Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Avian Orthoavulavirus-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2243 KiB  
Article
Detection of a Novel Gull-like Clade of Newcastle Disease Virus and H3N8 Avian Influenza Virus in the Arctic Region of Russia (Taimyr Peninsula)
by Anastasiya Derko, Nikita Dubovitskiy, Alexander Prokudin, Junki Mine, Ryota Tsunekuni, Yuko Uchida, Takehiko Saito, Nikita Kasianov, Arina Loginova, Ivan Sobolev, Sachin Kumar, Alexander Shestopalov and Kirill Sharshov
Viruses 2025, 17(7), 955; https://doi.org/10.3390/v17070955 - 7 Jul 2025
Viewed by 628
Abstract
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into [...] Read more.
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into this region is rare. This study reports the first Newcastle disease virus (NDV) detection in Arctic Russia. As a result of a five-year study (from 2019 to 2023) of avian paramyxoviruses and avian influenza viruses in wild waterbirds of the Taimyr Peninsula, whole-genome sequences of NDV and H3N8 were obtained. The resulting influenza virus isolate was phylogenetically related to viruses that circulated between 2021 and 2023 in Eurasia, Siberia, and Asia. All NDV sequences were obtained from the Herring gull, and other gull sequences formed a separate gull-like clade in the sub-genotype I.1.2.1, Class II. This may indirectly indicate that different NDV variants adapt to more host species than is commonly believed. Further surveillance of other gull species may help to test the hypothesis of putative gull-specific NDV lineage and better understand their role in the evolution and global spread of NDV. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

17 pages, 2130 KiB  
Article
Genotype I Newcastle Disease Virus, Isolated from Wild Duck, Can Protect Chickens Against Newcastle Disease Caused by Genotype VII
by Elizaveta Boravleva, Anastasia Treshchalina, Daria Gordeeva, Alexandra Gambaryan, Alla Belyakova, Irina Gafarova, Alexey Prilipov, Galina Sadykova, Simone Adams, Tatiana Timofeeva and Natalia Lomakina
Pathogens 2025, 14(4), 380; https://doi.org/10.3390/pathogens14040380 - 14 Apr 2025
Viewed by 1403
Abstract
Newcastle disease viruses (NDVs) circulating among wild birds and poultry may differ in virulence. Some NDVs cause devastating outbreaks in chickens. The NDV/duck/Moscow/3639/2008 (d3639) strain was isolated from a wild duck. Its genome was sequenced (PP795281, GenBank) and the biological properties, specifically for [...] Read more.
Newcastle disease viruses (NDVs) circulating among wild birds and poultry may differ in virulence. Some NDVs cause devastating outbreaks in chickens. The NDV/duck/Moscow/3639/2008 (d3639) strain was isolated from a wild duck. Its genome was sequenced (PP795281, GenBank) and the biological properties, specifically for infection in chicken and mice, were studied. Strain d3639 of genotype I.2 has an F protein cleavage site (112-GKQGRL-117) and a HN protein length (616 a.a.) of the lentogenic pathotype. It was tested, in comparison with the genotype II LaSota vaccine strain, for its immunogenicity and protective efficacy against a challenge with the velogenic NDV strain NDV/chicken/Moscow/6081/2022 (ch6081) of sub-genotype VII.1.1, the complete genome of which was also sequenced in this study (PP766718, GenBank). Both the d3639 and LaSota viruses did not induce clinical signs in chickens or mice. Single immunization was performed by inoculation through drinking water with the live virus. Inoculation protected the chickens during a subsequent challenge with velogenic ch6081 and significantly reduced shedding in feces. Double immunization was sufficient to achieve prolonged immunity and prevented the shedding of the velogenic virus after the challenge. Thus, this natural lentogenic d3639 virus possesses properties similar to the LaSota vaccine strain and can protect against sub-genotype VII.1.1 NDV. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

