Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing
Abstract
:1. Introduction
1.1. Biodiversity Conservation for Semi-Natural Grasslands in Europe
1.2. A. montana—A Flagship Species of HNV Grasslands in Romania’s Apuseni Mountains
1.3. The Use of Drone-Based Remote Sensing (RS) and Machine Learning for Detecting Small-Scale Patterns in Vegetation
1.4. Main Objective
2. Materials and Methods
2.1. Image Acquisition Approach
2.2. Research Locations
2.2.1. Germany
2.2.2. Romania
2.3. Aerial Surveys—Critical Flight Conditions
2.4. Training the Model—Inputs and Configuration
2.5. Evaluation of the Model
3. Results
3.1. Image and Label Dataset
3.2. Post-Training Analysis
3.3. Detection Box Qualities
3.4. Detection Precision
3.5. Correlations between Precision, GSD, and Timing
3.5.1. Key Aerial Survey Factors
3.5.2. Correlations from Aerial Survey Image Sets as Variables
3.5.3. Correlations from the Pooled Image Sample Sets
3.5.4. Linear Regression
Intercept: 69.173 ± 2.959
GSD: −39.283 ± 3.874
Shadow size: −0.296 ± 0.075
- Maximum precision: 69.173 − 39.283 × 0.9 − 0.296 × 50 = 19.018 (%)
- Corrected count estimate: (75 × 100)/19.018 ≈ 394 (AM1)
4. Discussion
4.1. Model Training
4.2. Evaluation
4.3. Statistical Precision
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchmann, N.; Fuchs, K.; Feigenwinter, I.; Gilgen, A.K. Multifunctionality of permanent grasslands: Ecosystem services and resilience to climate change. In Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA Section “Fodder Crops and Amenity Grasses”, Zürich, Switzerland, 24–27 June 2019; Volume 24, pp. 19–26. [Google Scholar] [CrossRef]
- Klaus, V.H.; Gilgen, A.K.; Lüscher, A.; Buchmann, N. Can We Deduce General Management Recommendations from Biodiversity-Ecosystem Functioning Research in Grasslands? In Proceedings of the Joint 20th Symposium of the European Grassland Federation and the 33rd Meeting of the EUCARPIA Section “Fodder Crops and Amenity Grasses”, Zürich, Switzerland, 24–27 June 2019; Volume 24, pp. 63–65. Available online: https://www.research-collection.ethz.ch/handle/20.500.11850/353577 (accessed on 9 July 2023).
- Lomba, A.; Guerra, C.; Alonso, J.; Honrado, J.P.; Jongman, R.; McCracken, D. Mapping and monitoring High Nature Value farmlands: Challenges in European landscapes. J. Environ. Manag. 2014, 143, 140–150. [Google Scholar] [CrossRef]
- Lomba, A.; Moreira, F.; Klimek, S.; Jongman, R.H.; Sullivan, C.; Moran, J.; Poux, X.; Honrado, J.P.; Pinto-Correia, T.; Plieninger, T.; et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 2020, 18, 36–42. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Petersen, J.-E.; Hoogeveen, Y.; Bamps, C.; Burfield, I.; van Swaay, C. High Nature Value Farmland in Europe; European Commission Joint Research Centre: Luxembourg, 2008; ISBN 978-92-79-09568-9. Available online: https://core.ac.uk/download/pdf/38617607.pdf (accessed on 11 May 2024).
- Defour, T. EIP-AGRI Focus Group New Entrants: Final Report. Available online: https://ec.europa.eu/eip/agriculture/en/publications/eip-agri-focus-group-new-entrants-final-report (accessed on 9 July 2023).
- Peyraud, J.-L.; Peeters, A. The Role of Grassland Based Production System in the Protein Security. In Proceedings of the General Meeting of the European Grassland Federation (EGF), Trondheim, Norway, 8 September 2016; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; Volume 21. Available online: https://hal.inrae.fr/hal-02743435 (accessed on 5 April 2024).
- Ministerului Agriculturii și Dezvoltării Rurale. Planul PAC 2023–2027 pentru România (v1.2); PS PAC 2023–2027; Guvernul României: Romania, 2022; p. 1094. Available online: https://www.madr.ro/planul-national-strategic-pac-post-2020/implementare-ps-pac-2023-2027/ps-pac-2023-2027.html (accessed on 26 November 2023).
