported that vitamin K3 (VK3), but not VK1 or VK2 (=MK-4), inhibits the activity of human DNA polymerase γ (pol γ). In this study, we chemically synthesized three intermediate compounds between VK2 and VK3, namely MK-3, MK-2 and MK-1, and investigated the inhibitory effects of all five compounds on the activity of mammalian pols. Among these compounds, MK-2 was the strongest inhibitor of mammalian pols α, κ and λ, which belong to the B, Y and X families of pols, respectively; whereas VK3 was the strongest inhibitor of human pol γ, an A-family pol. MK-2 potently inhibited the activity of all animal species of pol tested, and its inhibitory effect on pol λ activity was the strongest with an IC50 value of 24.6 μM. However, MK-2 did not affect the activity of plant or prokaryotic pols, or that of other DNA metabolic enzymes such as primase of pol α, RNA polymerase, polynucleotide kinase or deoxyribonuclease I. Because we previously found a positive relationship between pol λ inhibition and anti-inflammatory action, we examined whether these compounds could inhibit inflammatory responses. Among the five compounds tested, MK-2 caused the greatest reduction in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced acute inflammation in mouse ear. In addition, in a cell culture system using mouse macrophages, MK-2 displayed the strongest suppression of the production of tumor necrosis factor (TNF)-α induced by lipopolysaccharide (LPS). Moreover, MK-2 was found to inhibit the action of nuclear factor (NF)-κB. In an in vivo mouse model of LPS-evoked acute inflammation, intraperitoneal injection of MK-2 in mice led to suppression of TNF-α production in serum. In conclusion, this study has identified VK2 and VK3 intermediates, such as MK-2, that are promising anti-inflammatory candidates. Full article
(This article belongs to the Section Biochemistry)
Show Figures

16 pages, 279 KiB  
Article
3-O-Methylfunicone, a Selective Inhibitor of Mammalian Y-Family DNA Polymerases from an Australian Sea Salt Fungal Strain
by Yoshiyuki Mizushina, Hirohisa Motoshima, Yasuhiro Yamaguchi, Toshifumi Takeuchi, Ken Hirano, Fumio Sugawara and Hiromi Yoshida
Mar. Drugs 2009, 7(4), 624-639; https://doi.org/10.3390/md7040624 - 23 Nov 2009
Cited by 41 | Viewed by 14312
Abstract
We isolated a pol inhibitor from the cultured mycelia extract of a fungal strain isolated from natural salt from a sea salt pan in Australia, which was identified as 3-O-methylfunicone by spectroscopic analyses. This compound selectively inhibited the activities of mammalian Y-family DNA [...] Read more.
We isolated a pol inhibitor from the cultured mycelia extract of a fungal strain isolated from natural salt from a sea salt pan in Australia, which was identified as 3-O-methylfunicone by spectroscopic analyses. This compound selectively inhibited the activities of mammalian Y-family DNA polymerases (pols) (i.e., pols η, ι and κ). Among these pols, human pol κ activity was most strongly inhibited, with an IC50 value of 12.5 μM. On the other hand, the compound barely influenced the activities of the other families of mammalian pols, such as A-family (i.e., pol γ), B-family (i.e., pols α, δ and ε) or X-family (i.e., pols β, λ and terminal deoxynucleotidyl transferase), and showed no effect on the activities of fish pol δ, plant pols, prokaryotic pols and other DNA metabolic enzymes, such as calf primase of pol α, human immunodeficiency virus type-1 (HIV-1) reverse transcriptase, human telomerase, T7 RNA polymerase, mouse IMP dehydrogenase (type II), human topoisomerases I and II, T4 polynucleotide kinase or bovine deoxyribonuclease I. This compound also suppressed the growth of two cultured human cancer cell lines, HCT116 (colon carcinoma cells) and HeLa (cervix carcinoma cells), and UV-treated HeLa cells exhibited lower clonogenic survival in the presence of inhibitor. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Microbes)
Show Figures

Graphical abstract

Back to TopTop