Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = Aristolochia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 884 KiB  
Article
Plant-Based Potential in Diabetes Management: In Vitro Antioxidant, Wound-Healing, and Enzyme Inhibitory Activities of Southern Algarve Species
by Isabel S. Carvalho, Cláudia Viegas, Marta Markiewicz, Agnieszka Galanty, Paweł Paśko, Lejsa Jakupović and Marijana Zovko Končić
Molecules 2025, 30(11), 2432; https://doi.org/10.3390/molecules30112432 - 1 Jun 2025
Viewed by 644
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by impaired glucose regulation. This study evaluated the antioxidant and antidiabetic potential of aqueous extracts from four plant species from the southern Algarve: Aristolochia baetica, Chelidonium majus, Dittrichia viscosa, [...] Read more.
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by impaired glucose regulation. This study evaluated the antioxidant and antidiabetic potential of aqueous extracts from four plant species from the southern Algarve: Aristolochia baetica, Chelidonium majus, Dittrichia viscosa, and Lavandula viridis, using non-cellular in vitro assays. HPLC/PDA was used to identify active compounds. Antioxidant activity was assessed by using TAA, FRAP, RP, and DPPH assays; antidiabetic potential through α-glucosidase and α-amylase inhibition; and wound healing relevance through elastase, collagenase, and lipoxygenase inhibition. D. viscosa showed the highest antioxidant activity (FRAP: 1132.99 ± 19.54 mg TE/g dw; DPPH IC50 = 25.85 ± 0.75 μg/mL) and total phenolic/flavonoid content, with a diverse profile including caffeic and chlorogenic acids, isoquercetin, and quercetin. It also exhibited potent α-glucosidase inhibition (IC50 = 0.61 ± 0.06 mg/mL), outperforming acarbose. L. viridis had the highest total phenolic content (39.04 mg/g), while A. baetica demonstrated the strongest anti-elastase, anti-collagenase, and lipoxygenase activity, suggesting wound-healing potential. C. majus showed the weakest effects. A strong correlation was observed between phenolic content and antioxidant/antidiabetic activity. These findings support further in vivo studies on D. viscosa and A. baetica for potential use in T2DM management and diabetic wound healing. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 4606 KiB  
Article
Genome-Wide Identification and Functional Analysis of the Norcoclaurine Synthase Gene Family in Aristolochia contorta
by Yayun Xu, Sixuan Zhang, Fanqi Meng, Wenjing Liang, Yunliang Peng, Butuo Zhu, Lili Niu, Chunling Wang, Caili Li and Shanfa Lu
Int. J. Mol. Sci. 2025, 26(9), 4314; https://doi.org/10.3390/ijms26094314 - 1 May 2025
Viewed by 459
Abstract
Aristolochia contorta Bunge has been widely used as traditional Chinese medicine materials. However, its utility faces a great challenge due to the presence of aristolochic acids (AAs), a class of benzylisoquinoline alkaloid (BIA) derivatives. The first step in BIA skeleton formation is catalysis [...] Read more.
Aristolochia contorta Bunge has been widely used as traditional Chinese medicine materials. However, its utility faces a great challenge due to the presence of aristolochic acids (AAs), a class of benzylisoquinoline alkaloid (BIA) derivatives. The first step in BIA skeleton formation is catalysis by norcoclaurine synthase (NCS). To gain knowledge of BIA and AA biosynthesis in A. contorta, genome-wide characterizations of NCS genes were carried out. This resulted in the identification of 15 A. contorta NCSs, namely, AcNCS1–AcNCS15. The AcNCS1–AcNCS8 proteins contained one catalytic domain, whereas the AcNCS9–AcNCS15 proteins had two. Phylogenetic analysis shows that AcNCS proteins can be classified into two clades. Gene expression analysis shows that five AcNCSs, including AcNCS2, AcNCS4, AcNCS5, AcNCS14, and AcNCS15, exhibited relatively high expression in roots and flowers, where norcoclaurine accumulated. An enzyme catalytic activity assay shows that all five of the AcNCSs can catalyze norcoclaurine formation with AcNCS14 and AcNCS15, exhibiting higher catalytic efficiency. Precolumn derivatization analysis shows that the formed norcoclaurine included (S)- and (R)-norcoclaurine, with more (S)-configuration. The results provide useful information for further understanding BIA and AA biosynthesis in A. contorta and for AA elimination and bioactive compound improvement in AA-containing medicinal materials. Full article
Show Figures

