Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Arnica montana L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6524 KB  
Article
Preliminary Assessment of Arnica montana L. Extract: Antimicrobial Activity Against Acinetobacter baumannii and Biofilm-Related Gene Expression Profiling
by Sylwia Andrzejczuk, Magdalena Sozoniuk and Danuta Sugier
Genes 2025, 16(12), 1473; https://doi.org/10.3390/genes16121473 - 9 Dec 2025
Viewed by 419
Abstract
Background/Objectives: Arnica montana L. is widely recognized for its diverse biological activities, including antimicrobial effects. This study aimed to evaluate the antimicrobial and antibiofilm activity of A. montana L. extracts against Acinetobacter baumannii, a pathogen of urgent public health concern due [...] Read more.
Background/Objectives: Arnica montana L. is widely recognized for its diverse biological activities, including antimicrobial effects. This study aimed to evaluate the antimicrobial and antibiofilm activity of A. montana L. extracts against Acinetobacter baumannii, a pathogen of urgent public health concern due to its increasing antibiotic resistance and capacity for biofilm formation. Methods: The antimicrobial activity of ethanolic (EtE) and aqueous (AqE) extracts of A. montana flowers was evaluated via the broth microdilution method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), and the MBC/MIC ratio were used. The effects of EtE on A. baumannii biofilm formation were assessed via a crystal violet assay. Additionally, transcriptional profiling of biofilm-associated genes following exposure to sub-MIC levels of the extract was conducted via RT-qPCR. Results: The anti-Acinetobacter activity of EtE was demonstrated (MIC = 234.4 and 468.75 µg/mL for A. baumannii ATCC BAA-3252 and ATCC 19606, respectively). The EtE exhibited bactericidal activity against both strains, whereas the AqE showed no activity. Additionally, EtE inhibited biofilm formation and significantly downregulated the expression of key biofilm-associated genes, including those of the csu operon and ompA. Conclusions: Arnica montana EtE demonstrated antimicrobial and antibiofilm activities against A. baumannii and inhibited biofilm development by suppressing the transcription of genes involved in pilus assembly and surface adherence, highlighting their essential role in biofilm formation. Full article
Show Figures

Figure 1

21 pages, 1183 KB  
Article
Effect of Different Arnica montana L. Plant Parts on the Essential Oil Composition, Antimicrobial Activity, and Synergistic Interactions with Antibiotics
by Piotr Sugier, Danuta Sugier, Małgorzata Miazga-Karska, Aleksandra Nurzyńska, Beata Król, Łukasz Sęczyk and Radosław Kowalski
Molecules 2025, 30(18), 3812; https://doi.org/10.3390/molecules30183812 - 19 Sep 2025
Cited by 3 | Viewed by 1338
Abstract
Arnica montana L. (mountain arnica) is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are related to e.g., the concentration and chemical composition of its essential oils (EOs). Therefore, the objective of this [...] Read more.
Arnica montana L. (mountain arnica) is a medicinal plant with diverse biological activities commonly used in pharmacy and cosmetics. The attributes of A. montana are related to e.g., the concentration and chemical composition of its essential oils (EOs). Therefore, the objective of this study was to: (i) characterize the chemical composition of EOs obtained from mountain arnica flower heads, rhizomes, and roots used as a pharmacopoeial material, (ii) demonstrate the effects of particular EO types and their combinations on antibacterial activity, and (iii) demonstrate the effect of the presence of A. montana EOs and their combinations with commercial antibiotics on their antibacterial activity. Essential oils obtained by hydrodistillation from different parts of A. montana were screened for their chemical composition and antibacterial properties. The chemical composition of the EOs was determined using the GC–MS technique. E-caryophyllene, caryophyllene oxide, germacrene D, farnesyl acetate, and dodecanal were the main components of the EO distilled from the flower heads. In turn, 2,5-dimethoxy-p-cymene, 2,6-diisopropylanisole, p-methoxyheptanophenone, and thymol methyl ether were the main molecules detected in the EO from the A. montana rhizomes and roots. The data clearly indicate that the presence of mountain arnica EO alone and in the interaction with commercial antibiotics (amoxicillin, ciprofloxacin, metronidazole) has a beneficial effect on their antibacterial activity. Full article
Show Figures