12 pages, 1480 KiB  
Article
Analysis of Avian Orthoavulavirus 1 Detected in the Russian Federation between 2017 and 2021
by Nelly A. Guseva, Sergey N. Kolosov, Nikolay G. Zinyakov, Artem V. Andriyasov, Renfu Yin, Lidya O. Scherbakova, Evgenia V. Ovchinnikova, Zoya B. Nikonova, Dmitry B. Andreychuk, Alexander V. Sprygin, Ilya A. Chvala and Natalia V. Moroz
Vaccines 2023, 11(6), 1032; https://doi.org/10.3390/vaccines11061032 - 27 May 2023
Cited by 2 | Viewed by 2419
Abstract
Newcastle disease virus (NDV, Avian orthoavulavirus type 1, AOAV-1) is a contagious high-impact poultry pathogen with infections detected worldwide. In the present study, 19,500 clinical samples from wild bird species and poultry collected from 28 regions of Russia between 2017 and [...] Read more.
Newcastle disease virus (NDV, Avian orthoavulavirus type 1, AOAV-1) is a contagious high-impact poultry pathogen with infections detected worldwide. In the present study, 19,500 clinical samples from wild bird species and poultry collected from 28 regions of Russia between 2017 and 2021 were screened for the presence of the AOAV-1 genome. NDV RNA was detected in 15 samples from wild birds and 63 samples from poultry. All isolates were screened for a partial sequence of the fusion (F) gene that included the cleavage site. Phylogenetic analysis demonstrated that lentogenic AOAV-1 I.1.1, I.1.2.1, and II genotypes were dominant among vaccine-like viruses in the territory of the Russian Federation. A vaccine-like virus with a mutated cleavage site (112-RKQGR^L-117) was detected in turkeys. Among the virulent AOAV-1 strains, viruses of the XXI.1.1, VII.1.1, and VII.2 genotypes were identified. The cleavage site of viruses of the XXI.1.1 genotype had a 112-KRQKR^F-117 amino acid sequence. The cleavage site of viruses with VII.1.1 and VII.2 genotypes had a 112-RRQKR^F-117 amino acid sequence. The data collected by the present study demonstrate the distribution and dominance of the virulent VII.1.1 genotype in the Russian Federation between 2017 and 2021. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

8 pages, 957 KiB  
Communication
Improvement of a Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for the Sensitive Detection of the F Gene of Avian Orthoavulavirus-1 (AOAV-1)
by Prerana Bhande, Brigitte Sigrist, Linard Balke, Sarah Albini and Nina Wolfrum
Vet. Sci. 2023, 10(3), 223; https://doi.org/10.3390/vetsci10030223 - 14 Mar 2023
Cited by 2 | Viewed by 2697
Abstract
Avian orthoavulavirus-1 (AOAV-1) is the causative agent of Newcastle disease in poultry. This highly infectious disease causes large economic losses annually and worldwide. AOAV-1 does not only infect poultry, but it has a very broad host range and has been detected in over [...] Read more.
Avian orthoavulavirus-1 (AOAV-1) is the causative agent of Newcastle disease in poultry. This highly infectious disease causes large economic losses annually and worldwide. AOAV-1 does not only infect poultry, but it has a very broad host range and has been detected in over 230 bird species to date. A distinct group of viral strains within AOAV-1 are pigeon-adapted strains, also named pigeon paramyxovirus-1 (PPMV-1). AOAV-1 is transmitted through the feces of infected birds and secretions from the nasal and oral cavities and eyes. It is worth mentioning that wild birds can transmit the virus to captive birds, especially feral pigeons to poultry. Therefore, early and sensitive detection of this virus—including the monitoring of pigeons—is of utmost importance. A variety of molecular methods for the detection of AOAV-1 already exist, but the detection of the F gene cleavage site of currently circulating PPMV-1 strains has not proven to be particularly sensitive or suitable. As presented here, by modifying the primers and probe of an already established real-time reverse-transcription PCR, the sensitivity could be increased, allowing for a more reliable detection of the AOAV-1 F gene cleavage site. Furthermore, it becomes clear how important it is to constantly monitor and, if necessary, adapt existing diagnostic procedures. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Pathology of Virus Infection in Poultry)
Show Figures