Figure 1

27 pages, 8439 KiB  
Article
Elucidation of the Active Agents in a West African Ground Herbal Medicine Formulation That Elicit Antimalarial Activities in In Vitro and In Vivo Models
by Solomon Owumi, John O. Olanlokun, Bocheng Wu, Abiola Marian Duro-Ladipo, Sophia E. Oyelere, Shabana I. Khan and Adegboyega K. Oyelere
Molecules 2024, 29(23), 5658; https://doi.org/10.3390/molecules29235658 - 29 Nov 2024
Viewed by 1775
Abstract
Agunmu (ground herbal medicine) is a form of West African traditional medicine consisting of a cocktail of herbs. The goal of this study is to evaluate a formulation of Agunmu made from M. indica, A. repens, E. chlorantha, A. boonei [...] Read more.
Agunmu (ground herbal medicine) is a form of West African traditional medicine consisting of a cocktail of herbs. The goal of this study is to evaluate a formulation of Agunmu made from M. indica, A. repens, E. chlorantha, A. boonei, and B. ferruginea, sold in the open market and commonly used for the treatment of malaria by the locals, for its antimalarial effects and to determine the active principles that may contribute to the antimalarial effect. The ethanolic extract obtained from this formulation (Ag-Iba) was analyzed, using TLC, LC-MS, and Tandem-MS techniques, to determine its phytochemical properties. The extract was tested in vitro against representative bacteria strains, cancer and normal human cell lines, and susceptible (D6) and resistant (W2) Plasmodium falciparum. In subsequent in vivo experiments, graded doses of the extract were used to treat mice infected with chloroquine-susceptible (NK-65) and chloroquine-resistant (ANKA) strains of Plasmodium berghei. Bacteria growth was monitored with a disc diffusion assay, cancer cell viability was determined with MTS assay, and percentage parasitemia and parasite clearance were determined by microscopy. Bound heme content, host mitochondria permeability transition (mPT) pore opening, F0F1-ATPase, and lipid peroxidation were determined via spectrophotometry. Indices of oxidative stress, anti-oxidant activities, toxicity, cell death, and inflammatory responses were obtained using biochemical and ELISA techniques. The histology of the liver and spleen was performed using the standard method. We elucidated the structures of the critical active principles in the extract to be flavonoids: kaempferol, quercetin, myricetin, and their glycosides with little or no detectable levels of the toxic Aristolochic acids that are found in Aristolochia repens, one of the components of the formulation. The extract also showed anti-plasmodial activity in in vitro and in vivo models. Furthermore, the extract dose-dependently decreased mitochondrial dysfunction, cell death, and inflammatory and oxidative damage but increased antioxidant potentials. Presumably, the active principles in the extract work as a combinatorial therapy to elicit potent antimalarial activity. Overall, our study unraveled the active components from a commercial herbal formulation that could be reformulated for antimalarial therapy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 5222 KiB  
Article
Diversity of Colletotrichum spp. on Aristolochia grandiflora: A Case Study in an Italian Botanical Garden
by Federico Brugneti, Silvia Turco, Luca Rossini, Diana Martignoni and Angelo Mazzaglia
Horticulturae 2024, 10(11), 1215; https://doi.org/10.3390/horticulturae10111215 - 17 Nov 2024
Cited by 1 | Viewed by 994
Abstract
During a survey conducted in autumn 2022 and spring 2023, extensive leaf spots were observed on Aristolochia grandiflora plants in the Botanical Garden “Angelo Rambelli” (Viterbo). To preserve the botanical garden collection and avoid disease spread, morphological and molecular identification of the causal [...] Read more.
During a survey conducted in autumn 2022 and spring 2023, extensive leaf spots were observed on Aristolochia grandiflora plants in the Botanical Garden “Angelo Rambelli” (Viterbo). To preserve the botanical garden collection and avoid disease spread, morphological and molecular identification of the causal agent were carried out. The results revealed three distinct Colletotrichum species belonging to the Colletotrichum boninense and Colletotrichum orchidearum species complexes, which have never been reported together within the same host and, for two of them, never in Italy. These findings may contribute to further extend the state of the art on leaf anthracnose, as well as provide new insights and molecular data for further phylogenetic studies. Full article
Show Figures