- Brinkmann, K.; Păcurar, F.; Rotar, I.; Rușdea, E.; Auch, E.; Reif, A. The grasslands of the Apuseni Mountains, Romania. In Grasslands in Europe of High Nature Value; Veen, P., Jefferson, R., de Smidt, J., van der Straaten, J., Eds.; Brill: Leiden, The Netherlands, 2014; pp. 226–237. ISBN 978-90-04-27810-3. [Google Scholar] [CrossRef]
- Herzon, I.; Raatikainen, K.; Wehn, S.; Rūsiņa, S.; Helm, A.; Cousins, S.; Rašomavičius, V. Semi-natural habitats in boreal Europe: A rise of a social-ecological research agenda. Ecol. Soc. 2021, 26, 13. [Google Scholar] [CrossRef]
- McGurn, P.; Browne, A.; NíChonghaile, G.; Duignan, L.; Moran, J.; ÓHuallacháin, D.; Finn, J.A. Semi-Natural Grasslands on the Aran Islands, Ireland: Ecologically Rich, Economically Poor. In Proceedings of the Grassland Resources for Extensive Farming Systems in Marginal Lands: Major Drivers and Future Scenarios, the 19th Symposium of the European Grassland Federation, CNR-ISPAAM. Alghero, Italy, 7–10 May 2017; pp. 197–199. Available online: https://www.cabdirect.org/cabdirect/abstract/20173250639 (accessed on 9 July 2023).
- Lange, D.; Schippmann, U. Wild-Harvesting in East Europe. In Trade Survey of Medicinal Plants in Germany: A Contribution to International Plant Species Conservation; Bundesamt für Naturschutz: Bonn, Germany, 1997; p. 29. ISBN 978-3-89624-607-3. Available online: https://d-nb.info/950197920/04 (accessed on 9 July 2023).
- Păcurar, F.; Reif, A.; Ruşdea, E. Conservation of Oligotrophic Grassland of High Nature Value (HNV) through Sustainable Use of Arnica montana in the Apuseni Mountains, Romania. In Medicinal Agroecology; Fiebrig, I., Ed.; CRC Press: Boca Raton, FL, USA, 2023; pp. 177–201. ISBN 978-1-00-314690-2. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003146902-12/conservation-oligotrophic-grassland-high-nature-value-hnv-sustainable-use-arnica-montana-apuseni-mountains-romania-florin-p%C4%83curar-albert-reif-evelyn-ru%C5%9Fdea (accessed on 8 March 2024).
- Kriplani, P.; Guarve, K.; Baghael, U.S. Arnica montana L.—A plant of healing: Review. J. Pharm. Pharmacol. 2017, 69, 925–945. [Google Scholar] [CrossRef]
- Ciocârlan, V. Ord. Asterales (Compositales). In Flora Ilustrată a României: Pteriodophyta et Spermatophyta; Ceres: Bucharest, Romania, 2009; p. 810. ISBN 978-973-40-0817-9. [Google Scholar]
- Bundesamt für Naturschutz (BfN). Artsteckbrief: Biologische Merkmale—Arnica montana L. Available online: https://www.floraweb.de/php/biologie.php?suchnr=585 (accessed on 28 March 2024).
- Strykstra, R.; Pegtel, D.; Bergsma, A. Dispersal Distance and Achene Quality of the Rare Anemochorous Species Arnica montana L.: Implications for Conservation. Acta Bot. Neerl. 1998, 47, 45–56. Available online: https://natuurtijdschriften.nl/pub/541121 (accessed on 26 April 2024).
- EU Commission. Commission Regulation (EU) No 1320/2014 of 1 December 2014 Amending Council Regulation (EC) No 338/97 on the Protection of Species of Wild Fauna and Flora by Regulating Trade Therein. Off. J. Eur. Union 2014, L361, 1–93. Available online: http://data.europa.eu/eli/reg/2014/1320/oj/eng (accessed on 10 March 2024).
- BISE. Arnica montana. Available online: https://biodiversity.europa.eu/species/153665 (accessed on 10 March 2024).
- Bazos, I.; Hodálová, I.; Lansdown, R.; Petrova, A.; IUCN Red List of Threatened Species: Arnica montana. In IUCN Red List of Threatened Species. 2010. Available online: https://www.iucnredlist.org/species/162327/5574104 (accessed on 10 March 2024).
- Duwe, V.K.; Muller, L.A.H.; Borsch, T.; Ismail, S.A. Pervasive genetic differentiation among Central European populations of the threatened Arnica montana L. and genetic erosion at lower elevations. Perspect. Plant Ecol. Evol. Syst. 2017, 27, 45–56. [Google Scholar] [CrossRef]
- Arnica montana L. Plants of the World Online. Kew Science. Available online: http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30090722-2 (accessed on 28 March 2024).
