Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = Asian dust storm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4945 KiB  
Article
A Dynamically Updated Dust Source Function for Dust Emission Scheme: Improving Dust Aerosol Simulation on an East Asian Dust Storm
by Chenghao Tan, Chong Liu, Tian Li, Zhaopeng Luan, Mingjin Tang and Tianliang Zhao
Atmosphere 2025, 16(4), 357; https://doi.org/10.3390/atmos16040357 - 21 Mar 2025
Viewed by 597
Abstract
Accurate identification of dust emission sources is crucial for simulating dust aerosols in atmospheric chemical models. Therefore, a dynamically updated dust source function (DSF) was developed within the dust emission scheme of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) to [...] Read more.
Accurate identification of dust emission sources is crucial for simulating dust aerosols in atmospheric chemical models. Therefore, a dynamically updated dust source function (DSF) was developed within the dust emission scheme of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) to simulate an East Asian dust storm event from 13 to 16 March 2021. Utilizing satellite-derived input of vegetation cover, snow cover, soil texture, and land use, the DSF was updated to better identify dust source areas over bare soils and sparsely vegetated regions in western China and central-western Mongolia. With the updated DSF, simulated dust emissions increase significantly over western China and Mongolia. The dust aerosol simulations demonstrate substantial improvements in near-surface PM10 concentrations, a better agreement with remotely sensed dust aerosol optical depth (DOD), and a more accurate representation of the vertical distribution of dust extinction coefficients compared to observations. This study highlights the importance of integrating real-time data to accurately characterize dust emission sources, thereby improving atmospheric environment simulations. Full article
Show Figures

Figure 1

14 pages, 6115 KiB  
Article
Analysis and Research on the Differences in Observed Data of Sand–Dust Weather between China and Mongolia
by Yuan You, Linchang An, Siteng Li, Bihui Zhang and Jianzhong Zhang
Atmosphere 2023, 14(9), 1401; https://doi.org/10.3390/atmos14091401 - 5 Sep 2023
Cited by 2 | Viewed by 1559
Abstract
The difference in meteorological factors (such as weather phenomena, wind speed, and visibility) of sand–dust weather between China and Mongolia from 2011 to 2021 was analyzed using meteorological observational data and international exchange of meteorological observation data. Additionally, consistency analysis was performed by [...] Read more.
The difference in meteorological factors (such as weather phenomena, wind speed, and visibility) of sand–dust weather between China and Mongolia from 2011 to 2021 was analyzed using meteorological observational data and international exchange of meteorological observation data. Additionally, consistency analysis was performed by integrating satellite retrieval products with meteorological observation data. The results showed that the average annual frequency of sand–dust weather in Mongolia was significantly higher than that in China. In China, the sand–dust weather was mainly characterized by floating dust or blowing dust, while in Mongolia, it was primarily characterized by blowing dust or a sand and dust storm. The average annual wind speed and visibility during sand–dust weather in Mongolia were relatively higher than those in China. Based on the dust grade standard of China, when the floating dust occurred in Mongolia, there were cases with wind speed > level 3 and visibility > 10 km; when the blowing dust or sand and dust storm occurred in Mongolia, there were cases with wind speed ≤ level 3 and visibility > 10 km. In China, the sand–dust weather mainly occurred in the spring, while the sand-dust weather occurred frequently throughout the year in Mongolia. The number of days with dust lasting for 2 days or more in Mongolia exceeded that of China, and Mongolia had a significant impact on the sand–dust weather in China. According to the ground observation data and satellite retrieve products during the dust events, all dust events that significantly affected China and Mongolia during the same period from 2021 to 2022 were classified into three categories; among them, the proportion of types of large-scale sand–dust weather phenomena observed by both satellite and ground observation stations was significantly higher (6 times). By integrating ground observation data and satellite retrieval products and following the dust grade standard of China, the consistent correction of sand–dust weather phenomena was carried out. This laid the foundation for the future development of international dust grade standards and provided technological support for improved dust forecasting services in the Asian region. Full article
(This article belongs to the Special Issue Air Pollution in Asia)
Show Figures