Figure 1

22 pages, 5332 KB  
Article
Antioxidant Capacity and Accumulation of Caffeoylquinic Acids in Arnica montana L. In Vitro Shoots After Elicitation with Yeast Extract or Salicylic Acid
by Maria Petrova, Maria Geneva, Antoaneta Trendafilova, Kamelia Miladinova-Georgieva, Lyudmila Dimitrova, Mariana Sichanova, Milena Nikolova, Viktoria Ivanova, Margarita Dimitrova and Magdalena Sozoniuk
Plants 2025, 14(6), 967; https://doi.org/10.3390/plants14060967 - 19 Mar 2025
Cited by 7 | Viewed by 1620
Abstract
Arnica montana L. is an important herbal medicinal plant that belongs to the family Asteraceae. This plant has been known for its medicinal uses for centuries. A. montana exhibits several pharmacological properties, including immunomodulatory, anti-inflammatory, anticancer, antioxidant, and antibacterial effects. For the first [...] Read more.
Arnica montana L. is an important herbal medicinal plant that belongs to the family Asteraceae. This plant has been known for its medicinal uses for centuries. A. montana exhibits several pharmacological properties, including immunomodulatory, anti-inflammatory, anticancer, antioxidant, and antibacterial effects. For the first time, the impacts of the biotic elicitor yeast extract, and the abiotic elicitor salicylic acid on micropropagation, antioxidant potential, and accumulation of caffeoylquinic acids in arnica in vitro shoots were assessed. The results showed that yeast extract applied at 100 mg/L significantly promotes shoot multiplication, biomass yield, total phenolic content, and synthesis of caffeoylquinic acids compared to control untreated shoots. Flavonoid content was the highest in samples treated with 200 mg/L of yeast extract, although at this concentration the measured biometric parameters began to decrease. Salicylic acid at 100 µM was found to be effective in the induction of vigorous shoots, shoot height growth, and biomass accumulation; nevertheless, this elicitor downregulated the caffeoylquinic acid level, total phenolics, and flavonoids. Increasing the concentration of salicylic acid to 200 µM caused shoot multiplication and fresh biomass accumulation reduction. Both elicitors modulated the activity of antioxidant enzymes against oxidative stress. Overall, the use of these substances can improve the growth and biomass yield in Arnica in vitro shoots. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

24 pages, 1941 KB  
Systematic Review
Effects of Arnica Phytotherapeutic and Homeopathic Formulations on Traumatic Injuries and Inflammatory Conditions: A Systematic Review
by Claudia-Crina Toma, Mariangela Marrelli, Monica Puticiu, Filomena Conforti and Giancarlo Statti
Plants 2024, 13(21), 3112; https://doi.org/10.3390/plants13213112 - 4 Nov 2024
Cited by 6 | Viewed by 21454
Abstract
Arnica L. genus (Asteraceae) comprises perennial herbs native to the temperate and boreal parts of the northern hemisphere. Arnica montana is the main species. It shows different biological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, and antitumor effects. The Arnica formulations are mainly [...] Read more.
Arnica L. genus (Asteraceae) comprises perennial herbs native to the temperate and boreal parts of the northern hemisphere. Arnica montana is the main species. It shows different biological activities, such as antioxidant, anti-inflammatory, antibacterial, antifungal, and antitumor effects. The Arnica formulations are mainly used for pain management. This systematic review is aimed at summarizing the studies focusing on the use of Arnica products on pain and inflammatory signs due to traumatic injuries related to sport and surgical interventions as well as to arthritis and other inflammatory conditions. Both phytotherapeutic and homeopathic formulations are taken into account. This paper only includes manuscripts published in mainstream journals. A literature search from Scopus, Web of Science, and PubMed databases has been carried out using a combination of the keywords “Arnica”, “trauma”, “sport”, “injury”, “injuries”, and “pain”. According to the search strategy and inclusion criteria for this study, 42 eligible papers, focusing on both Arnica alone and formulations containing a mixture of plant extracts, have been finally selected. This review critically discusses the in vitro, in vivo, and clinical studies dealing with Arnica products, reporting both positive and negative outcomes, thus providing perspectives for future research on the plant pharmacological potential. Full article
Show Figures