- Schmidt, T.J. Arnica montana L.: Doesn’t Origin Matter? Plants 2023, 12, 3532. [Google Scholar] [CrossRef]
- Dapper, H. Liste der Arzneipflanzen Mitteleuropas: Check-list of the medicinal plants of Central Europe. In Liste der Arzneipflanzen Mitteleuropas: Check-List of the Medicinal Plants of Central Europe; Innova: Ulm, Germany, 1987; p. 73. ISBN 3-925096-01-9. [Google Scholar]
- Hultén, E.; Fries, M. Atlas of North European vascular plants north of the Tropic of Cancer. In Atlas of North European Vascular Plants North of the Tropic of Cancer; Koeltz Botanical Books: Konigstein, Germany, 1986; p. 1188. ISBN 978-3-87429-263-4. [Google Scholar]
- Maurice, T.; Colling, G.; Muller, S.; Matthies, D. Habitat characteristics, stage structure and reproduction of colline and montane populations of the threatened species Arnica montana. Plant Ecol. 2012, 213, 831–842. [Google Scholar] [CrossRef]
- Sugier, P.; Kolos, A.; Wolkowycki, D.; Sugier, D.; Plak, A.; Sozinov, O. Evaluation of species inter-relations and soil conditions in Arnica montana L. habitats: A step towards active protection of endangered and high-valued medicinal plant species in NE Poland. Acta Soc. Bot. Pol. 2018, 87, 3592. [Google Scholar] [CrossRef]
- Michler, B. Leitprojekt Heilpflanzen. In Perspektiven für eine traditionelle Kulturlandschaft in Osteuropa. Ergebnisse eines inter-und transdisziplinären, partizipativen Forschungsprojektes in Osteuropa; Rușdea, E., Reif, A., Povara, I., Konold, W., Eds.; Culterra—The Series of Publications by the Professorship for Land Management; Schriftenreihe des Instituts für Landespflege, Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2005; Volume 34, pp. 378–380. ISBN 978-3-933390-21-9. Available online: https://www.landespflege.uni-freiburg.de/ressourcen/pub/2005%20-%20Endbericht%20Proiect%20Apuseni.pdf#page=378 (accessed on 13 December 2023).
- Michler, B.; Wolfgang, K.; Susanne, S.; Ioan, R.; Florin, P. Conservation of eastern European medicinal plants: Arnica montana in Romania. In Proceedings of the 4th Conference on Medicinal and Aromatic Plants of South-East European Countries, 9th National Symposium “Medicinal Plants—Present and Perspectives”, 3rd National Conference of Phytotherapy, Iași, România, 28–31 May 2006; Association for Medicinal and Aromatic Plants of Southeast European Countries (AMAPSEEC): Belgrade, Serbia, 2006; pp. 158–160. [Google Scholar]
- Pacurar, F.; Rotar, I.; Gârda, N.; Morea, A. The Management of Oligotrophic Grasslands and the Approach of New Improvement Methods. Transylv. Rev. Syst. Ecol. Res. 2009, 7, 59–68. Available online: https://stiinte.ulbsibiu.ro/trser/trser7/59-68.pdf (accessed on 3 March 2024).
- Reif, A.; Coldea, G.; Harth, G. Pflanzengesellschaften des Offenlandes und der Wälder. In Perspektiven für eine Traditionelle Kulturlandschaft in Osteuropa. Ergebnisse Eines Inter- und Transdisziplinären, Partizipativen Forschungsprojektes in Osteuropa; Rușdea, E., Reif, A., Povara, I., Konold, W., Eds.; Culterra; Schriftenreihe des Instituts für Landespflege, Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2005; Volume 34, pp. 78–87. ISBN 978-3-933390-21-9. Available online: https://www.landespflege.uni-freiburg.de/ressourcen/pub/2005%20-%20Endbericht%20Proiect%20Apuseni.pdf#page=78 (accessed on 13 December 2023).
- Michler, B.; Rotar, I.; Pacurar, F.; Stoie, A. Arnica montana, an Endangered Species and a Traditional Medicinal Plant: The Biodiversity and Productivity of Its Typical Grasslands Habitats. In Proceedings of the Grassland Science in Europe, Proceedings of EGF, Tertu, Estonia, 29–31 August 2005; Lillak, R., Viiralt, R., Linke, A., Geherman, V., Eds.; EGF: Tartu, Estonia, 2005; Volume 10, pp. 336–339. Available online: https://www.europeangrassland.org/fileadmin/documents/Infos/Printed_Matter/Proceedings/EGF2005_GSE_vol10.pdf (accessed on 5 March 2021).
- Kathe, W. Conservation of Eastern-European Medicinal Plants: Arnica montana in Romania. In Medicinal and Aromatic Plants: Agricultural, Commercial, Ecological, Legal, Pharmacological and Social Aspects; Bogers, R.J., Craker, L.E., Lange, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 17, pp. 203–211. ISBN 978-1-4020-5448-8. Available online: https://library.wur.nl/ojs/index.php/frontis/article/view/1233 (accessed on 3 March 2024).