Figure 1

17 pages, 12070 KiB  
Article
Monitoring Asian Dust Storms from NOAA-20 CrIS Double CO2 Band Observations
by Chenggege Fang, Yang Han and Fuzhong Weng
Remote Sens. 2022, 14(18), 4659; https://doi.org/10.3390/rs14184659 - 18 Sep 2022
Cited by 2 | Viewed by 2764
Abstract
Sand and dust storms (SDSs) are common environmental hazards in spring in Asian continent and have significant impacts on human health, weather, and climate. While many technologies have been developed to monitor SDSs, this study investigates the spectral characteristics of SDSs in satellite [...] Read more.
Sand and dust storms (SDSs) are common environmental hazards in spring in Asian continent and have significant impacts on human health, weather, and climate. While many technologies have been developed to monitor SDSs, this study investigates the spectral characteristics of SDSs in satellite hyperspectral infrared observations and propose a new methodology to monitor the storms. An SDS emission and scattering index (SESI) is based on the differential responses of infrared CO2 shortwave and longwave IR bands to the scattering and emission of sand and dust particles. For a severe dust storm process during 14–17 March 2021, the SESI calculated by the Cross-track Infrared Sounder (CrIS) observations shows very negative values in the dusty region and is consistent with the spatial distribution of dust identified from the true-color RGB imagery and the dust RGB imagery of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NOAA-20 Satellite. The use of the SESI index in the near-surface layer allows for monitoring of the dust storm process and enables an effective classification between surface variations and dust weather events. Full article
Show Figures

Figure 1

19 pages, 6693 KiB  
Article
Climatology of Dust Aerosols over the Jianghan Plain Revealed with Space-Borne Instruments and MERRA-2 Reanalysis Data during 2006–2021
by Chuan Liu, Zhenping Yin, Yun He and Longlong Wang
Remote Sens. 2022, 14(17), 4414; https://doi.org/10.3390/rs14174414 - 5 Sep 2022
Cited by 15 | Viewed by 2786
Abstract
In recent years, climate change and the intervention of anthropogenic activities have altered the seasonal features of Asian dust storms. This may also cause seasonal variations (including dust occurrence frequency and optical/microphysical properties) in dust aerosols transported to downstream regions. The Jianghan Plain [...] Read more.
In recent years, climate change and the intervention of anthropogenic activities have altered the seasonal features of Asian dust storms. This may also cause seasonal variations (including dust occurrence frequency and optical/microphysical properties) in dust aerosols transported to downstream regions. The Jianghan Plain is dramatically influenced by multiple dust sources due to its geographical location in central China. In this study, we focused on the climatology of dust aerosols over the Jianghan Plain based on the 15-year (2006–2021) continuous space-borne observations of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) as well as Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) reanalysis data. A typical dust event that intrudes the Jianghan Plain was studied in detail. According to the statistical results, dust aerosols frequently intrude into the Jianghan Plain in spring and winter, with occurrence frequencies (under cloud free condition hereafter) exceeding 0.70 and higher altitudes of 4–6 km. The dust occurrence frequency declined to approximately 0.40 in autumn and nearly zero in summer, while the dust plumes were generally located at lower altitudes of 1–3 km. The dust plumes observed in the Jianghan Plain were simultaneously linked to the Taklimakan Desert and Gobi Desert in spring and mainly originated from the Taklimakan Desert in winter and autumn. The dust particles were mainly distributed below 4-km altitude, with the largest dust extinction coefficients and dust mass concentrations in spring. In all seasons, the particle depolarization ratios are 0.1–0.2 below 4-km altitude, suggesting a possible mix with local anthropogenic aerosols. The mean dust column mass concentrations in spring showed an evident declining trend from 210 µg m−2 in 2006 to 100 µg m−2 in 2021 in the Jianghan Plain, attributed to the reduced dust activity in the source regions of Asian dust. Full article
(This article belongs to the Special Issue Remote Sensing of Aerosol, Cloud and Their Interactions)
Show Figures