Figure 1

14 pages, 1058 KiB  
Article
Aristolochia clematitis L. Ethanolic Extracts: In Vitro Evaluation of Antioxidant Activity and Cytotoxicity on Caco-2 Cell Line
by Maria-Alexandra Pricop, Alexandra Teodora Lukinich-Gruia, Iustina-Mirabela Cristea, Virgil Păunescu and Călin Adrian Tatu
Plants 2024, 13(21), 2987; https://doi.org/10.3390/plants13212987 - 25 Oct 2024
Cited by 6 | Viewed by 1473
Abstract
Aristolochia sp. plants are used in traditional medicine because of their immunostimulatory and anticarcinogenic properties, despite their content of aristolochic acids (AAs), carcinogenic and nephrotoxic agents. Therefore, ethanolic extracts of Aristolochia clematitis leaves, a specie growing in Western Romania, were obtained to study [...] Read more.
Aristolochia sp. plants are used in traditional medicine because of their immunostimulatory and anticarcinogenic properties, despite their content of aristolochic acids (AAs), carcinogenic and nephrotoxic agents. Therefore, ethanolic extracts of Aristolochia clematitis leaves, a specie growing in Western Romania, were obtained to study antioxidant and cytotoxic effects. The antioxidant capacity of the extract was evaluated by five in vitro chemical-based assays, proving that ABTS assay was a better method for this type of evaluation showing an IC50 of 160.89 ± 0.21 µg/mL. Furthermore, the cytotoxic effects of the extract were established by an IC50 of 216 µg/mL for 24 h by MTT assay, followed by a cell-based assay on Caco-2 cells by the ABTS method. The antioxidant effects of the A. clematitis extract demonstrate potential therapeutic applications in complementary medicine. Full article
Show Figures

Figure 1

29 pages, 1862 KiB  
Review
Molecularly Imprinted Microspheres in Active Compound Separation from Natural Product
by Husna Muharram Ahadi, Firghi Muhammad Fardhan, Driyanti Rahayu, Rimadani Pratiwi and Aliya Nur Hasanah
Molecules 2024, 29(17), 4043; https://doi.org/10.3390/molecules29174043 - 26 Aug 2024
Cited by 1 | Viewed by 1703
Abstract
Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly [...] Read more.
Molecularly Imprinted Microspheres (MIMs) or Microsphere Molecularly Imprinted Polymers represent an innovative design for the selective extraction of active compounds from natural products, showcasing effectiveness and cost-efficiency. MIMs, crosslinked polymers with specific binding sites for template molecules, overcome irregularities observed in traditional Molecularly Imprinted Polymers (MIPs). Their adaptability to the shape and size of target molecules allows for the capture of compounds from complex mixtures. This review article delves into exploring the potential practical applications of MIMs, particularly in the extraction of active compounds from natural products. Additionally, it provides insights into the broader development of MIM technology for the purification of active compounds. The synthesis of MIMs encompasses various methods, including precipitation polymerization, suspension polymerization, Pickering emulsion polymerization, and Controlled/Living Radical Precipitation Polymerization. These methods enable the formation of MIPs with controlled particle sizes suitable for diverse analytical applications. Control over the template-to-monomer ratio, solvent type, reaction temperature, and polymerization time is crucial to ensure the successful synthesis of MIPs effective in isolating active compounds from natural products. MIMs have been utilized to isolate various active compounds from natural products, such as aristolochic acids from Aristolochia manshuriensis and flavonoids from Rhododendron species, among others. Based on the review, suspension polymerization deposition, which is one of the techniques used in creating MIPs, can be classified under the MIM method. This is due to its ability to produce polymers that are more homogeneous and exhibit better selectivity compared to traditional MIP techniques. Additionally, this method can achieve recovery rates ranging from 94.91% to 113.53% and purities between 86.3% and 122%. The suspension polymerization process is relatively straightforward, allowing for the effective control of viscosity and temperature. Moreover, it is cost-effective as it utilizes water as the solvent. Full article
Show Figures