Figure 1

25 pages, 3609 KB  
Article
Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing
by Dragomir D. Sângeorzan, Florin Păcurar, Albert Reif, Holger Weinacker, Evelyn Rușdea, Ioana Vaida and Ioan Rotar
Remote Sens. 2024, 16(11), 2012; https://doi.org/10.3390/rs16112012 - 3 Jun 2024
Cited by 12 | Viewed by 2092
Abstract
Arnica montana L. is a medicinal plant with significant conservation importance. It is crucial to monitor this species, ensuring its sustainable harvesting and management. The aim of this study is to develop a practical system that can effectively detect A. montana inflorescences utilizing [...] Read more.
Arnica montana L. is a medicinal plant with significant conservation importance. It is crucial to monitor this species, ensuring its sustainable harvesting and management. The aim of this study is to develop a practical system that can effectively detect A. montana inflorescences utilizing unmanned aerial vehicles (UAVs) with RGB sensors (red–green–blue, visible light) to improve the monitoring of A. montana habitats during the harvest season. From a methodological point of view, a model was developed based on a convolutional neural network (CNN) ResNet101 architecture. The trained model offers quantitative and qualitative assessments of A. montana inflorescences detected in semi-natural grasslands using low-resolution imagery, with a correctable error rate. The developed prototype is applicable in monitoring a larger area in a short time by flying at a higher altitude, implicitly capturing lower-resolution images. Despite the challenges posed by shadow effects, fluctuating ground sampling distance (GSD), and overlapping vegetation, this approach revealed encouraging outcomes, particularly when the GSD value was less than 0.45 cm. This research highlights the importance of low-resolution image clarity, on the training data by the phenophase, and of the need for training across different photoperiods to enhance model flexibility. This innovative approach provides guidelines for mission planning in support of reaching sustainable management goals. The robustness of the model can be attributed to the fact that it has been trained with real-world imagery of semi-natural grassland, making it practical for fieldwork with accessible portable devices. This study confirms the potential of ResNet CNN models to transfer learning to new plant communities, contributing to the broader effort of using high-resolution RGB sensors, UAVs, and machine-learning technologies for sustainable management and biodiversity conservation. Full article
Show Figures

Graphical abstract

23 pages, 700 KB  
Review
Influence of Abiotic and Biotic Elicitors on Organogenesis, Biomass Accumulation, and Production of Key Secondary Metabolites in Asteraceae Plants
by Maria Petrova, Kamelia Miladinova-Georgieva and Maria Geneva
Int. J. Mol. Sci. 2024, 25(8), 4197; https://doi.org/10.3390/ijms25084197 - 10 Apr 2024
Cited by 28 | Viewed by 5125
Abstract
The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary [...] Read more.
The medicinal plants of the Asteraceae family are a valuable source of bioactive secondary metabolites, including polyphenols, phenolic acids, flavonoids, acetylenes, sesquiterpene lactones, triterpenes, etc. Under stressful conditions, the plants develop these secondary substances to carry out physiological tasks in plant cells. Secondary Asteraceae metabolites that are of the greatest interest to consumers are artemisinin (an anti-malarial drug from Artemisia annua L.—sweet wormwood), steviol glycosides (an intense sweetener from Stevia rebaudiana Bert.—stevia), caffeic acid derivatives (with a broad spectrum of biological activities synthesized from Echinacea purpurea (L.) Moench—echinacea and Cichorium intybus L.—chicory), helenalin and dihydrohelenalin (anti-inflammatory drug from Arnica montana L.—mountain arnica), parthenolide (“medieval aspirin” from Tanacetum parthenium (L.) Sch.Bip.—feverfew), and silymarin (liver-protective medicine from Silybum marianum (L.) Gaertn.—milk thistle). The necessity to enhance secondary metabolite synthesis has arisen due to the widespread use of these metabolites in numerous industrial sectors. Elicitation is an effective strategy to enhance the production of secondary metabolites in in vitro cultures. Suitable technological platforms for the production of phytochemicals are cell suspension, shoots, and hairy root cultures. Numerous reports describe an enhanced accumulation of desired metabolites after the application of various abiotic and biotic elicitors. Elicitors induce transcriptional changes in biosynthetic genes, leading to the metabolic reprogramming of secondary metabolism and clarifying the mechanism of the synthesis of bioactive compounds. This review summarizes biotechnological investigations concerning the biosynthesis of medicinally essential metabolites in plants of the Asteraceae family after various elicitor treatments. Full article
(This article belongs to the Special Issue Molecular and Metabolic Regulation of Plant Secondary Metabolism)
Show Figures