Figure 1

17 pages, 11272 KiB  
Article
A Study of a Severe Spring Dust Event in 2021 over East Asia with WRF-Chem and Multiple Platforms of Observations
by Weiqi Tang, Tie Dai, Yueming Cheng, Su Wang and Yuzhi Liu
Remote Sens. 2022, 14(15), 3795; https://doi.org/10.3390/rs14153795 - 6 Aug 2022
Cited by 10 | Viewed by 2828
Abstract
In this study, we investigate the most severe East Asian dust storm in the past decade that occurred on 14–16 March 2021 based on the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and a variety of site measurements and satellite retrievals. [...] Read more.
In this study, we investigate the most severe East Asian dust storm in the past decade that occurred on 14–16 March 2021 based on the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and a variety of site measurements and satellite retrievals. The dust emissions from the Gobi Desert, especially over Mongolia on March 14, are the dominant sources of this intense dust event. The maximal hourly accumulated dust emissions over Mongolian and Chinese areas reached 1490.18 kt at 07:00 UTC on 14 March and 821.70 kt at 2:00 UTC on 15 March, respectively. During this dust event, the accumulated dust emissions in coarse modes (i.e., bin 4 and bin 5) account for 64.1% of the total dust emission mass, and the accumulated dust emissions in fine modes (i.e., bin 1) are the least, accounting for 7.6% of the total dust emission mass. Because the coarse mode bins of dust dominate the emissions, the downwind transported coarse mode particles can affect the North China Plain, while the fine particles can only affect the desert source and its surrounding regions such as the Gansu and Ningxia provinces. Due to the dust emissions and the dust transport path, the high AOD areas are located in the Gobi Desert and Northwest China and the vertical spatial distributions of aerosol extinction coefficients have the same characteristics. We also found the model drawback of overestimating simulated wind speeds, which leads to the overestimations of dust emissions and concentrations, indicating the urgency of improving the simulated wind field. Full article
Show Figures

Figure 1

18 pages, 6482 KiB  
Article
Variations in Aerosol Optical Properties over East Asian Dust Storm Source Regions and Their Climatic Factors during 2000–2021
by Saichun Tan, Bin Chen, Hong Wang, Huizheng Che, Huaying Yu and Guangyu Shi
Atmosphere 2022, 13(6), 992; https://doi.org/10.3390/atmos13060992 - 20 Jun 2022
Cited by 7 | Viewed by 2789
Abstract
The East Asian dust storms occur in western and northern China, and southern Mongolia every year, particularly in spring. In this study, we use satellite aerosol products to demonstrate the spatial and temporal variation in aerosol optical depth (AOD) from MODIS, and the [...] Read more.
The East Asian dust storms occur in western and northern China, and southern Mongolia every year, particularly in spring. In this study, we use satellite aerosol products to demonstrate the spatial and temporal variation in aerosol optical depth (AOD) from MODIS, and the absorbing aerosol index (AAI) from TOMS and OMI, over the main dust storm source regions (MDSR), and to investigate their relationship to vegetation coverage (NDVI), soil properties (surface soil moisture content and soil temperature 0–10 cm underground), and climatic factors (surface wind speed, air temperature at 2 m above the ground, and precipitation) in spring for the period of 2000–2021. Compared with dust storm occurrence frequency (DSF) observed at surface stations, MODIS AOD, TOMS AAI, and OMI AAI showed consistent spatial distributions and seasonal variations with DSF in the MDSR, with correlation coefficients of 0.88, 0.55, and 0.88, respectively. The results showed that AOD and AAI over the MDSR decreased during 2000–2005, 2006–2017, and 2000–2021, but increased during 2017–2021.The improvements in vegetation coverage and soil moisture together with favorable climatic factors (the increase in temperature and precipitation and the decrease in surface wind speed) resulted in the decreasing trend of AOD and AAI during 2000–2005, 2006–2017, and the entire period of 2000–2021. Conversely, the increase in surface wind speed, the decrease in temperature and the low soil moisture in 2018 and 2020 were the reasons for the increases in AOD and AAI over the MDSR during 2017–2021. The combination effects of surface wind, temperature, soil moisture, and vegetation coverage would determine DSF, AOD, and AAI, in the end, under global climate change. Full article
Show Figures