Figure 1

13 pages, 2386 KiB  
Article
Pattern Matters in the Aposematic Colouration of Papilio polytes Butterflies
by Huile Lim, Ian Z. W. Chan and Antónia Monteiro
Insects 2024, 15(7), 465; https://doi.org/10.3390/insects15070465 - 22 Jun 2024
Viewed by 2114
Abstract
Many toxic animals display bright colour patterns to warn predators about their toxicity. This sometimes leads other sympatric palatable organisms to evolve mimetic colour patterns to also evade predation. These mimics, however, are often imperfect, and it is unclear how much their colour [...] Read more.
Many toxic animals display bright colour patterns to warn predators about their toxicity. This sometimes leads other sympatric palatable organisms to evolve mimetic colour patterns to also evade predation. These mimics, however, are often imperfect, and it is unclear how much their colour patterns can vary away from the model before they become ineffective. In this study, we investigated how predation risk of the palatable Common Mormon butterfly (Papilio polytes) is affected by two alterations of its wing pattern that make it progressively more distinct from its model, the Common Rose (Pachliopta aristolochiae). We deployed butterfly paper models in the field, where all models displayed the same colours but had different patterns. In the first modification from the Wildtype pattern, we exchanged the position of the red and white colour patches but kept the overall pattern constant. In the second modification, we created an eyespot-like shape from the pre-existing pattern elements by moving their positions in the wing, altering the overall wing pattern. Both modifications increased attack risk from predators relative to Wildtype patterns, with the eyespot-like modification having the highest predation risk. Our results show that avian predators can distinguish between all three patterns tested, and that pattern is important in aposematic signals. Predators learn to avoid aposematic colours, not in isolation, but as part of specific patterns. Full article
Show Figures

Figure 1

23 pages, 11029 KiB  
Article
Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta
by Wenjing Liang, Yayun Xu, Xinyun Cui, Caili Li and Shanfa Lu
Int. J. Mol. Sci. 2024, 25(11), 6043; https://doi.org/10.3390/ijms25116043 - 30 May 2024
Cited by 1 | Viewed by 1189
Abstract
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been [...] Read more.
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene–enzyme genes, NAT-STs, and NAT-miRNA-target gene–enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 6306 KiB  
Article
Primary Metabolic Response of Aristolochia contorta to Simulated Specialist Herbivory under Elevated CO2 Conditions
by Hyeon Jin Jeong, Bo Eun Nam, Se Jong Jeong, Gisuk Lee, Sang-Gyu Kim and Jae Geun Kim
Plants 2024, 13(11), 1456; https://doi.org/10.3390/plants13111456 - 24 May 2024
Cited by 1 | Viewed by 1113
Abstract
This study explores how elevated carbon dioxide (CO2) levels affects the growth and defense mechanisms of plants. We focused on Aristolochia contorta Bunge (Aristolochiaceae), a wild plant that exhibits growth reduction under elevated CO2 in the previous study. The plant [...] Read more.
This study explores how elevated carbon dioxide (CO2) levels affects the growth and defense mechanisms of plants. We focused on Aristolochia contorta Bunge (Aristolochiaceae), a wild plant that exhibits growth reduction under elevated CO2 in the previous study. The plant has Sericinus montela Gray (Papilionidae) as a specialist herbivore. By analyzing primary metabolites, understanding both the growth and defense response of plants to herbivory under elevated CO2 conditions is possible. The experiment was conducted across four groups, combining two CO2 concentration conditions (ambient CO2 and elevated CO2) with two herbivory conditions (herbivory treated and untreated). Although many plants exhibit increased growth under elevated CO2 levels, A. contorta exhibited reduced growth with lower height, dry weight, and total leaf area. Under herbivory, A. contorta triggered both localized and systemic responses. More primary metabolites exhibited significant differences due to herbivory treatment in systemic tissue than local leaves that herbivory was directly treated. Herbivory under elevated CO2 level triggered more significant responses in primary metabolites (17 metabolites) than herbivory under ambient CO2 conditions (five metabolites). Several defense-related metabolites exhibited higher concentrations in the roots and lower concentrations in the leaves in response to the herbivory treatment in the elevated CO2 group. This suggests a potential intensification of defensive responses in the underground parts of the plant under elevated CO2 levels. Our findings underscore the importance of considering both abiotic and biotic factors in understanding plant responses to environmental changes. The adaptive strategies of A. contorta suggest a complex response mechanism to elevated CO2 and herbivory pressures. Full article
(This article belongs to the Special Issue Plant Chemical Ecology)
Show Figures