Figure 1

15 pages, 2710 KB  
Article
Stages of Development and Solvents Determine the Anticancer Potential of Mountain Arnica (Arnica montana L.) Inflorescence Extracts
by Piotr Sugier, Joanna Jakubowicz-Gil, Danuta Sugier, Łukasz Sęczyk, Adrian Zając, Mateusz Pięt and Roman Paduch
Appl. Sci. 2023, 13(24), 12976; https://doi.org/10.3390/app132412976 - 5 Dec 2023
Cited by 4 | Viewed by 1812
Abstract
In recent years, new sources of secondary metabolites (SMs) in medicinal plants have been identified, and the introduction of these plants into field conditions has been carried out to obtain chemically diverse standardized raw material (RM). An example is mountain arnica Arnica montana [...] Read more.
In recent years, new sources of secondary metabolites (SMs) in medicinal plants have been identified, and the introduction of these plants into field conditions has been carried out to obtain chemically diverse standardized raw material (RM). An example is mountain arnica Arnica montana L., one of Europe’s endemic endangered medicinal plant species, commonly used in pharmacy, cosmetics, and medicine. Its inflorescences (Arnicae flos) are characterized by anti-inflammatory, antiradical, antioxidant, antibacterial, antifungal, and antitumor properties. The main goals of the present research included: (i) characterization of the chemical composition of the inflorescences of A. montana harvested in different development stages; and (ii) presentation of the role of the development stage and different extraction methods in the antitumor activity of extracts through analyses of apoptosis, autophagy, and necrosis induction in human cervical carcinoma HeLa, human colon carcinoma HT29, and human colon metastatic carcinoma SW620 cell lines. The development stage was found to modify the composition of pharmacologically active substances, e.g., sesquiterpene lactones (SLs), flavonoids (Fs), and essential oil (EO), in arnica inflorescences. The content of Fs and EO increased during flowering to the full flowering phase; however, the highest content of SLs was noted in the full flowering phase and at the end of flowering. More promising results, i.e., a relatively high level of apoptosis and a low level of necrosis induced by the arnica extracts, were demonstrated in the HeLa cell line (full flowering; concentration: 0.5 µL/mL), the HT29 cell line (beginning of flowering; concentration: 0.5 µL/mL), and the SW620 cell line (stage of yellow buds; concentration: 1 µL/mL). This extremely valuable medicinal plant species provides a very broad range of RMs (e.g., inflorescences, rhizomes, roots, achenes, and all plant); therefore, attention should be paid to the more frequent use of water as a solvent in studies on the biological activity of mountain arnica extracts. Full article
Show Figures

Figure 1

6 pages, 810 KB  
Proceeding Paper
Characterization of Phenolic Compounds of Arnica montana Conventional Extracts
by Paula Garcia-Oliveira, Franklin Chamorro, Pauline Donn, Pascual Garcia-Perez, Sepidar Seyyedi-Mansour, Aurora Silva, Javier Echave, Jesus Simal-Gandara, Lucia Cassani and Miguel A. Prieto
Eng. Proc. 2023, 48(1), 61; https://doi.org/10.3390/CSAC2023-15164 - 20 Oct 2023
Cited by 4 | Viewed by 1939
Abstract
Arnica montana L. (Asteraceae family) is a plant commonly used in traditional medicine, and several reports have characterized this plant’s bioactivities, especially its phenolic compounds. These compounds are well known for their numerous beneficial biological properties. Consequently, industry stakeholders from the feed, food, [...] Read more.
Arnica montana L. (Asteraceae family) is a plant commonly used in traditional medicine, and several reports have characterized this plant’s bioactivities, especially its phenolic compounds. These compounds are well known for their numerous beneficial biological properties. Consequently, industry stakeholders from the feed, food, cosmetic, and pharmaceutical sectors are seeking extracts rich in phenolic compounds, which could be interesting for the development of bio-based applications. The objective of the present study was to characterize the phenolic profile of this species to lay the groundwork for further optimization studies to obtain the highest amount of phenolic compounds. Therefore, A. montana was extracted with an ethanol/water ratio of 80:20 (v/v) at room temperature for 1 h, and phenolic compounds were identified and quantified through UPLC (HPLC Dionex Ultimate 3000) with a mass detector (TSQ Quantis). In the extract, phenolics belonging to different groups were identified, namely eriodictyol-O-glucuronide (flavanone), hispidulin and luteolin (flavones), kaempferol and 6-methoxykaempferol, (flavonols), p-coumaric, feruloylquinic, caffeoylquinic, and dicaffeoylquinic isomers (hydroxycinnamic acids). However, only four of them could be quantified: kaempferol and the three hydroxycinnamic acids. The total phenolic content (mg/g of dry sample) was estimated to be 27.34 mg/g, with the most prevalent compounds being the dicaffeoylquinic acids (accounting for 79.5% of the total phenolics). It has been demonstrated that dicaffeoylquinic acids present anti-inflammatory and antioxidant activities, which have been linked to several beneficial effects. Thus, obtaining phenolic-rich extracts of A. montana may allow us to exploit this plant’s significant biological properties, and it could be a new ingredient for developing new applications in the nutraceutical, cosmetic, and/or pharmaceutical industries. Full article
Show Figures