Figure 1

10 pages, 639 KiB  
Systematic Review
Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review
by Eleni Vergadi, Glykeria Rouva, Maria Angeli and Emmanouil Galanakis
Int. J. Environ. Res. Public Health 2022, 19(11), 6907; https://doi.org/10.3390/ijerph19116907 - 5 Jun 2022
Cited by 12 | Viewed by 4137
Abstract
Background: Desert dust outbreaks and dust storms are the major source of particulate matter globally and pose a major threat to human health. We investigated the microorganisms transported with desert dust particles and evaluated their potential impact on human health. Methods: A systematic [...] Read more.
Background: Desert dust outbreaks and dust storms are the major source of particulate matter globally and pose a major threat to human health. We investigated the microorganisms transported with desert dust particles and evaluated their potential impact on human health. Methods: A systematic review of all reports on the association between non-anthropogenic desert dust pollution, dust microorganisms and human health is conducted. Results: In total, 51 articles were included in this review. The affected regions studied were Asia (32/51, 62.7%) followed by Europe (9/51, 17.6%), America (6/51, 11.8%), Africa (4/51, 7.8%) and Australia (1/51, 2.0%). The Sahara Desert was the most frequent source of dust, followed by Asian and American deserts. In 39/51 studies the dust-related microbiome was analyzed, while, in 12/51 reports, the association of desert dust with infectious disease outbreaks was examined. Pathogenic and opportunistic agents were isolated from dust in 24/39 (61.5%) and 29/39 (74.4%) of the studies, respectively. A significant association of dust events with infectious disease outbreaks was found in 10/12 (83.3%) reports. The infectious diseases that were mostly investigated with dust outbreaks were pneumonia, respiratory tract infections, COVID-19, pulmonary tuberculosis and coccidioidomycosis. Conclusions: Desert dust outbreaks are vehicles of a significant number of pathogenic or opportunistic microorganisms and limited data indicate an association between dust events and infectious disease outbreaks. Further research is required to strengthen the correlation between dust events and infectious diseases and subsequently guide preventive public health measures. Full article
Show Figures

Figure 1

20 pages, 4330 KiB  
Article
Changes in Ambient Bacterial Community in Northern Taiwan during Long-Range Transport: Asian Dust Storm and Frontal Pollution
by Nai-Tzu Chen, Lai-Man Tam, Jer-Horng Wu, Ngok-Song Cheong, Chuan-Yao Lin, Chun-Chieh Tseng and Huey-Jen Su
Atmosphere 2022, 13(5), 841; https://doi.org/10.3390/atmos13050841 - 20 May 2022
Cited by 4 | Viewed by 3003
Abstract
Long-range transport (LRT) can carry air pollutants to downwind areas. However, studies about the impacts of LRT on bacterial communities are few. This study investigated the influence of Asian dust storms (ADS) and frontal pollution (FP) on bacterial communities in ambient air using [...] Read more.
Long-range transport (LRT) can carry air pollutants to downwind areas. However, studies about the impacts of LRT on bacterial communities are few. This study investigated the influence of Asian dust storms (ADS) and frontal pollution (FP) on bacterial communities in ambient air using next-generation sequencing (NGS) and Terminal Restriction Fragment Length Polymorphism (T-RFLP). Air samples were collected at Cape Fugui (CF) and National Taiwan University (NTU) in northern Taiwan before (or background days), during, and after LRTs from November 2013 to March 2015. The richness, H index, and evenness increased during FPs and then decreased after FPs. During and after ADS and FP, the prevalence of the phylum Proteobacteria decreased, but that of Firmicutes increased. The dominant class of Proteobacteria changed from Alphaproteobacteria on background days to Betaproteobacteria during LRTs. At the genus level, the high abundance of Ralstonia and Bacillus during FP and Clostridium during ADS were detected at both locations. Additionally, Ralstonia was dominant at CF during ADS. In conclusion, FP and ADS both changed the bacterial community. The indicator genus was Clostridium and Ralstonia for ADS as well as Bacillus and Ralstonia for FP. Given the potential health threats posed by the bioaerosols transported, people should avoid outdoor activities during LRTs. Full article
(This article belongs to the Topic Climate Change, Air Pollution, and Human Health)
Show Figures