- Díaz-Delgado, R.; Mücher, S. Editorial of special issue “Drones for biodiversity conservation and ecological monitoring”. Drones 2019, 3, 47. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, X.; Wang, Z.; Yang, L.; Xie, Y.; Huang, Y. UAVs as remote sensing platforms in plant ecology: Review of applications and challenges. J. Plant Ecol. 2021, 14, 1003–1023. [Google Scholar] [CrossRef]
- Sângeorzan, D.D.; Rotar, I. Evaluating plant biodiversity in natural and semi-natural areas with the help of aerial drones. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2020, 77, 64–68. [Google Scholar] [CrossRef]
- Koh, L.P.; Wich, S.A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 2012, 5, 121–132. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [Google Scholar] [CrossRef]
- de Sá, N.C.; Castro, P.; Carvalho, S.; Marchante, E.; López-Núñez, F.A.; Marchante, H. Mapping the Flowering of an Invasive Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring? Front. Plant Sci. 2018, 9, 238724. [Google Scholar] [CrossRef]
- Petrich, L.; Lohrmann, G.; Neumann, M.; Martin, F.; Frey, A.; Stoll, A.; Schmidt, V. Detection of Colchicum autumnale in drone images, using a machine-learning approach. Precis. Agric. 2020, 21, 1291–1303. [Google Scholar] [CrossRef]
- Wijesingha, J.; Astor, T.; Schulze-Brüninghoff, D.; Wachendorf, M. Mapping invasive Lupinus polyphyllus lindl. in semi-natural grasslands using object-based image analysis of UAV-borne images. PFG 2020, 88, 391–406. [Google Scholar] [CrossRef]
- Strumia, S.; Buonanno, M.; Aronne, G.; Santo, A.; Santangelo, A. Monitoring of plant species and communities on coastal cliffs: Is the use of unmanned aerial vehicles suitable? Diversity 2020, 12, 149. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Ceola, G.; de Vries, J.P.R.; Feilhauer, H.; Moudrý, V.; Bartholomeus, H.; Perrone, M.; Anderle, M.; Gamper, H.A.; et al. Grassland vertical height heterogeneity predicts flower and bee diversity: An UAV photogrammetric approach. Sci. Rep. 2024, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Alavipanah, S.K.; Karimi Firozjaei, M.; Sedighi, A.; Fathololoumi, S.; Zare Naghadehi, S.; Saleh, S.; Naghdizadegan, M.; Gomeh, Z.; Arsanjani, J.J.; Makki, M.; et al. The shadow effect on surface biophysical variables derived from remote sensing: A review. Land 2022, 11, 2025. [Google Scholar] [CrossRef]
- Salamí, E.; Barrado, C.; Pastor, E. UAV flight experiments applied to the remote sensing of vegetated areas. Remote Sens. 2014, 6, 11051–11081. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Haq, M.A.; Ahmed, A.; Gyani, J. Implementation of CNN for plant identification using UAV imagery. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 369–378. [Google Scholar] [CrossRef]
- Fromm, M.; Schubert, M.; Castilla, G.; Linke, J.; McDermid, G. Automated detection of conifer seedlings in drone imagery using convolutional neural networks. Remote Sens. 2019, 11, 2585. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Qiao, J.; Li, L.; Wang, X.; Yao, J.; Liao, G. Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery. Front. Plant Sci. 2023, 14, 1101143. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.; Hugenholtz, C.H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Sys. 2014, 2, 69–85. [Google Scholar] [CrossRef]
- Lopatin, J.; Fassnacht, F.E.; Kattenborn, T.; Schmidtlein, S. Mapping plant species in mixed grassland communities using close range imaging spectroscopy. Remote Sens. Environ. 2017, 201, 12–23. [Google Scholar] [CrossRef]
- Neumann, C.; Behling, R.; Schindhelm, A.; Itzerott, S.; Weiss, G.; Wichmann, M.; Müller, J. The colors of heath flowering—Quantifying spatial patterns of phenology in Calluna life-cycle phases using high-resolution drone imagery. Remote Sens. Ecol. Conserv. 2020, 6, 35–51. [Google Scholar] [CrossRef]
- Petti, D.; Li, C. Weakly-supervised learning to automatically count cotton flowers from aerial imagery. Comput. Electron. Agric. 2022, 194, 106734. [Google Scholar] [CrossRef]
- James, K.; Bradshaw, K. Detecting plant species in the field with deep learning and drone technology. Methods Ecol. Evol. 2020, 11, 1509–1519. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Bonnet, P.; Goëau, H.; Hang, S.T.; Lasseck, M.; Sulc, M.; Malécot, V.; Jauzein, P.; Melet, J.-C.; You, C.; Joly, A. Plant identification: Experts vs. machines in the era of deep learning. In Multimedia Tools and Applications for Environmental & Biodiversity Informatics; Springer: Berlin/Heidelberg, Germany, 2018; p. 131. [Google Scholar] [CrossRef]
- Bonnet, P.; Joly, A.; Goëau, H.; Champ, J.; Vignau, C.; Molino, J.-F.; Barthélémy, D.; Boujemaa, N. Plant identification: Man vs. machine. Multimed. Tools Appl. 2016, 75, 1647. [Google Scholar] [CrossRef]
- She, Y.; Ehsani, R.; Robbins, J.; Nahún Leiva, J.; Owen, J. Applications of high-resolution imaging for open field container nursery counting. Remote Sens. 2018, 10, 2018. [Google Scholar] [CrossRef]
- Garcin, C.; Joly, A.; Bonnet, P.; Lombardo, J.-C.; Affouard, A.; Chouet, M.; Servajean, M.; Lorieul, T.; Salmon, J. Pl@ntNet-300K: A Plant Image Dataset with High Label Ambiguity and a Long-Tailed Distribution. 2021. Available online: https://hal.inria.fr/hal-03474556 (accessed on 13 April 2023).