Figure 1

20 pages, 2027 KB  
Review
Arnica montana L.: Doesn’t Origin Matter?
by Thomas J. Schmidt
Plants 2023, 12(20), 3532; https://doi.org/10.3390/plants12203532 - 11 Oct 2023
Cited by 14 | Viewed by 6615
Abstract
Arnica montana L. (Asteraceae) has a long and successful tradition in Europe as herbal medicine. Arnica flowers (i.e., the flowerheads of Arnica montana) are monographed in the European Pharmacopoeia (Ph. Eur.), and a European Union herbal monograph exists, in which its use [...] Read more.
Arnica montana L. (Asteraceae) has a long and successful tradition in Europe as herbal medicine. Arnica flowers (i.e., the flowerheads of Arnica montana) are monographed in the European Pharmacopoeia (Ph. Eur.), and a European Union herbal monograph exists, in which its use as traditional herbal medicine is recommended. According to this monograph, Arnica flowers (Arnicae flos Ph. Eur.) and preparations thereof may be used topically to treat blunt injuries and traumas, inflammations and rheumatic muscle and joint complaints. The main bioactive constituents are sesquiterpene lactones (STLs) of the helenanolide type. Among these, a variety of esters of helenalin and 11α,13-dihydrohelenalin with low-molecular-weight carboxylic acids, namely, acetic, isobutyric, methacrylic, methylbutyric as well as tiglic acid, represent the main constituents, in addition to small amounts of the unesterified parent STLs. A plethora of reports exist on the pharmacological activities of these STLs, and it appears unquestioned that they represent the main active principles responsible for the herbal drug’s efficacy. It has been known for a long time, however, that considerable differences in the STL pattern occur between A. montana flowers from plants growing in middle or Eastern Europe with some originating from the Iberic peninsula. In the former, Helenalin esters usually predominate, whereas the latter contains almost exclusively 11α,13-Dihydrohelenalin derivatives. Differences in pharmacological potency, on the other hand, have been reported for the two subtypes of Arnica-STLs in various instances. At the same time, it has been previously proposed that one should distinguish between two subspecies of A. montana, subsp. montana occurring mainly in Central and Eastern Europe and subsp. atlantica in the southwestern range of the species distribution, i.e., on the Iberian Peninsula. The question hence arises whether or not the geographic origin of Arnica montana flowers is of any relevance for the medicinal use of the herbal drug and the pharmaceutical quality, efficacy and safety of its products and whether the chemical/pharmacological differences should not be recognized in pharmacopoeia monographs. The present review attempts to answer these questions based on a summary of the current state of botanical, phytochemical and pharmacological evidence. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

19 pages, 2437 KB  
Article
Anti-Inflammatory Activities of Arnica montana Planta Tota versus Flower Extracts: Analytical, In Vitro and In Vivo Mouse Paw Oedema Model Studies
by Johann Röhrl, Maria-Riera Piqué-Borràs, Manuela Jaklin, Markus Werner, Oliver Werz, Heinke Josef, Hubert Hölz, Aldo Ammendola and Gerald Künstle
Plants 2023, 12(6), 1348; https://doi.org/10.3390/plants12061348 - 16 Mar 2023
Cited by 18 | Viewed by 6711
Abstract
Arnica montana is well known for its anti-inflammatory properties. While the anti-inflammatory activity of Arnica flowers (Arnicae flos) has been extensively studied, that of the whole plant (Arnicae planta tota) is less characterized. We compared the ability of Arnicae planta tota and Arnicae [...] Read more.
Arnica montana is well known for its anti-inflammatory properties. While the anti-inflammatory activity of Arnica flowers (Arnicae flos) has been extensively studied, that of the whole plant (Arnicae planta tota) is less characterized. We compared the ability of Arnicae planta tota and Arnicae flos extracts to inhibit the pro-inflammatory NF-κB—eicosanoid pathway, using several in vitro and in vivo assays. We showed that Arnicae planta tota inhibited NF-κB reporter activation, with an IC50 of 15.4 μg/mL (vs. 52.5 μg/mL for Arnicae flos). Arnicae planta tota also inhibited LPS-induced expression of ALOX5 and PTGS2 genes in human differentiated macrophages. ALOX5 and PTGS2 encode the 5-lipoxygenase (5-LO) and cyclooxygenase-2 (COX-2) enzymes that initialize the conversion of arachidonic acid into leukotrienes and prostaglandins, respectively. Arnicae planta tota inhibited 5-LO and COX-2 enzymatic activity in vitro and in human primary peripheral blood cells, with lower IC50 compared to Arnicae flos. Finally, Arnicae planta tota applied topically reduced carrageenan-induced mouse paw oedema more efficiently than Arnicae flos. Altogether, Arnicae planta tota displayed a superior anti-inflammatory activity compared to Arnicae flos, suggesting that Arnicae-planta-tota-containing products might be more effective in alleviating the manifestations of acute inflammation than those based on Arnicae flos alone. Full article
(This article belongs to the Special Issue Anti-Inflammatory Bioactivities in Plant Extracts)
Show Figures