Figure 1

12 pages, 16138 KiB  
Article
Bacterial Characteristics of Dust Particle Saltation in Gobi Dust Sites, Mongolia
by Katsuro Hagiwara, Tamaki Matsumoto, Purevsuren Tsedendamba, Kenji Baba and Buho Hoshino
Atmosphere 2021, 12(11), 1456; https://doi.org/10.3390/atmos12111456 - 3 Nov 2021
Cited by 9 | Viewed by 3306
Abstract
The Gobi Desert is a major source of Asian dust events, and the resulting health hazards have increased significantly in recent years. We reported that a variety of live bacteria were distributed in the Gobi Desert in relation to land use. Bacterial distribution [...] Read more.
The Gobi Desert is a major source of Asian dust events, and the resulting health hazards have increased significantly in recent years. We reported that a variety of live bacteria were distributed in the Gobi Desert in relation to land use. Bacterial distribution was confirmed in the environment and on the land used by animals; however, bacterial saltation due to dust events has not been investigated in detail. In this study, to understand the distribution of surface bacteria in the atmosphere by dust saltation, live bacteria in four dust-generating areas in the Gobi area were monitored using an artificial dust generating device. The live bacteria were detected by experimental saltation at a wind speed of 6.5–8 m/s in all areas. A certain number of live bacteria are constantly saltated by dust events, and these bacteria depend on land use. Moreover, the bacterial saltation strain depended on land use and diversity, indicating that live bacteria are lifted into the environment by dust events. These findings indicate that dust events saltate environmental bacteria on the ground, suggest the risk of animal-derived bacterial saltation affected by land use, and present cross-border public health challenges to be considered in the future. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 36390 KiB  
Article
An Aerosol Extinction Coefficient Retrieval Method and Characteristics Analysis of Landscape Images
by Dukhyeon Kim and Youngmin Noh
Sensors 2021, 21(21), 7282; https://doi.org/10.3390/s21217282 - 1 Nov 2021
Cited by 6 | Viewed by 2828
Abstract
Images based on RGB pixel values were used to measure the extinction coefficient of aerosols suspended in an atmospheric state. The pixel values of the object-image depend on the target-object reflection ratio, reflection direction, object type, distances, illumination intensity, atmospheric particle extinction coefficient, [...] Read more.
Images based on RGB pixel values were used to measure the extinction coefficient of aerosols suspended in an atmospheric state. The pixel values of the object-image depend on the target-object reflection ratio, reflection direction, object type, distances, illumination intensity, atmospheric particle extinction coefficient, and scattering angle between the sun and the optical axes of the camera, among others. Therefore, the imaged intensity cannot directly provide information on the aerosol concentration or aerosol extinction coefficient. This study proposes simple methods to solve this problem, which yield reasonable extinction coefficients at the three effective RGB wavelengths. Aerosol size information was analogized using the RGB Ångström exponent measured at the three wavelengths for clean, dusty, rainy, Asian dust storm, and foggy days. Additionally, long-term measurements over four months showed reasonable values compared with existing PM2.5 measurements and the proposed method yields useful results. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 8309 KiB  
Article
Enhanced Simulation of an Asian Dust Storm by Assimilating GCOM-C Observations
by Yueming Cheng, Tie Dai, Daisuke Goto, Hiroshi Murakami, Mayumi Yoshida, Guangyu Shi and Teruyuki Nakajima
Remote Sens. 2021, 13(15), 3020; https://doi.org/10.3390/rs13153020 - 1 Aug 2021
Cited by 9 | Viewed by 3178
Abstract
Dust aerosols have great effects on global and regional climate systems. The Global Change Observation Mission-Climate (GCOM-C), also known as SHIKISAI, which was launched on 23 December 2017 by the Japan Aerospace Exploration Agency (JAXA), is a next-generation Earth observation satellite that is [...] Read more.
Dust aerosols have great effects on global and regional climate systems. The Global Change Observation Mission-Climate (GCOM-C), also known as SHIKISAI, which was launched on 23 December 2017 by the Japan Aerospace Exploration Agency (JAXA), is a next-generation Earth observation satellite that is used for climate studies. The Second-Generation Global Imager (SGLI) aboard GCOM-C enables the retrieval of more precious global aerosols. Here, the first assimilation study of the aerosol optical thicknesses (AOTs) at 500 nm observed by this new satellite is performed to investigate a severe dust storm in spring over East Asia during 28–31 March 2018. The aerosol observation assimilation system is an integration of the four-dimensional local ensemble transform Kalman filter (4D-LETKF) and the Spectral Radiation Transport Model for Aerosol Species (SPRINTARS) coupled with the Non-Hydrostatic Icosahedral Atmospheric Model (NICAM). Through verification with the independent observations from the Aerosol Robotic Network (AERONET) and the Asian Dust and Aerosol Lidar Observation Network (AD-Net), the results demonstrate that the assimilation of the GCOM-C aerosol observations can significantly enhance Asian dust storm simulations. The dust characteristics over the regions without GCOM-C observations are better revealed from assimilating the adjacent observations within the localization length, suggesting the importance of the technical advances in observation and assimilation, which are helpful in clarifying the temporal–spatial structure of Asian dust and which could also improve the forecasting of dust storms, climate prediction models, and aerosol reanalysis. Full article
Show Figures