- Rzanny, M.; Wittich, H.C.; Mäder, P.; Deggelmann, A.; Boho, D.; Wäldchen, J. Image-based automated recognition of 31 Poaceae species: The most relevant perspectives. Front. Plant Sci. 2022, 12, 804140. [Google Scholar] [CrossRef] [PubMed]
- Goëau, H.; Bonnet, P.; Joly, A. Plant Identification Based on Noisy Web Data: The Amazing Performance of Deep Learning; CLEF: Conference and Labs of the Evaluation Forum 2017, Dublin. Available online: https://hal.science/hal-01629183 (accessed on 13 April 2023).
- August, T.; Pescott, O.; Joly, A.; Bonnet, P. AI naturalists might hold the key to unlocking biodiversity data in social media imagery. Patterns 2020, 1, 100116. [Google Scholar] [CrossRef]
- Heylen, R.; van Mulders, P.; Gallace, N. Counting Strawberry Flowers on Drone Imagery with a Sequential Convolutional Neural Network. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4880–4883. Available online: https://ieeexplore.ieee.org/document/9553085 (accessed on 5 March 2024).
- Karila, K.; Alves Oliveira, R.; Ek, J.; Kaivosoja, J.; Koivumäki, N.; Korhonen, P.; Niemeläinen, O.; Nyholm, L.; Näsi, R.; Pölönen, I.; et al. Estimating grass sward quality and quantity parameters using drone remote sensing with deep neural networks. Remote Sens. 2022, 14, 2692. [Google Scholar] [CrossRef]
- Gallmann, J.; Schüpbach, B.; Jacot, K.; Albrecht, M.; Winizki, J.; Kirchgessner, N.; Aasen, H. Flower mapping in grasslands with drones and deep learning. Front. Plant Sci. 2022, 12, 774965. [Google Scholar] [CrossRef] [PubMed]
- John, A.; Theobald, E.J.; Cristea, N.; Tan, A.; Lambers, J.H.R. Using photographs and deep neural networks to understand flowering phenology and diversity in mountain meadows. Remote Sens. Ecol. Conserv. 2023. [CrossRef]
- Reif, A.; Goia, A.; Hoernstein, H.; Jaeckle, S.; Mohr, B.; Păcurar, F.; Rotar, I.; Rușdea, E. Differences of Development Patterns in Central and Eastern European Mountain Regions: History of Land Uses and Landscapes in the Southern Black Forest (Germany) and the Central Apuseni Mountains (Romania). Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2008, 65, 1–14. Available online: https://www.landespflege.uni-freiburg.de/ressourcen/pub/2008%20-%20Reif%20etal%20-%20usamv%20-%20Apuseni-BlackForest.pdf (accessed on 25 March 2024). [CrossRef]
- Blaga, G.; Filipov, F.; Rusu, I.; Udrescu, S.; Vasile, D. Pedologie. In Pedologie; Editura Academic Press: Cluj-Napoca, Romania, 2005; pp. 231–234. ISBN 973-744-004-8. [Google Scholar]
- Parichi, M.; Stănilă, A.L. Böden der Gemarkung von Ghețari und angrenzender Gebiete. In Perspektiven für Eine Traditionelle Kulturlandschaft in Osteuropa. Ergebnisse Eines Inter- und Transdisziplinären, Partizipativen Forschungsprojektes in Osteuropa; Rușdea, E., Reif, A., Povara, I., Konold, W., Eds.; Culterra—The Series Of Publications by the Professorship for Land Management; Schriftenreihe des Instituts für Landespflegem, Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2005; Volume 34, pp. 54–59. ISBN 978-3-933390-21-9. Available online: https://www.landespflege.uni-freiburg.de/ressourcen/pub/2005%20-%20Endbericht%20Proiect%20Apuseni.pdf#page=54 (accessed on 13 December 2023).
- Goia, A.; Borlan, Z. Siedlungsgeschichte der Dörfer im „Motzenland”. In Perspektiven für eine Traditionelle Kulturlandschaft in Osteuropa. Ergebnisse eines Inter- und Transdisziplinären, Partizipativen Forschungsprojektes in Osteuropa; Rușdea, E., Reif, A., Povara, I., Konold, W., Eds.; Culterra—The Series of Publications by the Professorship for Land Management; Schriftenreihe des Instituts für Landespflege, Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2005; Volume 34, pp. 109–114. ISBN 978-3-933390-21-9. Available online: https://www.landespflege.uni-freiburg.de/ressourcen/pub/2005%20-%20Endbericht%20Proiect%20Apuseni.pdf#page=109 (accessed on 13 December 2023).