Figure 1

10 pages, 883 KB  
Article
Pushout Bond Strength of Root Fillings after Irrigation of Root Canals Utilizing Sodium Hypochlorite, Chlorhexidine, and Homeopathic Mother Tincture (Arnica Montana)
by Unmesh Khanvilkar, Hitesh Patil, Siddhesh Bandekar, Shirin Kshirsagar, Ajinkya M. Pawar, Dian Agustin Wahjuningrum, Francesco Pagnoni, Rodolfo Reda, Alessio Zanza and Luca Testarelli
Clin. Pract. 2023, 13(1), 305-314; https://doi.org/10.3390/clinpract13010028 - 17 Feb 2023
Cited by 4 | Viewed by 4116
Abstract
The pushout bond strength of root fillings at radicular dentin was investigated employing NaOCl, CHX, and homoeopathic mother tincture (Arnica montana) as an irrigant. Sixty human permanent single-rooted extracted teeth were decoronated. The root canals were instrumented using Pro taper universal [...] Read more.
The pushout bond strength of root fillings at radicular dentin was investigated employing NaOCl, CHX, and homoeopathic mother tincture (Arnica montana) as an irrigant. Sixty human permanent single-rooted extracted teeth were decoronated. The root canals were instrumented using Pro taper universal rotary system (Dentsply Tulsa Dental; Tulsa, Oklahoma) and were prepared up to F3 apical size. The roots were then randomly divided into three groups according to irrigation solution (n = 20) according to the final irrigation regimen: Group I: 3 mL 5.25% NaOCl followed by 3 mL Saline (control); Group II: 3 mL Arnica montana (10%, w/v) followed by 3 mL Saline; Group III: 3 mL CHX followed by 3 mL Saline. The canals were dried using paper points. The canals were coated with AH Plus sealer (Dentsply DeTey, Konstaz, Germany) with the aid of a Lentulo spiral (Dentsply DeTey, Konstaz, Germany) and obturated with #F3 gutta-percha. Each root was then horizontally sliced into three slices, labelled coronal, middle, and apical, each measuring 2 mm thick. Furthermore, at a crosshead speed of 2 mm/min, the test was carried out using the universal testing apparatus. The 5.25% NaOCl significantly decreased the bond strength of AH Plus to dentin. Both CHX and Arnica montana were capable of reversing the compromised pushout of AH Plus to NaOCl-treated dentin. After using NaOCl as an irrigant, the danger of diminished binding capacity of AH Plus to root canal walls arises. Final irrigation with Arnica montana and CHX reduces this risk. Full article
Show Figures