Figure 1

11 pages, 9979 KiB  
Article
A Cluster Analysis of Forward Trajectory to Identify the Transport Pathway of Salt-Dust Particles from Dried Bottom of Aral Sea, Central Asia
by Aishajiang Aili, Jilili Abuduwaili, Hailiang Xu, Xinfeng Zhao and Xinghong Liu
Atmosphere 2021, 12(6), 764; https://doi.org/10.3390/atmos12060764 - 13 Jun 2021
Cited by 12 | Viewed by 3904
Abstract
The Aral Sea basin is the most active source of salt-dust storms in the central Asian region, while its exposed bottom is acting as a “distributer” of salts and chemicals over the adjoining areas. In this study, the Hybrid Single Particle Lagrangian Integrated [...] Read more.
The Aral Sea basin is the most active source of salt-dust storms in the central Asian region, while its exposed bottom is acting as a “distributer” of salts and chemicals over the adjoining areas. In this study, the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT-4) is used to identify the trajectories of air parcels from the dried bottom of the Aral Sea region (45.40° N, 61.30° E) that are potentially containing salt-dust and their probability of influencing the downwind area in the period of 2016–2020. The frequency of air parcel trajectory was mapped for six levels: 100, 300, 500, 1000, 2000, and 3000 m agl. The trajectories were categorized by k-means clustering into four clusters that are named by their direction of movement as follows: Cluster 1: E category, Cluster 2: NE category, Cluster 3: W category, and the Cluster 4: S category. The 72 h of forward trajectories showed that salt-dust storms starting from the dried bottom of the Aral Sea had the highest probability of affecting the northeastern region e.g., Siberian Plain, followed by the southern region e.g., Iran Plateau. Total number of trajectories within these two clusters (NE and S) accounts for 90% (or 413 days) of trajectories in examined days. The main area of influence of salt-dust is close to the source area. The potential transport distance of salt-dust particles increases with the height of the starting point. The surface wind, which results from the changes of the Siberian High (SH), has a major role in shaping the surface atmospheric circulation which determines the transport pathway of salt-dust particles over the Aral Sea region. The results of this study could be useful to forecast the potential occurrence of salt-dust storms in downwind affected areas and would also be helpful to understand the possible causes of salt-dust storms which can provide the scientific basis for mitigation of the negative impact of salt-dust storms on the environment and human health. Further research should be conducted by using monitoring data to confirm the deposition of dust and salt particles in those areas mapped by our study. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