- Goia, A. Die traditionelle Lebensweise. In Perspektiven für eine Traditionelle Kulturlandschaft in Osteuropa. Ergebnisse eines Inter- und Transdisziplinären, Partizipativen Forschungsprojektes in Osteuropa; Rușdea, E., Reif, A., Povara, I., Konold, W., Eds.; Culterra—The Series of Publications by the Professorship for Land Management; Schriftenreihe des Instituts für Landespflege, Albert-Ludwigs-Universität Freiburg: Freiburg, Germany, 2005; Volume 34, pp. 115–119. ISBN 978-3-933390-21-9. Available online: https://www.landespflege.uni-freiburg.de/ressourcen/pub/2005%20-%20Endbericht%20Proiect%20Apuseni.pdf#page=115 (accessed on 13 December 2023).
- Sângeorzan, D.D.; Rotar, I.; Păcurar, F.; Vaida, I.; Suteu, A.; Deac, V. The Definition of Oligotrophic Grasslands. Rom. J. Grassl. Forage Crops 2018, 17, 33–42. Available online: https://sropaj.ro/documente/ro/revista/articole/RJGFC-17-2018_art-5.pdf (accessed on 5 March 2021).
- Garda, N. Studiul unor Elemente de Landsaft Montan (cu Privire Specială Asupra Ecosistemelor de Pajisti din Comuna Gârda de Sus, Muntii Apuseni). Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania, 2010. [Google Scholar]
- Stoie, A. Cercetări Asupra Ecosistemelor de Pajişti cu Arnica montana în Bazinul Superior al Arieşului. Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania, 2011. [Google Scholar]
- Pix4D Team. GSD Calculator. Available online: https://support.pix4d.com/hc/en-us/articles/202560249-TOOLS-GSD-calculator (accessed on 25 March 2024).
- Feng, J.; Kim, Y.K.; Liu, P. Image shadow detection and removal based on region matching of intelligent computing. Comput. Intell. Neurosci. 2022, 2022, 7261551. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Vicente, T.F.Y.; Nguyen, V.; Hoai, M.; Samaras, D. A+D Net: Training a Shadow Detector with Adversarial Shadow Attenuation. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 680–696. [Google Scholar] [CrossRef]
- Wang, T.; Hu, X.; Wang, Q.; Heng, P.-A.; Fu, C.-W. Instance shadow detection. arXiv 2020. [Google Scholar] [CrossRef]
- Hoffmann, T. SunCalc Sun Position-Sun Phases Calculator. Available online: https://www.suncalc.org (accessed on 21 February 2024).
- Gorodissky, H.; Harari, D.; Ullman, S. Large field and high resolution: Detecting needle in haystack. arXiv 2018. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision–ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37, ISBN 978-3-319-46448-0. [Google Scholar] [CrossRef]
- TensorFlow Developers. TensorFlow 2 Detection Model Zoo. 2023. Available online: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md (accessed on 11 April 2023).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015. [Google Scholar] [CrossRef]
- Baker, N.; Elder, J.H. Deep learning models fail to capture the configural nature of human shape perception. iScience 2022, 25, 104913. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, M.; Shahzad, A.; Zafar, B.; Shabbir, A.; Ali, N. Remote sensing image classification: A comprehensive review and applications. Math. Probl. Eng. 2022, 2022, e5880959. [Google Scholar] [CrossRef]
- Nguyen, K.; Huynh, N.T.; Nguyen, P.C.; Nguyen, K.-D.; Vo, N.D.; Nguyen, T.V. Detecting objects from space: An evaluation of deep-learning modern approaches. Electronics 2020, 9, 583. [Google Scholar] [CrossRef]
- TensorFlow Developers. TensorFlow (Version 2.12.0) [Computer Software], 2023. Available online: https://doi.org/10.5281/zenodo.7764425 (accessed on 12 April 2023).
- Vladimirov, L. Tensorflow 2 Object Detection Api Tutorial. Available online: https://github.com/sglvladi/TensorFlowObjectDetectionTutorial (accessed on 12 April 2023).
- JASP Team. JASP (Version 0.18.3) [Computer Software]. 2024. Available online: https://jasp-stats.org/ (accessed on 29 April 2024).
- Thian, Y.L.; Ng, D.W.; Hallinan, J.T.P.D.; Jagmohan, P.; Sia, S.Y.; Mohamed, J.S.A.; Quek, S.T.; Feng, M. Effect of training data volume on performance of convolutional neural network pneumothorax classifiers. J. Digit. Imaging 2022, 35, 881–892. [Google Scholar] [CrossRef]
- Gütter, J.; Kruspe, A.; Zhu, X.X.; Niebling, J. Impact of training set size on the ability of deep neural networks to deal with omission noise. Front. Remote Sens. 2022, 3, 932431. [Google Scholar] [CrossRef]
- Sayed, M.; Brostow, G. Improved Handling of Motion Blur in Online Object Detection. 2021, pp. 1706–1716. Available online: http://openaccess.thecvf.com/content/CVPR2021/papers/Sayed_Improved_Handling_of_Motion_Blur_in_Online_Object_Detection_CVPR_2021_paper.pdf (accessed on 28 April 2024).