Figure 1

17 pages, 4523 KiB  
Article
Two Novel Betarhabdovirins Infecting Ornamental Plants and the Peculiar Intracellular Behavior of the Cytorhabdovirus in the Liana Aristolochia gibertii
by Pedro Luis Ramos-González, Maria Amelia Vaz Alexandre, Matheus Potsclam-Barro, Lígia Maria Lembo Duarte, Gianluca L. Michea Gonzalez, Camila Chabi-Jesus, Alyne F. Ramos, Ricardo Harakava, Harri Lorenzi, Juliana Freitas-Astúa and Elliot Watanabe Kitajima
Viruses 2024, 16(3), 322; https://doi.org/10.3390/v16030322 - 21 Feb 2024
Cited by 1 | Viewed by 1851
Abstract
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3′-N-P-P3-M-G-L-5′ observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an [...] Read more.
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3′-N-P-P3-M-G-L-5′ observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

13 pages, 2520 KiB  
Article
Paradigm Shift in Gastric Cancer Prevention: Harnessing the Potential of Aristolochia olivieri Extract
by Matteo Micucci, Anna Stella Bartoletti, Fuad O. Abdullah, Sabrina Burattini, Ilaria Versari, Matteo Canale, Federico D’Agostino, Davide Roncarati, Diletta Piatti, Gianni Sagratini, Giovanni Caprioli, Michele Mari, Michele Retini, Irene Faenza, Michela Battistelli and Sara Salucci
Int. J. Mol. Sci. 2023, 24(21), 16003; https://doi.org/10.3390/ijms242116003 - 6 Nov 2023
Cited by 7 | Viewed by 2168
Abstract
Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities [...] Read more.
Gastric cancer, particularly adenocarcinoma, is a significant global health concern. Environmental risk factors, such as Helicobacter pylori infection and diet, play a role in its development. This study aimed to characterize the chemical composition and evaluate the in vitro antibacterial and antitumor activities of an Aristolochia olivieri Colleg. ex Boiss. Leaves’ methanolic extract (AOME). Additionally, morphological changes in gastric cancer cell lines were analyzed. AOME was analyzed using HPLC-MS/MS, and its antibacterial activity against H. pylori was assessed using the broth microdilution method. MIC and MBC values were determined, and positive and negative controls were included in the evaluation. Anticancer effects were assessed through in vitro experiments using AGS, KATO-III, and SNU-1 cancer cell lines. The morphological changes were examined through SEM and TEM analyses. AOME contained several compounds, including caffeic acid, rutin, and hyperoside. The extract displayed significant antimicrobial effects against H. pylori, with consistent MIC and MBC values of 3.70 ± 0.09 mg/mL. AOME reduced cell viability in all gastric cancer cells in a dose- and time-dependent manner. Morphological analyses revealed significant ultrastructural changes in all tumor cell lines, suggesting the occurrence of cellular apoptosis. This study demonstrated that AOME possesses antimicrobial activity against H. pylori and potent antineoplastic properties in gastric cancer cell lines. AOME holds promise as a natural resource for innovative nutraceutical approaches in gastric cancer management. Further research and in vivo studies are warranted to validate its potential clinical applications. Full article
(This article belongs to the Special Issue Helicobacter: Infection, Diagnosis and Treatment 2.0)
Show Figures