12 pages, 2856 KiB  
Article
Concentrations and Sources of Atmospheric PM, Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Kanazawa, Japan
by Kazuichi Hayakawa, Ning Tang, Wanli Xing, Pham Kim Oanh, Akinori Hara and Hiroyuki Nakamura
Atmosphere 2021, 12(2), 256; https://doi.org/10.3390/atmos12020256 - 15 Feb 2021
Cited by 14 | Viewed by 3721
Abstract
PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons [...] Read more.
PM2.5 (fine particles with diameters 2.5 micrometers and smaller) and PM>2.5 were separately collected in Kanazawa, Japan in every season, from the spring of 2017 to the winter of 2018, and nine polycyclic aromatic hydrocarbons (PAHs) and six nitropolycyclic aromatic hydrocarbons (NPAHs) were respectively determined using high-performance liquid chromatography (HPLC) with fluorescence and chemiluminescence detections. The atmospheric concentrations of both the PAHs and NPAHs showed seasonal changes (highest in the winter and lowest in the summer), which differed from the variations in the total suspended particulate matter (TSP) and PM2.5 amounts (which were highest in the spring). The contributions of major sources to the combustion-derived particulate (Pc) in the PM2.5 were calculated using the 1-nitropyrene-pyrene (NP) method, using pyrene and 1-nitropyrene as the representative markers of PAHs and NPAHs, respectively. The annual average concentration of Pc accounted for only 2.1% of PM2.5, but showed the same seasonal variation as PAHs. The sources of Pc were vehicles (31%) and coal heating facilities/industries (69%). A backward trajectory analysis showed that the vehicle-derived Pc was mainly from Kanazawa and its surroundings, and that coal heating facilities/industry-derived Pc was transported from city areas in central and northern China in the winter, and during the Asian dust event in the spring. These results show that large amounts of PAHs were transported over a long range from China during the winter. Even in the spring, after the coal heating season was over in China, PAHs were still transported to Japan after Asian dust storms passed through Chinese city areas. By contrast, the main contributors of NPAHs were vehicles in Kanazawa and its surroundings. The recent Pc concentrations were much lower than those in 1999. This decrease was mostly attributed to the decrease in the contribution of vehicle emissions. Thus, the changes in the atmospheric concentrations of Pc, PAHs and NPAHs in Kanazawa were strongly affected not only by the local emissions but also by long-range transport from China. Full article
(This article belongs to the Special Issue Air Pollution in Japan)
Show Figures

Figure 1

20 pages, 3899 KiB  
Article
Applicability Analysis of Vegetation Condition and Dryness for Sand and Dust Storm (SDS) Risk Reduction in SDS Source and Receptor Region
by Eunbeen Park, Jiwon Kim, Cholho Song, Hyun-Woo Jo, Sujong Lee, Sea Jin Kim, Sugyeong Park, Chul-Hee Lim and Woo-Kyun Lee
Sustainability 2020, 12(18), 7256; https://doi.org/10.3390/su12187256 - 4 Sep 2020
Cited by 6 | Viewed by 5049
Abstract
Central Asian countries, which are included the Mid-Latitude Region (MLR), need to develop regional adaptive strategies for reducing Sand and Dust Storm (SDS)-induced negative damages based on adequate information and data. To overcome current limitation about data and assessment approaches in this region, [...] Read more.
Central Asian countries, which are included the Mid-Latitude Region (MLR), need to develop regional adaptive strategies for reducing Sand and Dust Storm (SDS)-induced negative damages based on adequate information and data. To overcome current limitation about data and assessment approaches in this region, the macroscale verified methodologies were required. Therefore, this study analyzed environmental conditions based on the SDS impacts and regional differences of SDS sources and receptors to support regional SDS adaptation plans. This study aims to identify environmental conditions based on the phased SDS impact and regional differences of SDS source and receptor to support regional adaptation plans in MLR. The Normalized Difference Vegetation Index (NDVI), Aridity Index (AI), and SDS frequency were calculated based on satellite images and observed meteorological data. The relationship among SDS frequency, vegetation, and dryness was determined by performing statistical analysis. In order to reflect phased SDS impact and regional differences, SDS frequency was classified into five classes, and representative study areas were selected by dividing source and receptor in Central Asia and East Asia. The spatial analysis was performed to characterize the effect of phased SDS impact and regional distribution differences pattern of NDVI and AI. The result revealed that vegetation condition was negatively correlated with the SDS frequency, while dryness and the SDS frequency were positively correlated. In particular, the range of dryness and vegetation was related to the SDS frequency class and regional difference based on spatial analysis. Overall, the Aral Sea and the Caspian Sea can be considered as an active source of SDS in Central Asia, and the regions were likely to expand into potential SDS risk areas compared to East Asia. This study presents the possibility of potential SDS risk area using continuously monitored vegetation and dryness index, and aids in decision-making which prioritizes vegetation restoration to prevent SDS damages with the macrolevel approach in the MLR perspective. Full article
(This article belongs to the Special Issue Remote Sensing Application for Environmental Sustainability)
Show Figures