- Genze, N.; Wirth, M.; Schreiner, C.; Ajekwe, R.; Grieb, M.; Grimm, D.G. Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model. Plant Methods 2023, 19, 87. [Google Scholar] [CrossRef] [PubMed]
- TensorFlow Team. Non-Maximum Suppression. Available online: https://www.tensorflow.org/api_docs/python/tf/image/non_max_suppression (accessed on 16 March 2024).
- Mu, X.; He, L.; Heinemann, P.; Schupp, J.; Karkee, M. Mask R-CNN based apple flower detection and king flower identification for precision pollination. Smart Agric. Technol. 2023, 4, 100151. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, real-Time object detection. arXiv 2016. [Google Scholar] [CrossRef]
- Pöttker, M.; Kiehl, K.; Jarmer, T.; Trautz, D. Convolutional neural network maps plant communities in semi-natural grasslands using multispectral unmanned aerial vehicle imagery. Remote Sens. 2023, 15, 1945. [Google Scholar] [CrossRef]
- Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv 2022. [Google Scholar] [CrossRef]
- Liu, X.; Yang, F.; Wei, H.; Gao, M. Shadow removal from UAV images based on color and texture equalization compensation of local homogeneous regions. Remote Sens. 2022, 14, 2616. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, H.; Mi, Y.; Pu, M.; Wang, S. Shadow removal by a lightness-guided network with training on unpaired data. IEEE Trans. Image Process. 2021, 30, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Robles, G.; Osornio-Ríos, R.A.; Solís-Muñoz, F.J.; Morales-Hernández, L.A. An approach for shadow detection in aerial images based on multi-channel statistics. IEEE Access 2021, 9, 34240–34250. [Google Scholar] [CrossRef]
- Zhou, T.; Fu, H.; Sun, C.; Wang, S. Shadow detection and compensation from remote sensing images under complex urban conditions. Remote Sens. 2021, 13, 699. [Google Scholar] [CrossRef]
- Mardari, C.; Bîrsan, C.; Ştefanache, C.; Şchiopu, R.; Grigoraş, V.; Balaeş, T.; Dănilă, D.; Tănase, C. Population structure and habitat characteristics of Arnica montana L. in the NE Carpathians (Romania). Tuexenia 2019, 39, 401–421. [Google Scholar] [CrossRef]
Location | UAV Model | Camera Model | MP | Altitude Range (m) |
---|---|---|---|---|
Todtnau (training) | DJI S1000 | SONY ILCE-7R | 36.4 | 10–40 |
Ghețari (evaluation) | DJI Matrice 300 | Zenmuse P1 | 45 | 18–60 |
ID | Takeoff Time | Shadow (cm) | Average GSD (cm) | Image Count | Altitude (m) |
---|---|---|---|---|---|
1 | 10:49 | 25 | 0.28 | 208 | 15 |
2 | 11:19 | 22 | 0.15 | 240 | 10 |
3 | 11:45 | 19 | 0.29 | 233 | 20 |
4 | 12:11 | 17 | 0.58 | 351 | 40 |
Aerial Survey ID | Takeoff Time | Shadow (cm) | Average GSD (cm) | Image Count | Altitude (m) |
---|---|---|---|---|---|
JUN1 | 12:16 | 16 | 0.21 | 279 | 20 |
JUN2 | 12:25 | 15 | 0.42 | 201 | 40 |
JUN3 | 12:46 | 14 | 0.19 | 249 | 18 |
JUN4 | 12:57 | 13 | 0.19 | 999 | 18 |
JUN5 | 13:15 | 13 | 0.31 | ≈300 | 30 |
JUN6 | 10:16 | 30 | 0.65 | 640 | 60 |
JUL1 | 18:11 | 51 | 0.73 | ≈150 | 60 |
JUL2 | 18:24 | 56 | 0.49 | ≈200 | 40 |
JUL3 | 18:31 | 59 | 0.37 | ≈200 | 30 |
Label | Training Count | Testing Count | Sum (Mpx) | Average Area (px) | Median Area (px) | Standard Deviation (px) |
---|---|---|---|---|---|---|
AM1 | 4914 | 480 | 4.5 | 919.51 | 810 | 443.33 |
BAM1 | 13,226 | 1492 | 9.6 | 728.50 | 648 | 339.50 |
BAM2 | 3209 | 359 | 4.0 | 1262.36 | 1118 | 613.24 |
TOTAL | 21,349 | 2331 | 18.1 | - | - | - |
Learning and Loss Indicators | Median | Mean | Standard Deviation | Variation Coefficient | Min. | Max. |
---|---|---|---|---|---|---|
Learning rate | 0.021 | 0.020 | 0.014 | 0.688 | 0.000 | 0.040 |
Regularization Loss | 0.335 | 0.672 | 0.895 | 1.332 | 0.139 | 4.319 |