Figure 1

15 pages, 3194 KiB  
Article
Game Birds Can Act as Intermediaries of Virulent Genotype VII Avian Orthoavulavirus-1 between Wild Birds and Domestic Poultry
by Craig S. Ross, Paul Skinner, David Sutton, Jo Mayers, Alex Nunez, Sharon M. Brookes, Ashley C. Banyard and Ian H. Brown
Viruses 2023, 15(2), 536; https://doi.org/10.3390/v15020536 - 14 Feb 2023
Cited by 3 | Viewed by 2342
Abstract
Newcastle Disease (ND), caused by virulent forms of Avian orthoavulavirus serotype-1 (AOAV-1) is an economically important avian disease worldwide. The past two incursions of ND into the United Kingdom occurred in game bird populations during 2005 and 2006. The nature of the game [...] Read more.
Newcastle Disease (ND), caused by virulent forms of Avian orthoavulavirus serotype-1 (AOAV-1) is an economically important avian disease worldwide. The past two incursions of ND into the United Kingdom occurred in game bird populations during 2005 and 2006. The nature of the game bird semi-feral rearing system, which can bring these birds into close contact with both wild birds and commercial or backyard poultry, has been hypothesized to act as a bridge between these two environments. As such, the risk that AOAV-1-infected game birds may pose to the UK poultry industry was investigated. Pheasants, partridges and chickens were experimentally infected with the virulent strain APMV-1/Chicken/Bulgaria/112/13, a genotype VII.2 virus associated with ND outbreaks in Eastern Europe. The study demonstrated that both chickens and pheasants are susceptible to infection with APMV-1/Chicken/Bulgaria/112/13, which results in high mortality and onward transmission. Partridges by contrast are susceptible to infection, but mortality was reduced, as was onward transmission. However, the data indicated that both pheasants and partridges may serve as intermediate hosts of AOAV-1 and may bridge the wild bird–domestic poultry interface enabling transmission into an economically damaging environment where morbidity and mortality may be high. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

13 pages, 1746 KiB  
Article
Thermostability and Immunogenicity of Genotype II Avian Orthoavulavirus (AOaV-1) Isolates from Duck (Anas platyrhynchos) and Parrot (Eclectusroratus)
by Sangeeta Das, Pankaj Deka, Parikshit Kakati, Pubaleem Deka, Mrinal Kumar Nath, Aman Kumar, Arfan Ali, Mihir Sarma, Rofique Ahmed, Sophia M. Gogoi, Arijit Shome, Biswajyoti Borah, Nagendra Nath Barman and Dilip Kumar Sarma
Viruses 2022, 14(11), 2528; https://doi.org/10.3390/v14112528 - 15 Nov 2022
Cited by 1 | Viewed by 2373
Abstract
Newcastle disease (ND) is a highly contagious viral disease of poultry causing significant economic losses worldwide. Vaccination is considered the most reliable approach to curb the economic menace that is ND, but the thermolabile nature of Newcastle disease virus (NDV) vaccination poses a [...] Read more.
Newcastle disease (ND) is a highly contagious viral disease of poultry causing significant economic losses worldwide. Vaccination is considered the most reliable approach to curb the economic menace that is ND, but the thermolabile nature of Newcastle disease virus (NDV) vaccination poses a significant threat to its protective efficacy. This study aimed to profile the thermostability of NDV isolates from duck (As/Km/19/44) and parrot (As/WB/19/91) and evaluate their immunogenic potential in chicks. Fusion protein cleavage site (FPCS) and phylogenetic analysis demonstrated the lentogenic nature of both the isolates/strains and classified them as class II genotype II NDV. The characterized NDV isolates were adapted in specific-pathogen-free (SPF) chicks by serially passaging. Biological pathogenicity assessment of chicken-adapted As/Km/19/44 (PSD44C) and As/WB/19/91 (PSP91C) revealed both the isolates to be avirulent with a mean death time (MDT) of more than 90 h and an intracerebral pathogenicity index (ICPI) ranging from 0.2 to 0.4. Both of the NDV isolates displayed varied thermostability profiles. PSD44C was the most thermostable strain as compared to PSP91C and the commercially available LaSota vaccine strain. The immunogenicity of PSD44C and LaSota was significantly higher than PSP91C. Based on these results, it is concluded that NDV isolate PSD44C is more thermostable and immunogenic when administered intraocularly without any adverse effects. Therefore, PSD44C is suitable for further research and vaccine development. Full article
(This article belongs to the Special Issue Newcastle Disease Virus and Other Avian Paramyxoviruses)
Show Figures