Figure 1

15 pages, 5184 KiB  
Article
Biosynthesis of Functional Silver Nanoparticles Using Callus and Hairy Root Cultures of Aristolochia manshuriensis
by Yulia A. Yugay, Maria R. Sorokina, Valeria P. Grigorchuk, Tatiana V. Rusapetova, Vladimir E. Silant’ev, Anna E. Egorova, Peter A. Adedibu, Olesya D. Kudinova, Elena A. Vasyutkina, Vladimir V. Ivanov, Alexander A. Karabtsov, Dmitriy V. Mashtalyar, Anton I. Degtyarenko, Olga V. Grishchenko, Vadim V. Kumeiko, Victor P. Bulgakov and Yury N. Shkryl
J. Funct. Biomater. 2023, 14(9), 451; https://doi.org/10.3390/jfb14090451 - 1 Sep 2023
Cited by 9 | Viewed by 2758
Abstract
This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were [...] Read more.
This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of A. manshuriensis extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC50 of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs’ treatment-induced cytotoxicity in fibroblast cells, yielding IC50 values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including Agrobacterium rhizogenes, A. tumefaciens, Bacillus subtilis, and Escherichia coli. These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders. Full article
(This article belongs to the Special Issue Nanoparticles: Fabrication, Properties and Biomedical Application)
Show Figures

Figure 1

14 pages, 3071 KiB  
Article
Different Ecological Niches of Poisonous Aristolochia clematitis in Central and Marginal Distribution Ranges—Another Contribution to a Better Understanding of Balkan Endemic Nephropathy
by Ivan Brzić, Magdalena Brener, Andraž Čarni, Renata Ćušterevska, Borna Čulig, Tetiana Dziuba, Valentin Golub, Irina Irimia, Bojan Jelaković, Ali Kavgacı, Mirjana Krstivojević Ćuk, Daniel Krstonošić, Vladimir Stupar, Zlatko Trobonjača and Željko Škvorc
Plants 2023, 12(17), 3022; https://doi.org/10.3390/plants12173022 - 22 Aug 2023
Cited by 1 | Viewed by 1868
Abstract
Aristolochia clematitis L. is a perennial herbaceous plant distributed throughout Europe, Asia Minor and Caucasus. It has been used as a medicinal plant since antiquity but not in recent times because it contains poisonous aristolochic acid, causing progressive kidney failure. The aim of [...] Read more.
Aristolochia clematitis L. is a perennial herbaceous plant distributed throughout Europe, Asia Minor and Caucasus. It has been used as a medicinal plant since antiquity but not in recent times because it contains poisonous aristolochic acid, causing progressive kidney failure. The aim of this work was to study Aristolochia clematitis ecology on the basis of vegetation plots from the European Vegetation Archive, and to investigate the differentiation of its ecological niche using a co-occurrence-based measure of ecological specialization (ESI). The ecological niche was studied on three spatial scales: on the entire distribution area, its differentiation across 200 × 200 km grid cells and the differences between three central and three marginal regions. Our results suggest that Aristolochia clematitis has a very broad ecological niche occurring in a range of different habitats and climatic conditions, with a trend of a niche width decrease with the distance from the geographical center. The plant prefers more stable communities with less anthropogenic influence moving towards the margin of the distribution area. Specialization towards the marginal area is a result of evolutionary history, which refers to the recent anthropogenically induced spread from its original home range. A high incidence of Aristolochia clematitis in the vegetation of arable lands and market gardens as well as anthropogenic herbaceous vegetation in the distribution center corresponds to the geographical incidence of Balkan Endemic Nephropathy. Full article
(This article belongs to the Special Issue New Insights into Ethnobotany and Ethnoecology)
Show Figures