Figure 1

17 pages, 2081 KB  
Article
Nitrogen Fertilization and Solvents as Factors Modifying the Antioxidant and Anticancer Potential of Arnica montana L. Flower Head Extracts
by Danuta Sugier, Piotr Sugier, Joanna Jakubowicz-Gil, Urszula Gawlik-Dziki, Adrian Zając, Beata Król, Stanisław Chmiel, Magdalena Kończak, Mateusz Pięt and Roman Paduch
Plants 2023, 12(1), 142; https://doi.org/10.3390/plants12010142 - 27 Dec 2022
Cited by 13 | Viewed by 3163
Abstract
Arnica montana L. is one of Europe’s endemic endangered medicinal plants, with diverse biological activities commonly used in medicine, pharmacy, and cosmetics. Its flower heads are a rich source of raw material, with antibacterial, antifungal, antiseptic, anti-inflammatory, antiradical, antioxidant, and antitumor properties. The [...] Read more.
Arnica montana L. is one of Europe’s endemic endangered medicinal plants, with diverse biological activities commonly used in medicine, pharmacy, and cosmetics. Its flower heads are a rich source of raw material, with antibacterial, antifungal, antiseptic, anti-inflammatory, antiradical, antioxidant, and antitumor properties. The objective of the present study was (i) to characterize the chemical composition of flower heads of A. montana plants cultivated under nitrogen fertilization, (ii) to identify the impact of the nitrogen fertilization and extraction method (water, ethanol) on the antioxidant activity of extracts, and (iii) to determine the role of different nitrogen doses applied during plant cultivation and different extraction methods in the anticancer activity of the extracts through analysis of apoptosis and autophagy induction in HT29, HeLa, and SW620 cell lines. The present study shows that nitrogen is a crucial determinant of the chemical composition of arnica flower heads and the antioxidant and anticancer activity of the analyzed extracts. Nitrogen fertilization can modify the composition of pharmacologically active substances (sesquiterpene lactones, flavonoids, essential oil) in Arnicae flos. The content of sesquiterpene lactones, flavonoids, and essential oil increased with the increase in the nitrogen doses to 60 kg N ha−1 by 0.66%, 1.45%, and 0.27%, respectively. A further increase in the nitrogen dose resulted in a decrease in the content of the analyzed secondary metabolites. Varied levels of nitrogen application can be regarded as a relevant way to modify the chemical composition of arnica flower heads and to increase the anticancer activity, which was confirmed by the increase in the level of apoptosis with the increase in fertilization to a level of 60 kg N ha−1. The fertilization of arnica plants with low doses of nitrogen (30 and 60 kg N ha−1) significantly increased the LOX inhibition ability of the ethanol extracts. The present study is the first report on the anticancer activity of A. montana water extracts, with emphasis on the role of water as a solvent. In further studies of factors modifying the quality of Arnicae flos, attention should be paid to the simultaneous use of nitrogen and other microelements to achieve synergistic results and to the possibility of a more frequent use of water as a solvent in studies on the biological activity of A. montana extracts. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

17 pages, 2478 KB  
Article
Differentiation and Propagation Potential of Arnica montana L. Achenes as a Consequence of the Morphological Diversity of Flowers and the Position of Flower Heads on the Plant
by Piotr Sugier, Anna Rysiak, Danuta Sugier, Krystyna Winiarczyk, Dan Wołkowycki and Aleksander Kołos
Plants 2022, 11(24), 3424; https://doi.org/10.3390/plants11243424 - 8 Dec 2022
Cited by 5 | Viewed by 3006
Abstract
Arnica montana L. is a very important medicinal plant and simultaneously a European endemic endangered plant species. The morphological features and details of seed development and achene variability are poorly recognized. The aim of this study was to determine the impact of the [...] Read more.
Arnica montana L. is a very important medicinal plant and simultaneously a European endemic endangered plant species. The morphological features and details of seed development and achene variability are poorly recognized. The aim of this study was to determine the impact of the achene position in the infructescence and the location of the inflorescence on the plant on the (i) morphological characteristics and germination ability of achenes, and (ii) recruitment of seedlings and their biometric features. Infructescences containing fully ripe achenes were randomly collected from A. montana individuals for the measurements and the germination experiment. Scanning electron microscopy, fluorescence microscopy, and light microscopy were used for characterization of flowers and achenes. The morphological traits of achenes and reproductive characteristics of A. montana were determined by the position of the achenes in the infructescence and the location of the inflorescence on the plant. The surface of arnica achenes is equipped with non-glandular and glandular trichomes, which is very rarely presented in species of the family Asteraceae. It is possible that the fluid-containing glandular trichomes are a source of essential oils. The peripherally located achenes were longer, thinner, and lighter. They were characterized by lower embryo weight, lower embryo/achene weight ratio, and lower germination capacity in comparison to the centrally located ones. The results presented in this article fill the gap in the knowledge of the morphology of achenes and the biology of the species, and provide information that can help in breeding programs, active protection, and field cultivation. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 2510 KB  
Article
Therapeutic Efficacy of Arnica in Hamsters with Cutaneous Leishmaniasis Caused by Leishmania braziliensis and L. tropica
by Sara M. Robledo, Javier Murillo, Natalia Arbeláez, Andrés Montoya, Victoria Ospina, Franziska M. Jürgens, Iván D. Vélez and Thomas J. Schmidt
Pharmaceuticals 2022, 15(7), 776; https://doi.org/10.3390/ph15070776 - 22 Jun 2022
Cited by 10 | Viewed by 3237
Abstract
Leishmaniasis may occur in three different clinical forms, namely, visceral, mucocutaneous and cutaneous, which are caused by different species of trypanosomatid protozoans of the genus Leishmania. Pentavalent antimonials are the leading treatment for cutaneous leishmaniasis despite the hepatic, renal, and cardiac toxicity. [...] Read more.
Leishmaniasis may occur in three different clinical forms, namely, visceral, mucocutaneous and cutaneous, which are caused by different species of trypanosomatid protozoans of the genus Leishmania. Pentavalent antimonials are the leading treatment for cutaneous leishmaniasis despite the hepatic, renal, and cardiac toxicity. In addition, the response of some Leishmania species to pentavalent antimonials is increasingly poorer, and therefore new and more potent therapeutic alternatives are needed. Arnica montana L., Asteraceae, is a traditional medicinal plant of Europe and preparations of its flowers are commonly used externally to treat disorders of the musculoskeletal system as well as superficial inflammatory conditions. Previous studies have shown that Arnica tincture (AT), an ethanolic extract prepared from the flowerheads of Arnica montana as well as isolated Arnica sesquiterpene lactones (STLs) have antileishmanial activity in vitro against L. donovani and L. infantum, as well as in vivo against L. braziliensis. In this work, we studied the in vitro cytotoxicity and antileishmanial activity of AT and STLs against both L. braziliensis and L. tropica. The in vivo therapeutic effect of AT was studied in hamsters with cutaneous Leishmaniasis (CL) caused by experimental infection with L. braziliensis and L. tropica. Furthermore, various semisolid Arnica preparations were also evaluated against L. braziliensis. The STLs and the AT possess a very high in vitro activity against both Leishmania species with median effective concentrations (EC50) ranging from 1.9 to 5.9 μg/mL. The AT was not cytotoxic for human tissue macrophages, skin fibroblasts, and hepatic cells. The therapeutic response of hamsters infected with L. braziliensis to the topical treatment with AT was 87.5% at a dose of 19.2 μg STL/2× day/60 d, 72.7% at doses of 19.2 μg STL/1× d/60 d and 67% at a dose of 38.4 μg STL/2× d/60 d. In turn, the therapeutic response in hamsters infected with L. tropica was 100% when treated at a dose of 19.2 μg STL/2× day/60 d and 71% at a dose of 38.4 μg STL/2× d/60 d. On the other hand, the effectiveness of treatment with glucantime administered intralesionally at a dose of 200 mg/every three days for 30 days was 62.5% for L. braziliensis and 37.5% for L. tropica infection. These results are promising and encourage the implementation of clinical trials with AT in CL patients as a first step to using AT as a drug against CL. Full article
Show Figures