Classification loss | 0.017 | 0.142 | 0.212 | 1.490 | 3.680 × 10−5 | 1.121 |
Localization Loss | 0.144 | 0.173 | 0.142 | 0.820 | 0.000 | 1.424 |
Total Loss rate | 0.658 | 0.986 | 1.010 | 1.023 | 0.155 | 5.737 |
Aerial Survey ID | Image Count | Total Detections | Detection Count Standard Deviation | Mean Precision |
---|---|---|---|---|
JUN1 | 65 | 1570 | 29.285 | 51.23 |
JUN2 | 63 | 1648 | 33.654 | 49.05 |
JUN3 | 59 | 1450 | 32.142 | 44.92 |
JUN4 | 105 | 1470 | 15.815 | 51.62 |
JUN5 | 40 | 265 | 3.372 | 45.75 |
JUN6 | 68 | 911 | 15.089 | 16.03 |
JUL1 | 26 | 65 | 2.929 | 10.00 |
JUL2 | 37 | 111 | 2.224 | 10.54 |
JUL3 | 40 | 237 | 8.294 | 12.75 |
Precision (%) | GSD (cm) | Shadow Size (cm) | |
---|---|---|---|
Mean | 32.43 | 0.40 | 29.67 |
Standard Deviation | 19.27 | 0.20 | 20.04 |
Minimum | 10.00 | 0.19 | 13.00 |
Maximum | 51.62 | 0.73 | 59.00 |
Variable | Precision (%) | GSD (cm) | Shadow Size (cm) | |
---|---|---|---|---|
1.Precision (%) | Pearson’s r | — | ||
p-value | — | |||
Upper 95% CI | — | |||
Lower 95% CI | — | |||
2.GSD (cm) | Pearson’s r | −0.786 * | — | |
p-value | 0.012 | — | ||
Upper 95% CI | −0.256 | — | ||
Lower 95% CI | −0.953 | — | ||
3.Shadow size (cm) | Pearson’s r | −0.931 *** | 0.606 | — |
p-value | <0.001 | 0.084 | — | |
Upper 95% CI | −0.700 | 0.906 | — | |
Lower 95% CI | −0.986 | −0.098 | — |
Precision (%) | GSD (cm) | Shadow Size (cm) | |
---|---|---|---|
Mean | 36.918 | 0.641 | 23.905 |
Standard Deviation | 31.099 | 0.325 | 16.832 |
Minimum | 10.000 | 0.445 | 13.000 |
Maximum | 100.000 | 1.341 | 59.000 |
Variable | Precision (%) | GSD (cm) | Shadow Size (cm) | |
---|---|---|---|---|
1.Precision (%) | Pearson’s r | — | ||
p-value | — | |||
Effect size | — | |||
SE Effect size | — | |||
2.GSD (cm) | Pearson’s r | −0.449 *** | — | |
p-value | <0.001 | — | ||
Effect size | −0.483 | — | ||
SE Effect size | 0.045 | — | ||
3.Shadow size (cm) | Pearson’s r | −0.258 *** | 0.237 *** | — |
p-value | <0.001 | <0.001 | — | |
Effect size | −0.263 | 0.241 | — | |
SE Effect size | 0.045 | 0.045 | — |
Model | Sum of Squares | df | Mean Square | F | p | |
---|---|---|---|---|---|---|
H0 | Regression | 109,518.603 | 2 | 54,759.302 | 72.817 | <0.001 |
Residual | 376,005.055 | 500 | 752.010 | |||
Total | 485,523.658 | 502 |
Model | Unstandardized | S.E. | Standardized | t | p | 95% CI | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
H0 | (Intercept %) | 69.173 | 2.959 | 23.375 | <0.001 | 63.36 | 74.99 | |
GSD (cm) | −39.283 | 3.874 | −0.411 | −10.140 | <0.001 | −46.89 | −31.67 | |
Shadow size (cm) | −0.296 | 0.075 | −0.160 | −0.160 | <0.001 | −0.44 | −0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sângeorzan, D.D.; Păcurar, F.; Reif, A.; Weinacker, H.; Rușdea, E.; Vaida, I.; Rotar, I. Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing. Remote Sens. 2024, 16, 2012. https://doi.org/10.3390/rs16112012
Sângeorzan DD, Păcurar F, Reif A, Weinacker H, Rușdea E, Vaida I, Rotar I. Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing. Remote Sensing. 2024; 16(11):2012. https://doi.org/10.3390/rs16112012
Chicago/Turabian StyleSângeorzan, Dragomir D., Florin Păcurar, Albert Reif, Holger Weinacker, Evelyn Rușdea, Ioana Vaida, and Ioan Rotar. 2024. "Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing" Remote Sensing 16, no. 11: 2012. https://doi.org/10.3390/rs16112012
APA StyleSângeorzan, D. D., Păcurar, F., Reif, A., Weinacker, H., Rușdea, E., Vaida, I., & Rotar, I. (2024). Detection and Quantification of Arnica montana L. Inflorescences in Grassland Ecosystems Using Convolutional Neural Networks and Drone-Based Remote Sensing. Remote Sensing, 16(11), 2012. https://doi.org/10.3390/rs16112012