Figure 1

13 pages, 3616 KiB  
Article
Cytotoxicity of Nine Medicinal Plants from San Basilio de Palenque (Colombia) on HepG2 Cells
by Karina Caballero-Gallardo, Neda Alvarez-Ortega and Jesus Olivero-Verbel
Plants 2023, 12(14), 2686; https://doi.org/10.3390/plants12142686 - 19 Jul 2023
Viewed by 2140
Abstract
The utilization of plants with medicinal properties is deeply rooted in the traditional knowledge of diverse human populations. This study aims to investigate the cytotoxicity of nine plants commonly used by communities in San Basilio de Palenque, Bolivar (Colombia), for managing inflammation-related illnesses. [...] Read more.
The utilization of plants with medicinal properties is deeply rooted in the traditional knowledge of diverse human populations. This study aims to investigate the cytotoxicity of nine plants commonly used by communities in San Basilio de Palenque, Bolivar (Colombia), for managing inflammation-related illnesses. Hydroethanolic extracts from various plant parts such as roots, stems, barks, or leaves were prepared through a process involving drying, powdering, and maceration in an ethanol–water (7:3) solution. The extracts were subsequently freeze-dried and dissolved in DMSO for the bioassays. Cytotoxicity against the human hepatoma HepG2 cell line was assessed using the MTT assay, with extract concentrations ranging from 0 to 500 µg/mL and treatment durations of 24 and 48 h. The total phenolic content of the nine extracts varied from 96.7 to 167.6 mg GAE/g DT. Among them, eight hydroethanolic extracts from Jatropha gossypiifolia L., Piper peltatum L., Malachra alceifolia, Verbesina turbacensis, Ricinus communis, Desmodium incanum, and Dolichandra unguis-cati showed low toxicity (IC50 > 500 µg/mL, 24 h) against HepG2 cells. On the other hand, the extracts of Aristolochia odoratissima L. (IC50 = 95.7 µg/mL) and Picramnia latifolia (IC50 = 128.9 µg/mL) demonstrated the highest cytotoxicity against the HepG2 cell line, displaying a modest selectivity index when compared to the HEKn cell line after 48 h of treatment. These findings suggest that medicinal plants from San Basilio de Palenque, particularly Picramnia latifolia and Aristolochia odoratissima, have potential activity against cancer cells, highlighting their potential for further research and development. Full article
Show Figures

Figure 1

24 pages, 46546 KiB  
Article
Biomimetics in Botanical Gardens—Educational Trails and Guided Tours
by Olga Speck and Thomas Speck
Biomimetics 2023, 8(3), 303; https://doi.org/10.3390/biomimetics8030303 - 11 Jul 2023
Cited by 4 | Viewed by 3627
Abstract
The first botanical gardens in Europe were established for the study of medicinal, poisonous, and herbal plants by students of medicine or pharmacy at universities. As the natural sciences became increasingly important in the 19th Century, botanical gardens additionally took on the role [...] Read more.
The first botanical gardens in Europe were established for the study of medicinal, poisonous, and herbal plants by students of medicine or pharmacy at universities. As the natural sciences became increasingly important in the 19th Century, botanical gardens additionally took on the role of public educational institutions. Since then, learning from living nature with the aim of developing technical applications, namely biomimetics, has played a special role in botanical gardens. Sir Joseph Paxton designed rainwater drainage channels in the roof of the Crystal Palace for the London World’s Fair in 1881, having been inspired by the South American giant water lily (Victoria amazonica). The development of the Lotus-Effect® at the Botanical Garden Bonn was inspired by the self-cleaning leaf surfaces of the sacred lotus (Nelumbo nucifera). At the Botanic Garden Freiburg, a self-sealing foam coating for pneumatic systems was developed based on the self-sealing of the liana stems of the genus Aristolochia. Currently, botanical gardens are both research institutions and places of lifelong learning. Numerous botanical gardens provide biomimetics trails with information panels at each station for self-study and guided biomimetics tours with simple experiments to demonstrate the functional principles transferred from the biological model to the technical application. We present eight information panels suitable for setting up education about biomimetics and simple experiments to support guided garden tours about biomimetics. Full article
Show Figures

Graphical abstract

Back to TopTop