Figure 1

17 pages, 5211 KiB  
Article
Determination of Lidar Ratio for Major Aerosol Types over Western North Pacific Based on Long-Term MPLNET Data
by Sheng-Hsiang Wang, Heng-Wai Lei, Shantanu Kumar Pani, Hsiang-Yu Huang, Neng-Huei Lin, Ellsworth J. Welton, Shuenn-Chin Chang and Yueh-Chen Wang
Remote Sens. 2020, 12(17), 2769; https://doi.org/10.3390/rs12172769 - 26 Aug 2020
Cited by 8 | Viewed by 4283
Abstract
East Asia is the most complex region in the world for aerosol studies, as it encounters a lot of varieties of aerosols, and aerosol classification can be a challenge in this region. In the present study, we focused on the relationship between aerosol [...] Read more.
East Asia is the most complex region in the world for aerosol studies, as it encounters a lot of varieties of aerosols, and aerosol classification can be a challenge in this region. In the present study, we focused on the relationship between aerosol types and aerosol optical properties. We analyzed the long-term (2005–2012) data of vertical profiles of aerosol extinction coefficients, lidar ratio (Sp), and other aerosol optical properties obtained from a NASA Micro-Pulse Lidar Network and Aerosol Robotic Network site in northern Taiwan, which frequently receives Asian continental outflows. Based on aerosol extinction vertical profiles, the profiles were classified into two types: type 1 (single-layer structure) and type 2 (two-layer structure). Fall season (October–November) was the prevailing season for the Type 1, whereas type 2 mainly happened in spring (March–April). In type 1, air masses normally originated from three regional sectors, i.e., Asia continental (AC), Pacific Ocean (PO), and Southeast Asia (SA). The mean Sp values were 39 ± 17 sr, 30 ± 12 sr, and 38 ± 18 sr for the AC, PO, and SA sectors, respectively. The Sp results suggested that aerosols from the AC sector contained dust and anthropogenic particles, and aerosols from the PO sector were most likely sea salts. We further combined the EPA dust event database and backward trajectory analysis for type 2. Results showed that Sp was 41 ± 14 sr and 53 ± 21 sr for dust storm and biomass-burning events, respectively. The Sp for biomass-burning events in type 2 showed two peaks patterns. The first peak occurred within range of 30–50 sr corresponding to urban pollutant, and the second peak occurred within range of 60–80 sr in relation to biomass burning. Finally, our study summarized the Sp values for four major aerosol types over northern Taiwan, viz., urban (42 ± 18 sr), dust (34 ± 6 sr), biomass-burning (69 ± 12 sr), and oceanic (30 ± 12 sr). Our findings provide useful references for aerosol classification and air pollution identification over the western North Pacific. Full article
Show Figures

Graphical abstract

Back to TopTop