Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = AuND functionalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
81 pages, 50947 KB  
Review
Towards Completion of the “Periodic Table” of Di-2-Pyridyl Ketoxime
by Christina Stamou, Christina D. Polyzou, Zoi G. Lada, Konstantis F. Konidaris and Spyros P. Perlepes
Molecules 2025, 30(4), 791; https://doi.org/10.3390/molecules30040791 - 8 Feb 2025
Cited by 1 | Viewed by 1691
Abstract
The oxime group is important in organic and inorganic chemistry. In most cases, this group is part of an organic molecule possessing one or more donor sites capable of forming bonds to metal ions. One family of such compounds is the group of [...] Read more.
The oxime group is important in organic and inorganic chemistry. In most cases, this group is part of an organic molecule possessing one or more donor sites capable of forming bonds to metal ions. One family of such compounds is the group of 2-pyridyl (aldo)ketoximes. Metal complexes of 2-pyridyl oximes continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their interesting structures, physical and biological properties, and applications. A unique member of 2-pyridyl ketoximes is di-2-pyridyl ketoxime (dpkoxH), which contains two 2-pyridyl groups and an oxime functionality that can be easily deprotonated giving the deprotonated ligand (dpkox). The extra 2-pyridyl site confers a remarkable flexibility resulting in metal complexes with exciting structural and reactivity features. Our and other research groups have prepared and characterized many metal complexes of dpkoxH and dpkox over the past 30 years or so. This work is an attempt to build a “periodic table” of dpkoxH, which is near completion. The filled spaces of this “periodic table” contain metal ions whose dpkoxH/dpkox complexes have been structurally characterized. This work reviews comprehensively the to-date published coordination chemistry of dpkoxH with emphasis on the syntheses, reactivity, relationship to metallacrown chemistry, structures, and properties of the metal complexes; selected unpublished results from our group are also reported. The sixteen coordination modes adopted by dpkoxH and dpkox have provided access to monomeric and dimeric complexes, trinuclear, tetranuclear, pentanuclear, hexanuclear, heptanuclear, enneanuclear, and decanuclear clusters, as well as to a small number of 1D coordination polymers. With few exceptions ({MIILnIII2} and {NiII2MnIII2}; M = Ni, Cu, Pd, and Ln = lanthanoid), most complexes are homometallic. The metals whose ions have yielded complexes with dpkoxH and dpkox are Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Re, Os, Ir, Au, Hg, lanthanoids (mainly Pr and Nd), and U. Most metal complexes are homovalent, but some mixed-valence Mn, Fe, and Co compounds have been studied. Metal ion-assisted/promoted transformations of dpkoxH, i.e., reactivity patterns of the coordinated ligand, are also critically discussed. Some perspectives concerning the coordination chemistry of dpkoxH and research work for the future are outlined. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

10 pages, 2002 KB  
Proceeding Paper
Silver Nanostructures for Determination of FKBP12 Protein
by Cosimo Bartolini, Martina Tozzetti, Stefano Menichetti and Gabriella Caminati
Eng. Proc. 2024, 73(1), 9; https://doi.org/10.3390/engproc2024073009 - 12 Nov 2024
Cited by 3 | Viewed by 1076
Abstract
FKBP12 is a peptidyl––prolyl cis–trans isomerase that was recently proposed as a candidate biomarker for cancer, for neurodegenerations and for anti–rejection therapy after organ transplant. We designed and fabricated a nanosensor platform for the rapid and efficient determination of FKBP12 concentration in biological [...] Read more.
FKBP12 is a peptidyl––prolyl cis–trans isomerase that was recently proposed as a candidate biomarker for cancer, for neurodegenerations and for anti–rejection therapy after organ transplant. We designed and fabricated a nanosensor platform for the rapid and efficient determination of FKBP12 concentration in biological fluids exploiting anisotropic silver nanoparticles (AgNps) to enhance the capabilities of Quartz Crystal Microbalance (QCM) detection. To this end, the QCM sensor was coated with a compact array of AgNPs that were further functionalized with a Self–Assembled–Monolayer containing a synthetic receptor, GPS–SH1, designed and synthesized specifically to selectively bind FKBP12. Silver nanoflowers, AgNFs, and silver dendrites, AgNDs, were prepared by electrodeposition and characterized by means of UV–Vis spectroscopy, Scanning Electron Microscopy (SEM), QCM and water contact angle (CA). The AgNPs@Au/GPS–SH1–functionalized QCM sensors were used to detect increasing concentrations of FKBP12 in solution; the results showed that the use of AgNDs significantly enhanced the sensitivity of the sensor with respect to flat Ag sensor chips, allowing the detection of FKBP12 at sub–picomolar concentrations. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
Show Figures

Figure 1

11 pages, 5493 KB  
Article
Functionalization of ZnO Nanorods with Au Nanodots via In Situ Reduction for High-Performance Detection of Ethyl Acetate
by Qilin Wang, Wei Wang, Yizhuo Fan, Jian Fang, Yu Chen and Shengping Ruan
Sensors 2024, 24(21), 6931; https://doi.org/10.3390/s24216931 - 29 Oct 2024
Cited by 3 | Viewed by 1791
Abstract
Ethyl acetate is a critical medical indicator for detecting certain types of cancer. However, at present, available sensitive materials often exhibit drawbacks, such as high operating temperatures and poor responses to low concentrations of ethyl acetate. In this study, a ZnO nanorod sensing [...] Read more.
Ethyl acetate is a critical medical indicator for detecting certain types of cancer. However, at present, available sensitive materials often exhibit drawbacks, such as high operating temperatures and poor responses to low concentrations of ethyl acetate. In this study, a ZnO nanorod sensing material was prepared using high-temperature annealing and a hydrothermally synthesized metal-organic framework (MOF) as a template. Au nanodots (AuNDs) were subsequently modified on the ZnO nanorods using an in situ ion reduction, which provided a better dispersion of Au nanodots compared with that obtained using the common reductant method. A variety of characterization methods indicate that the highly dispersed AuNDs, which possess a high catalytic activity, were loaded onto the surface as active centers, leading to a significant augmentation in the adsorption of oxygen on the surface compared with the original ZnO material. Consequently, the AuND@ZnO material exhibited heightened responsiveness to ethyl acetate at a lower operating temperature. The Au@ZnO-based sensor has a response rate (Ra/Rg) of 41.8 to 20 ppm ethyl acetate gas at 140 °C, marking a 17.4-fold increase compared with that of the original material. Due to its low power consumption and high responsiveness, AuND@ZnO is a promising candidate for the detection of ethyl acetate gas in medical applications. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

20 pages, 4112 KB  
Article
Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Ag/Au Alloy Nanoparticles Synthesized by Pulsed Laser Ablation in a Liquid
by Yasmin Abd El-Salam, Hussein Dhahi Adday, Fatma Abdel Samad, Hamza Qayyum and Tarek Mohamed
Nanomaterials 2024, 14(15), 1290; https://doi.org/10.3390/nano14151290 - 31 Jul 2024
Cited by 12 | Viewed by 3216
Abstract
Metallic nanoparticles have gained attention in technological fields, particularly photonics. The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same average power [...] Read more.
Metallic nanoparticles have gained attention in technological fields, particularly photonics. The creation of silver/gold (Ag/Au) alloy NPs upon laser exposure of an assembly of these NPs was described. First, using the Nd: YAG pulsed laser ablation’s second harmonic at the same average power and exposure time, Ag and Au NPs in distilled water were created individually. Next, the assembly of Ag and Au NP colloids was exposed again to the pulsed laser, and the effects were examined at different average powers and exposure times. Furthermore, Ag/Au alloy nanoparticles were synthesized with by raising the average power and exposure time. The absorption spectrum, average size, and shape of alloy NPs were obtained by using an ultraviolet-visible (UV–Vis) spectrophotometer and transmission electron microscope instrument. Ag/Au alloy NPs have been obtained in the limit of quantum dots (<10 nm). The optical band gap energies of the Ag/Au alloy colloidal solutions were assessed for different Ag/Au alloy NP concentrations and NP sizes as a function of the exposure time and average power. The experimental data showed a trend toward an increasing bandgap with decreasing nanoparticle size. The nonlinear optical characteristics of Ag/Au NPs were evaluated and measured by the Z-scan technique using high repetition rate (80 MHz), femtosecond (100 fs), and near-infrared (NIR) (750–850 nm) laser pulses. In open aperture (OA) Z-scan measurements, Ag, Au, and Ag/AuNPs present reverse saturation absorption (RSA) behavior, indicating a positive nonlinear absorption (NLA) coefficient. In the close-aperture (CA) measurements, the nonlinear refractive (NLR) indices (n2) of the Ag, Au, and Ag/Au NP samples were ascribed to the self-defocusing effect, indicating an effective negative nonlinearity for the nanoparticles. The NLA and NLR characteristics of the Ag/Au NPs colloids were found to be influenced by the incident power and excitation wavelength. The optical limiting (OL) effects of the Ag/Au alloy solution at various excitation wavelengths were studied. The OL effect of alloy NPs is greater than that of monometallic NPs. The Ag/Au bimetallic nanoparticles were found to be more suitable for optical-limiting applications. Full article
(This article belongs to the Topic Laser Processing of Metallic Materials)
Show Figures

Figure 1

15 pages, 2903 KB  
Article
Hysteresis in the Thermo-Responsive Assembly of Hexa(ethylene glycol) Derivative-Modified Gold Nanodiscs as an Effect of Shape
by Joshua Chidiebere Mba, Hideyuki Mitomo, Yusuke Yonamine, Guoqing Wang, Yasutaka Matsuo and Kuniharu Ijiro
Nanomaterials 2022, 12(9), 1421; https://doi.org/10.3390/nano12091421 - 21 Apr 2022
Cited by 10 | Viewed by 3433
Abstract
Anisotropic gold nanodiscs (AuNDs) possess unique properties, such as large flat surfaces and dipolar plasmon modes, which are ideal constituents for the fabrication of plasmonic assemblies for novel and emergent functions. In this report, we present the thermo-responsive assembly and thermo-dynamic behavior of [...] Read more.
Anisotropic gold nanodiscs (AuNDs) possess unique properties, such as large flat surfaces and dipolar plasmon modes, which are ideal constituents for the fabrication of plasmonic assemblies for novel and emergent functions. In this report, we present the thermo-responsive assembly and thermo-dynamic behavior of AuNDs functionalized with methyl-hexa(ethylene glycol) undecane-thiol as a thermo-responsive ligand. Upon heating, the temperature stimulus caused a blue shift of the plasmon peak to form a face-to-face assembly of AuNDs due to the strong hydrophobic and van der Waals interactions between their large flat surfaces. Importantly, AuNDs allowed for the incorporation of the carboxylic acid-terminated ligand while maintaining their thermo-responsive assembly ability. With regard to their reversible assembly/disassembly behavior in the thermal cycling process, significant rate-independent hysteresis, which is related to their thermo-dynamics, was observed and was shown to be dependent on the carboxylic acid content of the surface ligands. As AuNDs have not only unique plasmonic properties but also high potential for attachment due to the fact of their flat surfaces, this study paves the way for the exploitation of AuNDs in the development of novel functional materials with a wide range of applications. Full article
Show Figures

Graphical abstract

9 pages, 923 KB  
Article
Performance and Acceptability of a New Dexpanthenol-Containing Hand Cream in Subjects with Sensitive and Very Dry Skin: A Randomized Controlled Study
by Hans Stettler, Raffaella de Salvo, Marianne Brandt, Ann-Kathrin Effertz, Sabrina Laing and Sonja Trapp
Cosmetics 2022, 9(3), 44; https://doi.org/10.3390/cosmetics9030044 - 19 Apr 2022
Cited by 2 | Viewed by 8718
Abstract
A new dexpanthenol-containing hand cream (ND-HC) was developed for people with dry, sensitive, and/or environmentally stressed hands. To explore the performance and acceptability of ND-HC, we conducted a randomized, intraindividual comparison study in 40 healthy adult subjects with sensitive and very dry skin [...] Read more.
A new dexpanthenol-containing hand cream (ND-HC) was developed for people with dry, sensitive, and/or environmentally stressed hands. To explore the performance and acceptability of ND-HC, we conducted a randomized, intraindividual comparison study in 40 healthy adult subjects with sensitive and very dry skin on the hands. Instrumental measurements determined the effects on stratum corneum (SC) hydration and transepidermal water loss (TEWL) after single and/or 4 weeks’ use of ND-HC. Single and continued at least four times daily applications of ND-HC to very dry skin of the hand for 4 weeks triggered significant increases in SC hydration. On day 29, the mean change in skin capacitance from baseline was significantly greater when ND-HC was applied to the test area compared with the untreated area on the contralateral hand (12.41 vs. 4.46 a.u.; p < 0.001). Upon use of ND-HC over 4 weeks, mean TEWL decreased significantly (bilateral difference: −1.8 vs. 1.0 g/m2/h; p = 0.003), indicating an improvement in SC barrier function. A reduction in dry hand symptoms was observed over the study course. ND-HC was well tolerated and achieved a high level of acceptance and satisfaction. Our findings suggest that ND-HC complies with the required features of a state-of-the-art hand cream. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2022)
Show Figures

Figure 1

27 pages, 46936 KB  
Article
Gdnf Acts as a Germ Cell-Derived Growth Factor and Regulates the Zebrafish Germ Stem Cell Niche in Autocrine- and Paracrine-Dependent Manners
by Lucas B. Doretto, Arno J. Butzge, Rafael T. Nakajima, Emanuel R. M. Martinez, Beatriz Marques de Souza, Maira da Silva Rodrigues, Ivana F. Rosa, Juliana M. B. Ricci, Aldo Tovo-Neto, Daniel F. Costa, Guilherme Malafaia, Changwei Shao and Rafael H. Nóbrega
Cells 2022, 11(8), 1295; https://doi.org/10.3390/cells11081295 - 11 Apr 2022
Cited by 23 | Viewed by 5191
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly [...] Read more.
Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly investigated in the testes. Considering this background, this study aimed to understand the roles of the Gdnf-Gfrα1 signaling pathway in zebrafish testes by combining in vivo, in silico and ex vivo approaches. Our analysis showed that zebrafish exhibit two paralogs for Gndf (gdnfa and gdnfb) and its receptor, Gfrα1 (gfrα1a and gfrα1b), in accordance with a teleost-specific third round of whole genome duplication. Expression analysis further revealed that both ligands and receptors were expressed in zebrafish adult testes. Subsequently, we demonstrated that gdnfa is expressed in the germ cells, while Gfrα1a/Gfrα1b was detected in early spermatogonia (mainly in types Aund and Adiff) and Sertoli cells. Functional ex vivo analysis showed that Gdnf promoted the creation of new available niches by stimulating the proliferation of both type Aund spermatogonia and their surrounding Sertoli cells but without changing pou5f3 mRNA levels. Strikingly, Gdnf also inhibited late spermatogonial differentiation, as shown by the decrease in type B spermatogonia and down-regulation of dazl in a co-treatment with Fsh. Altogether, our data revealed that a germ cell-derived factor is involved in maintaining germ cell stemness through the creation of new available niches, supporting the development of spermatogonial cysts and inhibiting late spermatogonial differentiation in autocrine- and paracrine-dependent manners. Full article
(This article belongs to the Special Issue Male Germline Stem Cells)
Show Figures

Figure 1

9 pages, 6231 KB  
Article
The Phase Stability of Al3Er Studied by the First-Principles Calculations and Experimental Analysis
by Chunlai Gao, Kunyuan Gao, Yusheng Ding, Haonan Li, Xiaolan Wu, Shengping Wen, Mu Gao, Hui Huang, Zuoren Nie and Dejing Zhou
Metals 2021, 11(5), 759; https://doi.org/10.3390/met11050759 - 4 May 2021
Cited by 10 | Viewed by 2616
Abstract
The thermodynamics of five Al3Er compounds were investigated through first-principles density-functional theory (DFT) and experimental analysis. The Al3Er compounds with Al3Ho.hR20 (prototype Al3Ho, Pearson symbol hR20), Cu3Au.cP4, AlNd3.hP8, Ni3Ti.hP16 [...] Read more.
The thermodynamics of five Al3Er compounds were investigated through first-principles density-functional theory (DFT) and experimental analysis. The Al3Er compounds with Al3Ho.hR20 (prototype Al3Ho, Pearson symbol hR20), Cu3Au.cP4, AlNd3.hP8, Ni3Ti.hP16 and Al3Gd.hR12 structures exhibited formation energies of −0.412(−0.417), −0.411(−0.416), −0.400(−0.413), −0.399(−0.345) and −0.342(−0.345) meV/atom when using DFT with “standard” potential (“frozen core” potential) of Er. The results indicated that the Al3Ho.hR20 structure was the thermodynamic stable phase and the other structures were metastable. The formation energy of Cu3Au.cP4 structure was only 1 meV/atom less than that of Al3Ho.hR20. Experimentally, the Al-30 wt.% Er alloys were cooled from 900 °C to 500 °C at the rate of 5 ± 2 °C/h and 60 ± 2 °C/h, respectively. The corresponding XRD analysis showed that the Al3Ho.hR20 was formed at the cooling rate of 5 ± 2 °C/h and the Cu3Au.cP4 was formed at the cooling rate of 60 ± 2 °C/h, which indicated that the Al3Ho.hR20 was in a thermodynamic stable phase and the Cu3Au.cP4 was in a metastable phase with high stability. The structural analysis indicated that the tiny energy difference between Al3Ho.hR20 and Cu3Au.cP4 might be attributed to a similar structure with varied stacking sequences. Full article
Show Figures

Figure 1

15 pages, 2801 KB  
Article
Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodes
by Raquel Montes, Gerard Sánchez, Jingjing Zhao, Cristina Palet, Mireia Baeza and Julio Bastos-Arrieta
Nanomaterials 2020, 10(6), 1179; https://doi.org/10.3390/nano10061179 - 17 Jun 2020
Cited by 6 | Viewed by 2933
Abstract
The incorporation of nanomaterials on (bio)sensors based on composite materials has led to important advances in the analytical chemistry field due to the extraordinary properties that these materials offer. Nanodiamonds (NDs) are a novel type of material that has raised much attention, as [...] Read more.
The incorporation of nanomaterials on (bio)sensors based on composite materials has led to important advances in the analytical chemistry field due to the extraordinary properties that these materials offer. Nanodiamonds (NDs) are a novel type of material that has raised much attention, as they have the possibility of being produced on a large scale by relatively inexpensive synthetic methodologies. Moreover, NDs can present some other interesting features, such as fluorescence, due to surface functionalization and proved biocompatibility, which makes them suitable for biomedical applications. In addition, NDs can be customized with metallic nanoparticles (NPs), such as silver or gold, in order to combine the features of both. Raw NDs were used as modifiers of sensors due to the electrocatalytic effect of the sp2 and oxygenated species present on their surface. The aim of this research work is evaluating the applicability of NDs modified with silver (Ag@NDs) and gold (Au@NDs) nanoparticles for the development of a suitable (bio)sensing platform. A complete morphological and electrochemical characterization as a function of the prepared nanocomposite composition was performed in order to improve the electroanalytical properties of the developed (bio)sensors. In the present work, the optimal composition for Au@NDs present on the nanocomposite matrix is 3.5% and the one for Ag@NDs is 1%. Good results were obtained in the evaluation of the optimal composition towards hydrogen peroxide and glucose as a model analyte using a (bio)sensor based on graphite-epoxy-Ag@NDs (17:82:1). Full article
Show Figures

Graphical abstract

16 pages, 9840 KB  
Article
Synchronized Optical and Acoustic Droplet Vaporization for Effective Sonoporation
by Wei-Wen Liu, Sy-Han Huang and Pai-Chi Li
Pharmaceutics 2019, 11(6), 279; https://doi.org/10.3390/pharmaceutics11060279 - 14 Jun 2019
Cited by 15 | Viewed by 4639
Abstract
Inertial cavitation-based sonoporation has been utilized to enhance treatment delivery efficacy. In our previous study, we demonstrated that tumor therapeutic efficacy can be enhanced through vaporization-assisted sonoporation with gold nanodroplets (AuNDs). Specifically, the AuNDs were vaporized both acoustically (i.e., acoustic droplet vaporization, ADV) [...] Read more.
Inertial cavitation-based sonoporation has been utilized to enhance treatment delivery efficacy. In our previous study, we demonstrated that tumor therapeutic efficacy can be enhanced through vaporization-assisted sonoporation with gold nanodroplets (AuNDs). Specifically, the AuNDs were vaporized both acoustically (i.e., acoustic droplet vaporization, ADV) and optically (i.e., optical droplet vaporization, ODV). A continuous wave (CW) laser was used for ODV in combination with an ultrasound pulse for ADV. Although effective for vaporization, the use of a CW laser is not energy efficient and may create unwanted heating and concomitant tissue damage. In this study, we propose the use of a pulsed wave (PW) laser to replace the CW laser. In addition, the PW laser was applied at the rarefaction phase of the ultrasound pulse so that the synergistic effects of ADV and ODV can be expected. Therefore, a significantly lower laser average power can be expected to achieve the vaporization threshold. Compared to the CW laser power at 2 W/cm2 from the previous approach, the PW laser power was reduced to only 0.2404 W/cm2. Furthermore, we also demonstrate in vitro that the sonoporation rate was increased when the PW laser was applied at the rarefaction phase. Specifically, the vaporization signal, the inertial cavitation signal, and the sonoporation rate all displayed a 1-µs period, which corresponded to the period of the 1-MHz acoustic wave used for ADV, as a function of the relative laser delay. The increased sonoporation rate indicates that this technique has the potential to enhance sonoporation-directed drug delivery and tumor therapy with a lower laser power while keeping the cell death rate at the minimum. Photoacoustic imaging can also be performed at the same time since a PW laser is used for the ODV. Full article
(This article belongs to the Special Issue Micro/Nano-Bubbles as a New Ultrasound Imaging and Drug Delivery Tool)
Show Figures

Graphical abstract

18 pages, 1198 KB  
Article
Remotely Triggered Scaffolds for Controlled Release of Pharmaceuticals
by Paul Roach, David J. McGarvey, Martin R. Lees and Clare Hoskins
Int. J. Mol. Sci. 2013, 14(4), 8585-8602; https://doi.org/10.3390/ijms14048585 - 19 Apr 2013
Cited by 28 | Viewed by 8606
Abstract
Fe3O4-Au hybrid nanoparticles (HNPs) have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we [...] Read more.
Fe3O4-Au hybrid nanoparticles (HNPs) have shown increasing potential for biomedical applications such as image guided stimuli responsive drug delivery. Incorporation of the unique properties of HNPs into thermally responsive scaffolds holds great potential for future biomedical applications. Here we successfully fabricated smart scaffolds based on thermo-responsive poly(N-isopropylacrylamide) (pNiPAM). Nanoparticles providing localized trigger of heating when irradiated with a short laser burst were found to give rise to remote control of bulk polymer shrinkage. Gold-coated iron oxide nanoparticles were synthesized using wet chemical precipitation methods followed by electrochemical coating. After subsequent functionalization of particles with allyl methyl sulfide, mercaptodecane, cysteamine and poly(ethylene glycol) thiol to enhance stability, detailed biological safety was determined using live/dead staining and cell membrane integrity studies through lactate dehydrogenase (LDH) quantification. The PEG coated HNPs did not show significant cytotoxic effect or adverse cellular response on exposure to 7F2 cells (p < 0.05) and were carried forward for scaffold incorporation. The pNiPAM-HNP composite scaffolds were investigated for their potential as thermally triggered systems using a Q-switched Nd:YAG laser. These studies show that incorporation of HNPs resulted in scaffold deformation after very short irradiation times (seconds) due to internal structural heating. Our data highlights the potential of these hybrid-scaffold constructs for exploitation in drug delivery, using methylene blue as a model drug being released during remote structural change of the scaffold. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles 2013)
Show Figures

Back to TopTop