Figure 1

14 pages, 1057 KiB  
Article
Screening of Healthy Feral Pigeons (Columba livia domestica) in the City of Zurich Reveals Continuous Circulation of Pigeon Paramyxovirus-1 and a Serious Threat of Transmission to Domestic Poultry
by Désirée Annaheim, Barbara Renate Vogler, Brigitte Sigrist, Andrea Vögtlin, Daniela Hüssy, Christian Breitler, Sonja Hartnack, Christian Grund, Jacqueline King, Nina Wolfrum and Sarah Albini
Microorganisms 2022, 10(8), 1656; https://doi.org/10.3390/microorganisms10081656 - 17 Aug 2022
Cited by 5 | Viewed by 3604
Abstract
Pigeon paramyxovirus-1 (PPMV-1) is predominantly isolated from pigeons or doves and forms a separate group of viral strains within Avian Orthoavulavirus-1, the causative agent of Newcastle disease in poultry. Since the introduction of PPMV-1 into Europe in 1981, these strains have rapidly spread [...] Read more.
Pigeon paramyxovirus-1 (PPMV-1) is predominantly isolated from pigeons or doves and forms a separate group of viral strains within Avian Orthoavulavirus-1, the causative agent of Newcastle disease in poultry. Since the introduction of PPMV-1 into Europe in 1981, these strains have rapidly spread all over Europe, and are nowadays considered to be enzootic in feral and hobby pigeons (Columba livia domestica). Infections with PPMV-1 can range from asymptomatic to fatal. To assess whether PPMV-1 continuously circulates in healthy feral pigeons, 396 tissue samples of pigeons from the city of Zurich were tested by reverse transcriptase real-time PCR over the period of one year. PPMV-1-RNA was detected in 41 feral pigeons (10.35%), determined as the dominant European genotype VI.2.1.1.2.2. In 38 of the 41 pigeons where organ samples tested positive, PPMV-1-RNA was also detected in either choana or cloaca swabs. There were no significant differences in positivity rates between seasons, age, and sex. The current study shows that feral pigeons without clinical signs of disease can harbour and most likely excrete PPMV-1. Spill-over into free-range holdings of chickens are therefore possible, as observed in a recent outbreak of Newcastle disease in laying hens due to PPMV-1 genotype VI.2.1.1.2.2. in the canton of Zurich in January 2022. Full article
(This article belongs to the Special Issue Avian Pathogens 2.0)
Show Figures

Figure 1

19 pages, 1569 KiB  
Review
Avian Orthoavulavirus Type-1 as Vaccine Vector against Respiratory Viral Pathogens in Animal and Human
by Julianne Vilela, Mohammed A. Rohaim and Muhammad Munir
Vaccines 2022, 10(2), 259; https://doi.org/10.3390/vaccines10020259 - 8 Feb 2022
Cited by 2 | Viewed by 4013
Abstract
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine [...] Read more.
Avian orthoavulaviruses type-1 (AOaV-1) have recently transitioned from animal vaccine vector to a bona fide vaccine delivery vehicle in human. Owing to induction of robust innate and adaptive immune responses in mucus membranes in both birds and mammals, AOaVs offer an attractive vaccine against respiratory pathogens. The unique features of AOaVs include over 50 years of safety profile, stable expression of foreign genes, high infectivity rates in avian and mammalian hosts, broad host spectrum, limited possibility of recombination and lack of pre-existing immunity in humans. Additionally, AOaVs vectors allow the production of economical and high quantities of vaccine antigen in chicken embryonated eggs and several GMP-grade mammalian cell lines. In this review, we describe the biology of AOaVs and define protocols to manipulate AOaVs genomes in effectively designing vaccine vectors. We highlighted the potential and established portfolio of AOaV-based vaccines for multiple respiratory and non-respiratory viruses of veterinary and medical importance. We comment on the limitations of AOaV-based vaccines and propose mitigations strategies. The exploitation of AOaVs vectors is expanding at an exciting pace; thus, we have limited the scope to their use as vaccines against viral pathogens in both animals and humans. Full article
Show Figures

Figure 1

21 pages, 5844 KiB  
Article
AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma
by Ashley A. Stegelmeier, Lisa A. Santry, Matthew M. Guilleman, Kathy Matuszewska, Jessica A. Minott, Jacob G. E. Yates, Brenna A. Y. Stevens, Sylvia P. Thomas, Sierra Vanderkamp, Kiersten Hanada, Yanlong Pei, Amira D. Rghei, Jacob P. van Vloten, Madison Pereira, Brad Thompson, Pierre P. Major, James J. Petrik, Byram W. Bridle and Sarah K. Wootton
Biomedicines 2022, 10(2), 362; https://doi.org/10.3390/biomedicines10020362 - 2 Feb 2022
Cited by 5 | Viewed by 3920
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and [...] Read more.
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Anti-angiogenic Therapies)
Show Figures

Figure 1

15 pages, 1379 KiB  
Article
In Vitro and In Vivo Characterization of a Pigeon Paramyxovirus Type 1 Isolated from Domestic Pigeons in Victoria, Australia 2011
by Songhua Shan, Kerri Bruce, Vittoria Stevens, Frank Y. K. Wong, Jianning Wang, Dayna Johnson, Deborah Middleton, Kim O’Riley, Sam McCullough, David T. Williams and Jemma Bergfeld
Viruses 2021, 13(3), 429; https://doi.org/10.3390/v13030429 - 8 Mar 2021
Cited by 6 | Viewed by 3930
Abstract
Significant mortalities of racing pigeons occurred in Australia in late 2011 associated with a pigeon paramyxovirus serotype 1 (PPMV-1) infection. The causative agent, designated APMV-1/pigeon/Australia/3/2011 (P/Aus/3/11), was isolated from diagnostic specimens in specific pathogen free (SPF) embryonated eggs and was identified by a [...] Read more.
Significant mortalities of racing pigeons occurred in Australia in late 2011 associated with a pigeon paramyxovirus serotype 1 (PPMV-1) infection. The causative agent, designated APMV-1/pigeon/Australia/3/2011 (P/Aus/3/11), was isolated from diagnostic specimens in specific pathogen free (SPF) embryonated eggs and was identified by a Newcastle Disease virus (NDV)-specific RT-PCR and haemagglutination inhibition (HI) test using reference polyclonal antiserum specific for NDV. The P/Aus/3/11 strain was further classified as PPMV-1 using the HI test and monoclonal antibody 617/161 by HI and phylogenetic analysis of the fusion gene sequence. The isolate P/Aus/3/11 had a slow haemagglutin-elution rate and was inactivated within 45 min at 56 °C. Cross HI tests generated an R value of 0.25, indicating a significant antigenic difference between P/Aus/3/11 and NDV V4 isolates. The mean death time (MDT) of SPF eggs infected with the P/Aus/3/11 isolate was 89.2 hr, characteristic of a mesogenic pathotype, consistent with other PPMV-1 strains. The plaque size of the P/Aus/3/11 isolate on chicken embryo fibroblast (CEF) cells was smaller than those of mesogenic and velogenic NDV reference strains, indicating a lower virulence phenotype in vitro and challenge of six-week-old SPF chickens did not induce clinical signs. However, sequence analysis of the fusion protein cleavage site demonstrated an 112RRQKRF117 motif, which is typical of a velogenic NDV pathotype. Phylogenetic analysis indicated that the P/Aus/3/11 isolate belongs to a distinct subgenotype within class II genotype VI of avian paramyxovirus type 1. This is the first time this genotype has been detected in Australia causing disease in domestic pigeons and is the first time since 2002 that an NDV with potential for virulence has been detected in Australia. Full article
(This article belongs to the Special Issue Newcastle Disease Virus)
Show Figures

Figure 1

16 pages, 2711 KiB  
Article
A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2
by Mohammed A. Rohaim and Muhammad Munir
Vaccines 2020, 8(3), 472; https://doi.org/10.3390/vaccines8030472 - 24 Aug 2020
Cited by 19 | Viewed by 5916
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would [...] Read more.
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies. Full article
(This article belongs to the Special Issue Vectored Vaccines)
Show Figures

Graphical abstract

8 pages, 1087 KiB  
Brief Report
The Emergence of Avian Orthoavulavirus 13 in Wild Migratory Waterfowl in China Revealed the Existence of Diversified Trailer Region Sequences and HN Gene Lengths within this Serotype
by Yidong Fei, Xinxin Liu, Jiaqi Mu, Junjiao Li, Xibing Yu, Jin Chang, Yuhai Bi, Tobias Stoeger, Abdul Wajid, Denys Muzyka, Kirill Sharshov, Alexander Shestopalov, Alongkorn Amonsin, Jianjun Chen, Zhuang Ding and Renfu Yin
Viruses 2019, 11(7), 646; https://doi.org/10.3390/v11070646 - 13 Jul 2019
Cited by 14 | Viewed by 5202
Abstract
Avian orthoavulavirus 13 (AOAV-13), also named avian paramyxovirus 13 (APMV-13), has been found sporadically in wild birds around the world ever since the discovery of AOAV-13 (AOAV-13/wild goose/Shimane/67/2000) in a wild goose from Japan in 2000. However, there are no reports of AOAV-13 [...] Read more.
Avian orthoavulavirus 13 (AOAV-13), also named avian paramyxovirus 13 (APMV-13), has been found sporadically in wild birds around the world ever since the discovery of AOAV-13 (AOAV-13/wild goose/Shimane/67/2000) in a wild goose from Japan in 2000. However, there are no reports of AOAV-13 in China. In the present study, a novel AOAV-13 virus (AOAV-13/wild goose/China/Hubei/V93-1/2015), isolated from a wild migratory waterfowl in a wetland of Hubei province of China, during active surveillance from 2013 to 2018, was biologically and genetically characterized. Phylogenetic analyses demonstrated a very close genetic relationship among all AOAV-13 strains, as revealed by very few genetic variations. Moreover, pathogenicity tests indicated that the V93-1 strain is a low virulent virus for chickens. However, the genome of the V93-1 virus was found to be 16,158 nucleotides (nt) in length, which is 12 nt or 162 nt longer than the other AOAV-13 strains that have been reported to date. The length difference of 12 nt in strain V93-1 is due to the existence of three repeats of the conserved sequence, “AAAAAT”, in the 5′-end trailer of the genome. Moreover, the HN gene of the V93-1 virus is 2070 nt in size, encoding 610 aa, which is the same size as the AOAV-13 strain from Japan, whereas that of two strains from Ukraine and Kazakhstan are 2080 nt in length, encoding 579 aa. We describe a novel AOAV-13 in migratory waterfowl in China, which suggests that diversified trailer region sequences and HN gene lengths exist within serotype AOAV-13, and highlight the need for its constant surveillance in poultry from live animal markets, and especially migratory birds. Full article
(This article belongs to the Special Issue Emerging Viruses: Surveillance, Prevention, Evolution and Control)
Show Figures

Figure 1

Back to TopTop