Figure 1

19 pages, 2036 KB  
Article
Comparison of the Phytochemical Variation of Non-Volatile Metabolites within Mother Tinctures of Arnica montana Prepared from Fresh and Dried Whole Plant Using UHPLC-HRMS Fingerprinting and Chemometric Analysis
by Simon Duthen, Alice Gadéa, Pascal Trempat, Naoual Boujedaini and Nicolas Fabre
Molecules 2022, 27(9), 2737; https://doi.org/10.3390/molecules27092737 - 24 Apr 2022
Cited by 13 | Viewed by 4006
Abstract
Arnica montana L. has been recognized for centuries as an herbal remedy to treat wounds and promote healing. It also has a long tradition of use in homeopathy. Depending on its medicinal utilization, standardization regulations allow different manufacturing processes, implying different raw materials, [...] Read more.
Arnica montana L. has been recognized for centuries as an herbal remedy to treat wounds and promote healing. It also has a long tradition of use in homeopathy. Depending on its medicinal utilization, standardization regulations allow different manufacturing processes, implying different raw materials, such as the whole arnica plant in its fresh or dried state. In this study, an untargeted metabolomics approach with UHPLC-HRMS/MS was used to cross-compare the phytochemical composition of mother tinctures of A. montana that were prepared from either fresh whole plant (fMT) matter or from oven-dried whole plant (dMT) matter. The multivariate data analysis showed significant differences between fMT and dMT. The dereplication of the HRMS and MS/MS spectra of the more discriminant compounds led to annotated quinic acid, dicaffeoyl quinic acids, ethyl caffeate, thymol derivatives and dehydrophytosphingosine, which were increased in fMT, while Amadori rearrangement products (ARP) and methoxyoxaloyl-dicaffeoyl quinic acid esters were enhanced in dMT. Neither sesquiterpene lactones nor flavonoids were affected by the drying process. This is the first time that a sphingosine, ethyl caffeate and ARP are described in A. montana. Moreover, putative new natural products were detected as 10-hydroxy-8,9-epoxy-thymolisobutyrate and an oxidized proline fructose conjugate, for which isolation and full structure elucidation will be necessary to verify this finding. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop