Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = Alpinia galanga

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2682 KiB  
Article
A Natural Inhibitor, 1′S-1′-Acetoxychavicol Acetate, Against Testosterone-Induced Alopecia via NADPH Oxidase Regulation
by Kkotnara Park, Isoo Youn, Jung Min Suh, Min Hye Choi, Da-Woon Bae, Soo-Bong Park, Mi Hee Kwack, Sun-Shin Cha, Dae Sik Jang, Young Kwan Sung, Yun Soo Bae and Eun Kyoung Seo
Molecules 2025, 30(10), 2246; https://doi.org/10.3390/molecules30102246 - 21 May 2025
Viewed by 714
Abstract
Androgenetic alopecia is associated with testosterone-mediated anagen-to-catagen transition and matrix keratinocyte apoptosis in hair follicle cells. Activation of Nox isozymes is involved in testosterone-mediated keratinocyte apoptosis, leading to androgenetic alopecia. This indicates that Nox isozymes can serve as therapeutic targets for androgenetic alopecia. [...] Read more.
Androgenetic alopecia is associated with testosterone-mediated anagen-to-catagen transition and matrix keratinocyte apoptosis in hair follicle cells. Activation of Nox isozymes is involved in testosterone-mediated keratinocyte apoptosis, leading to androgenetic alopecia. This indicates that Nox isozymes can serve as therapeutic targets for androgenetic alopecia. The isolated compounds from natural products were screened to evaluate their ROS-inhibition efficacy and it was found that 1′S-1′-acetoxychavicol acetate (ACA, 26), a natural compound isolated from Alpinia galanga (L.) Willd. (Zingiberaceae), exhibits inhibitory activity on Nox isozymes. Nox inhibition by ACA suppressed testosterone-dependent H2O2 generation and cell death in keratinocytes. Incubation with ACA in human hair follicle organ culture mitigated testosterone-dependent suppression of hair growth. We validated that ACA regulates androgenetic alopecia in a mouse model. Local application of ACA on the dorsal skin in an androgenetic alopecia model of C57BL/6 mice significantly suppressed testosterone-induced hair loss in a dose-dependent manner. Moreover, hair follicle length in ACA-treated mice was enhanced compared to that in control mice. These findings provide a molecular mechanism in which ACA inhibits Nox activity in hair follicle cells, indicating its potential as an effective treatment of AGA. Full article
Show Figures

Figure 1

13 pages, 1758 KiB  
Article
The Effect of Water-Soluble Alpinia Galanga Extract on Sleep and the Activation of the GABAAergic/Serotonergic Pathway in Mice
by Kazim Sahin, Ahmet Kayhan Korkusuz, Emre Sahin, Cemal Orhan, Besir Er, Abhijeet Morde, Muralidhara Padigaru and Ertugrul Kilic
Pharmaceuticals 2024, 17(12), 1649; https://doi.org/10.3390/ph17121649 - 8 Dec 2024
Cited by 1 | Viewed by 2448
Abstract
Background/Objectives: With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep [...] Read more.
Background/Objectives: With increasing interest in plant-based compounds that can enhance sleep quality without the side effects of caffeine, Alpinia galanga (AG) has emerged as a promising herbal supplement for improving mental alertness. This study assessed the impact of water-soluble AG extract on sleep quality; the activity of GABAergic, glutamatergic, and serotonergic receptors; and concentrations of dopamine and serotonin in the brains of mice. Methods: The study employed two experimental models using BALB/c mice to examine the impact of pentobarbital-induced sleep and caffeine-induced insomnia. In the first model, a set of 20 mice was assigned to four groups to assess the effects of pentobarbital (42 mg/kg) or pentobarbital with AG extract on sleep induction, with observations made 45 min post-administration. In the second model, 20 mice were divided into four groups to evaluate the impact of caffeine (25 mg/kg) alone or caffeine with varying doses of AG extract (61.25 or 205.50 mg/kg administered orally) on brain activity along with additional analyses on receptor proteins and neurotransmitters. Results: A higher dose of AG extract (205.50 mg/kg) significantly increased total deep sleep duration compared to the caffeine group (p < 0.0001). Furthermore, this dose extended sleep latency and suppressed GABAergic and glutamatergic receptor activity compared to the lower AG dose (p < 0.05). Additionally, the 205.50 mg/kg dose elevated serotonin and dopamine levels compared to caffeine (p < 0.0001), suggesting improved sleep quality alongside enhanced wakefulness. Conclusions: Our data indicate that a higher dose of AG extract improved sleep latency and duration by regulating GABAergic and glutamatergic receptors through the GABAergic/serotonergic pathway in mice. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neurodegeneration Disorders)
Show Figures

Figure 1

21 pages, 6154 KiB  
Article
In Vitro Cytotoxicity and Antimicrobial Activity against Acne-Causing Bacteria and Phytochemical Analysis of Galangal (Alpinia galanga) and Bitter Ginger (Zingiber zerumbet) Extracts
by Tanat Na Nongkhai, Sarah E. Maddocks, Santi Phosri, Sarita Sangthong, Punyawatt Pintathong, Phanuphong Chaiwut, Kasemsiri Chandarajoti, Lutfun Nahar, Satyajit D. Sarker and Tinnakorn Theansungnoen
Int. J. Mol. Sci. 2024, 25(20), 10869; https://doi.org/10.3390/ijms252010869 - 10 Oct 2024
Viewed by 3725
Abstract
Galangal (Alpinia galanga (L.) Willd) and bitter ginger (Zingiber zerumbet (L.) Roscoe) are aromatic rhizomatous plants that are typically used for culinary purposes. These rhizomatous plants have many biological properties and the potential to be beneficial for pharmaceutics. In this study, [...] Read more.
Galangal (Alpinia galanga (L.) Willd) and bitter ginger (Zingiber zerumbet (L.) Roscoe) are aromatic rhizomatous plants that are typically used for culinary purposes. These rhizomatous plants have many biological properties and the potential to be beneficial for pharmaceutics. In this study, we evaluated the antioxidant and antimicrobial activities, with a specific focus on acne-causing bacteria, as well as the phytochemical constituents, of different parts of galangal and bitter ginger. The rhizomes, stems, and leaves of galangal and bitter ginger were separately dried for absolute ethanol and methanol extractions. The extracts were used to evaluate the antioxidant activity using a DPPH radical scavenging assay (0.005–5000 μg/mL), antimicrobial activity against acne-causing bacteria (0.50–31.68 mg/mL), and in vitro cytotoxicity toward human keratinocytes and fibroblasts (62.5–1000 μg/mL), as well as analyses of bioactive phytochemicals via GC-MS and LC-MS/MS (500 ppm). The ethanol and methanol extracts of bitter ginger and galangal’s rhizomes (BRhE, BRhM, GRhE, and GRhM), stems (BStE, BStM, GRhE, and GRhM), and leaves (BLeE, BLeM, GLeE, and GLeM), respectively, showed antioxidant and antimicrobial activities. The extracts of all parts of bitter ginger and galangal were greatly antioxidative with 0.06–1.42 mg/mL for the IC50 values, while most of the extracts were strongly antimicrobial against C. acnes DMST 14916, particularly BRhM, BRhE, GRhM, and GRhE (MICs: 3.96–7.92 mg/mL). These rhizome extracts had also antimicrobial activities against S. aureus TISTR 746 (MICs: 7.92–31.68 mg/mL) and S. epidermidis TISTR 518 (MICs: 7.92–15.84 mg/mL). The extracts of bitter ginger and galangal rhizomes were not toxic to HaCaT and MRC-5 even at the highest concentrations. Through GC-MS and LC-MS/MS analysis, phytochemicals in bitter ginger rhizome extracts, including zerumbone, tectorigenin, piperic acid, demethoxycurcumin, and cirsimaritin, and galangal rhizome extracts, including sweroside and neobavaisoflavone, were expected to provide the antioxidant and anti-microbial activities. Therefore, the results suggest that the bitter ginger and galangal extracts could be natural anti-acne compounds with potential for pharmaceutic, cosmetic, and aesthetic applications. Full article
(This article belongs to the Special Issue Natural Compounds: Advances in Antimicrobial Activity)
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Chemical Compositions and Fumigation Effects of Essential Oils Derived from Cardamom, Elettaria cardamomum (L.) Maton, and Galangal, Alpinia galanga (L.) Willd, against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
by Ruchuon Wanna, Parinda Khaengkhan and Hakan Bozdoğan
Plants 2024, 13(13), 1845; https://doi.org/10.3390/plants13131845 - 4 Jul 2024
Cited by 1 | Viewed by 1636
Abstract
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were [...] Read more.
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were analyzed using GC-MS, and their fumigation effects were tested in a vapor-phase bioassay. The experiment followed a factorial design with four types of essential oils, namely, those manually extracted from cardamom leaves (MCL) and galangal leaves (MGL) and those commercially produced from cardamom seeds (CCS) and galangal rhizomes (CGR), at seven concentrations (0, 50, 100, 150, 200, 250, and 300 µL/L air). The manually extracted oils yielded 0.6% from cardamom leaves and 0.25% from galangal leaves. MCL contained 28 components, with eucalyptol (25.2%) being the most abundant, while CCS had 34 components, primarily α-terpinyl acetate (46.1%) and eucalyptol (31.2%). MGL included 25 components, mainly caryophyllene (28.7%) and aciphyllene (18.3%), whereas CGR comprised 27 components, with methyl cis-cinnamate (47.3%) and safrole (19.8%) as the major constituents. The fumigation bioassay results revealed that CGR was the most effective, demonstrating the highest mortality rates of T. castaneum across all the tested periods and concentrations, achieving up to 96% mortality at 168 h with a concentration of 300 µL/L air. Statistical analyses showed significant differences in mortality based on the type and concentration of essential oil, particularly after 96 h. These findings highlight the potential of CGR, with its advantages and differences in chemical composition, as an effective biopesticide against T. castaneum, with increasing efficacy over time and at higher concentrations. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

18 pages, 3557 KiB  
Article
Rod-Shaped Starch from Galanga: Physicochemical Properties, Fine Structure and In Vitro Digestibility
by Shanshan Li, Rui He, Jiaqi Liu, Ying Chen, Tao Yang and Kun Pan
Foods 2024, 13(11), 1784; https://doi.org/10.3390/foods13111784 - 6 Jun 2024
Cited by 2 | Viewed by 1622
Abstract
This work investigated the physicochemical properties, structural characteristics, and digestive properties of two non-conventional starches extracted from Galanga: Alpinia officinarum Hance starch (AOS) and Alpinia galanga Willd starch (AGS). The extraction rates of the two starches were 22.10 wt% and 15.73 wt%, which [...] Read more.
This work investigated the physicochemical properties, structural characteristics, and digestive properties of two non-conventional starches extracted from Galanga: Alpinia officinarum Hance starch (AOS) and Alpinia galanga Willd starch (AGS). The extraction rates of the two starches were 22.10 wt% and 15.73 wt%, which is lower than widely studied ginger (Zingiber officinale, ZOS). But they contained similar amounts of basic constituents. AOS and AGS showed a smooth, elongated shape, while ZOS was an oval sheet shape. AOS and ZOS were C-type starches, and AGS was an A-type starch. AOS showed the highest crystallinity (35.26 ± 1.02%) among the three starches, possessed a higher content of amylose (24.14 ± 0.73%) and a longer amylose average chain length (1419.38 ± 31.28) than AGS. AGS starch exhibits the highest viscosity at all stages, while AOS starch shows the lowest pasting temperature, and ZOS starch, due to its high amylose content, displays lower peak and trough viscosities. Significant differences were also found in the physicochemical properties of the three starches, including the swelling power, solubility, thermal properties, and rheological properties of the three starches. The total content of resistant starch (RS) and slowly digestible starch (SDS) in AOS (81.05%), AGS (81.46%), and ZOS (82.58%) are considered desirable. These findings proved to be valuable references for further research and utilization of ginger family starch. Full article
(This article belongs to the Special Issue Starch Chemistry and Function)
Show Figures

Graphical abstract

14 pages, 2521 KiB  
Article
Molecular Docking Simulation of Phenolics towards Tyrosinase, Phenolic Content, and Radical Scavenging Activity of Some Zingiberaceae Plant Extracts
by Mutakin, Nyi Mekar Saptarini, Riezki Amalia, Sri Adi Sumiwi, Sandra Megantara, Febrina Amelia Saputri and Jutti Levita
Cosmetics 2023, 10(6), 149; https://doi.org/10.3390/cosmetics10060149 - 31 Oct 2023
Cited by 9 | Viewed by 3256
Abstract
In Indonesia, plants have been indigenously used to treat various diseases and as cosmetics. It is always challenging to explore the molecular interactions of phenolic compounds towards the levels of constituents that contribute to the biological activities of plants. This study aimed to [...] Read more.
In Indonesia, plants have been indigenously used to treat various diseases and as cosmetics. It is always challenging to explore the molecular interactions of phenolic compounds towards the levels of constituents that contribute to the biological activities of plants. This study aimed to select a plant of the Zingiberaceae family with the highest phenolics and flavonoids, the strongest radical scavenging activity, and the best interaction towards tyrosinase in terms of docking score and binding mode. Initially, the total phenolics and radical scavenging capacity of Zingiberaceae plants, namely, Hedychium coronarium, Curcuma zedoaria, Curcuma heyneana, and Alpinia galanga, were determined using the Folin–Ciocâlteu method and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The main phytoconstituents of plants with the highest phenolic levels were docked to the binding site of tyrosinase. Three anti-melanogenesis agents commonly used in cosmetics, namely, arbutin, hydroquinone, and kojic acid, were used as the standard. Our study revealed that all the tested plants contain polyphenolic compounds in the range of 17.92 (C. zedoaria rhizome extract) to 252.36 (A. galanga rhizome extract) mg GAE/g and have radical scavenging capacity, with IC50 values in the range of 66.67 (A. galanga rhizome extract) to 320.0 (C. heyneana rhizome extract) μg/mL. A molecular docking simulation demonstrated that four constituents, i.e., kaempferol, galangin, ethyl p-methoxycinnamate, and 6-gingerol, could occupy the binding site of tyrosinase with prominent affinity and interact with essential residues of the enzyme. This study confirms that Alpinia galanga possesses the potential to be further developed as a cosmetic with a radical scavenging and tyrosinase inhibitory activity. However, it may be interesting to carry out further studies of how the plant extract affects the melanogenesis signaling pathway. Full article
Show Figures

Figure 1

10 pages, 2416 KiB  
Communication
(1′S)-1′-Acetoxyeugenol Acetate Enhances Glucose-Stimulated Insulin Secretion
by Dahae Lee, So-Ri Son, Yutong Qi, Ki Sung Kang and Dae Sik Jang
Plants 2023, 12(3), 579; https://doi.org/10.3390/plants12030579 - 28 Jan 2023
Cited by 2 | Viewed by 2249
Abstract
Alpinia galanga have been widely used as spice or traditional medicine in East Asia, commonly known as Thai ginger. In the present study, seven major phenylpropanoids, (±)-1′-hydoxychavicol acetate (1; HCA), (1′S)-1′-acetoxychavicol acetate (2; ACA), (1′S [...] Read more.
Alpinia galanga have been widely used as spice or traditional medicine in East Asia, commonly known as Thai ginger. In the present study, seven major phenylpropanoids, (±)-1′-hydoxychavicol acetate (1; HCA), (1′S)-1′-acetoxychavicol acetate (2; ACA), (1′S)-1′-acetoxyeugenol acetate (3; AEA), eugenyl acetate (4), trans-p-coumaraldehyde (5), trans-p-acetoxycinnamyl alcohol (6), and trans-p-coumaryl diacetate (7), were isolated from the 95% EtOH and hot water extracts of the rhizomes of A. galanga by chromatographic method. Phenylpropanoids 17 were evaluated for glucose-stimulated insulin secretion (GSIS) effect and α-glucosidase inhibitory activity. Phenylpropanoids 14 increase GSIS effect without cytotoxicity in rat INS-1 pancreatic β-cells. In addition, INS-1 cells were treated with AEA (3) to determine a plausible mechanism of β-cell function and insulin secretion through determining the activation of insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and pancreatic and duodenal homeobox-1 (PDX-1). Upon treatment with AEA (3), INS-1 cells showed an increase in these protein expressions. Meanwhile, AEA (3) exhibited α-glucosidase inhibitory activity. On the basis of the above findings, we suggest AEA (3) as a potential antidiabetic agent. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Stability Study of Alpinia galanga Constituents and Investigation of Their Membrane Permeability by ChemGPS-NP and the Parallel Artificial Membrane Permeability Assay
by Alexandra Simon, Kim Szofi Nghiem, Nóra Gampe, Zsófia Garádi, Imre Boldizsár, Anders Backlund, András Darcsi, Andrea Nagyné Nedves and Eszter Riethmüller
Pharmaceutics 2022, 14(9), 1967; https://doi.org/10.3390/pharmaceutics14091967 - 18 Sep 2022
Cited by 8 | Viewed by 3746
Abstract
Alpinia galanga Willd., greater galangal, has been used for thousands of years as a spice as well as in traditional medicine. Its central nervous system (CNS) stimulant activity and neuroprotective effects have been proved both in animal models and human trials. However, the [...] Read more.
Alpinia galanga Willd., greater galangal, has been used for thousands of years as a spice as well as in traditional medicine. Its central nervous system (CNS) stimulant activity and neuroprotective effects have been proved both in animal models and human trials. However, the compounds responsible for these effects have not been identified yet. Therefore, the main constituents (p-OH-benzaldehyde (1), trans-p-coumaryl-alcohol (2), p-coumaryl-aldehyde (4), galanganol A (5), galanganol B (6), trans-p-acetoxycinnamyl alcohol (7), 1′S-1′-acetoxychavicol acetate (ACA, 9), and 1′S-1′-acetoxyeugenol acetate (AEA, 10)) were isolated to investigate their aqueous stability and passive diffusion across the gastro-intestinal tract (GIT) membrane and the blood–brain barrier (BBB) by the parallel artificial membrane permeability assay (PAMPA). Our positive results for compounds 1, 2, 4, 7, 9, and 10 suggest good permeability, thus potential contribution to the effects of greater galangal in the CNS. The results of the PAMPA-BBB were corroborated by in silico chemography-based ChemGPS-NP framework experiments. In addition, examination of the chemical space position of galangal compounds in relation to known psychostimulants revealed that all the molecules in proximity are NET/SERT inhibitors. As ACA and AEA did not show much proximity to either compound, the importance of further investigation of their degradation products becomes more pronounced. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of Plant Extracts)
Show Figures

Graphical abstract

15 pages, 1608 KiB  
Article
Antioxidant, Antibacterial, Enzyme Inhibitory, and Anticancer Activities and Chemical Composition of Alpinia galanga Flower Essential Oil
by Yufeng Tian, Xiaoyan Jia, Qinqin Wang, Tingya Lu, Guodong Deng, Minyi Tian and Ying Zhou
Pharmaceuticals 2022, 15(9), 1069; https://doi.org/10.3390/ph15091069 - 27 Aug 2022
Cited by 23 | Viewed by 3896
Abstract
Alpinia galanga is widely cultivated for its essential oil (EO), which has been used in cosmetics and perfumes. Previous studies of A. galanga focussed mostly on the rhizome but seldom on the flower. Therefore, this study was designed to identify the chemical composition [...] Read more.
Alpinia galanga is widely cultivated for its essential oil (EO), which has been used in cosmetics and perfumes. Previous studies of A. galanga focussed mostly on the rhizome but seldom on the flower. Therefore, this study was designed to identify the chemical composition of A. galanga flower EO and firstly estimate its antioxidant, antibacterial, enzyme inhibitory, and anticancer activities. According to the results of the gas chromatography with flame ionization or mass selective detection (GC-FID/MS) analysis, the most abundant component of the EO was farnesene (64.3%), followed by farnesyl acetate (3.6%), aceteugenol (3.2%), eugenol (3.1%), E-nerolidol (2.9%), decyl acetate (2.4%), octyl acetate (2.0%), sesquirosefuran (1.9%), (E)-β-farnesene (1.7%), and germacrene D (1.5%). For the bioactivities, the EO exhibited moderate DPPH and ABTS radical scavenging effects with IC50 values of 138.62 ± 3.07 μg/mL and 40.48 ± 0.49 μg/mL, respectively. Moreover, the EO showed strong-to-moderate antibacterial activities with various diameter of inhibition zone (DIZ) (8.79–14.32 mm), minimal inhibitory concentration (MIC) (3.13–6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25–12.50 mg/mL) values against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris. Interestingly, the EO possessed remarkable α-glucosidase inhibition (IC50 = 0.16 ± 0.03 mg/mL), which was equivalent to that of the positive control acarbose (IC50 = 0.15 ± 0.01 mg/mL) (p > 0.05). It showed moderate tyrosinase inhibition (IC50 = 0.62 ± 0.09 mg/mL) and weak inhibitory activity on acetylcholinesterase (AChE) (IC50 = 2.49 ± 0.24 mg/mL) and butyrylcholinesterase (BChE) (IC50 = 10.14 ± 0.59 mg/mL). Furthermore, the EO exhibited considerable selective cytotoxicity to K562 cells (IC50 = 41.55 ± 2.28 μg/mL) and lower cytotoxicity to non-cancerous L929 cells (IC50 = 120.54 ± 8.37 μg/mL), and it induced K562 cell apoptosis in a dose-dependent manner. Hence, A. galanga flower EO could be regarded as a bioactive natural product with great application potential in the pharmaceutical field. Full article
Show Figures

Figure 1

18 pages, 946 KiB  
Review
Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses
by Raphael N. Alolga, Feizuo Wang, Xinyao Zhang, Jia Li, Lam-Son Phan Tran and Xiaojian Yin
Antioxidants 2022, 11(7), 1281; https://doi.org/10.3390/antiox11071281 - 28 Jun 2022
Cited by 42 | Viewed by 6944
Abstract
The Zingiberaceae family is a rich source of diverse bioactive phytochemicals. It comprises about 52 genera and 1300 species of aromatic flowering perennial herbs with characteristic creeping horizontal or tuberous rhizomes. Notable members of this family include ginger (Zingiber officinale Roscoe), turmeric [...] Read more.
The Zingiberaceae family is a rich source of diverse bioactive phytochemicals. It comprises about 52 genera and 1300 species of aromatic flowering perennial herbs with characteristic creeping horizontal or tuberous rhizomes. Notable members of this family include ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), Javanese ginger (Curcuma zanthorrhiza Roxb.), and Thai ginger (Alpinia galanga L.). This review focuses on two main classes of bioactive compounds: the gingerols (and their derivatives) and the curcuminoids. These compounds are known for their antioxidant activity against several maladies. We highlight the centrality of their antioxidant activities with notable biological activities, including anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, antimicrobial, and anticancer effects. We also outline various strategies that have been applied to enhance these activities and make suggestions for research areas that require attention. Full article
Show Figures

Graphical abstract

13 pages, 3758 KiB  
Article
Enhancement of Cholinesterase Inhibition of Alpinia galanga (L.) Willd. Essential Oil by Microemulsions
by Wantida Chaiyana, Suwannee Sriyab and Siriporn Okonogi
Molecules 2022, 27(10), 3275; https://doi.org/10.3390/molecules27103275 - 19 May 2022
Cited by 2 | Viewed by 2489
Abstract
This study aimed to investigate the chemical composition and reveal the selective inhibitory activity of Alpinia galanga (L.) Willd. essential oil (AGO) on acetylcholinesterase (AChE) compared to butyrylcholinesterase (BChE). The chemical composition of AGO was investigated by means of gas chromatography–mass spectrometry. Ellman’s [...] Read more.
This study aimed to investigate the chemical composition and reveal the selective inhibitory activity of Alpinia galanga (L.) Willd. essential oil (AGO) on acetylcholinesterase (AChE) compared to butyrylcholinesterase (BChE). The chemical composition of AGO was investigated by means of gas chromatography–mass spectrometry. Ellman’s method was used to determine the inhibitory activities against AChE and BChE. Microemulsion systems with desirable anticholinesterase effects were developed. Methyl cinnamate and 1,8-cineole were reported as the major component of AGO. The IC50 values of A. galanga oil against AChE and BChE were 24.6 ± 9.6 and 825.4 ± 340.1 µg/mL, respectively. The superior selectivity of AGO on AChE (34.8 ± 8.9) compared to galantamine hydrobromide (6.4 ± 1.5) suggested AGO to be an effective ingredient with fewer side effects for Alzheimer’s treatment. Interestingly, the microemulsion of AGO possessed significantly higher anticholinesterase activity than that of native oil alone. Therefore, microemulsion of AGO is a promising alternative approach for the treatment of Alzheimer’s disease. Full article
Show Figures

Figure 1

15 pages, 3377 KiB  
Article
The Binding of Alpinia galanga Oil and Its Nanoemulsion to Mammal GABAA Receptors Using Rat Cortical Membranes and an In Silico Modeling Platform
by Nattakanwadee Khumpirapang, Krit Suknuntha, Pathomwat Wongrattanakamon, Supat Jiranusornkul, Songyot Anuchapreeda, Petrine Wellendorph, Anette Müllertz, Thomas Rades and Siriporn Okonogi
Pharmaceutics 2022, 14(3), 650; https://doi.org/10.3390/pharmaceutics14030650 - 16 Mar 2022
Cited by 5 | Viewed by 2624
Abstract
The anesthetic effect of Alpinia galanga oil (AGO) has been reported. However, knowledge of its pathway in mammals is limited. In the present study, the binding of AGO and its key compounds, methyl eugenol, 1,8-cineole, and 4-allylphenyl acetate, to gamma-aminobutyric acid type A [...] Read more.
The anesthetic effect of Alpinia galanga oil (AGO) has been reported. However, knowledge of its pathway in mammals is limited. In the present study, the binding of AGO and its key compounds, methyl eugenol, 1,8-cineole, and 4-allylphenyl acetate, to gamma-aminobutyric acid type A (GABAA) receptors in rat cortical membranes, was investigated using a [3H]muscimol binding assay and an in silico modeling platform. The results showed that only AGO and methyl eugenol displayed a positive modulation at the highest concentrations, whereas 1,8-cineole and 4-allylphenyl acetate were inactive. The result of AGO correlated well to the amount of methyl eugenol in AGO. Computational docking and dynamics simulations into the GABAA receptor complex model (PDB: 6X3T) showed the stable structure of the GABAA receptor–methyl eugenol complex with the lowest binding energy of −22.16 kcal/mol. This result shows that the anesthetic activity of AGO and methyl eugenol in mammals is associated with GABAA receptor modulation. An oil-in-water nanoemulsion containing 20% w/w AGO (NE-AGO) was formulated. NE-AGO showed a significant increase in specific [3H]muscimol binding, to 179% of the control, with an EC50 of 391 µg/mL. Intracellular studies show that normal human cells are highly tolerant to AGO and the nanoemulsion, indicating that NE-AGO may be useful for human anesthesia. Full article
(This article belongs to the Special Issue Nanoformulation of Drug Delivery Systems for Natural Products)
Show Figures

Graphical abstract

14 pages, 4351 KiB  
Article
1′-Acetoxyeugenol Acetate Isolated from Thai Ginger Induces Apoptosis in Human Ovarian Cancer Cells by ROS Production via NADPH Oxidase
by Ju-Yeon Choi, Na-Kyung Lee, Yi-Yue Wang, Joon-Pyo Hong, So Ri Son, Da-Hye Gu, Dae Sik Jang and Jung-Hye Choi
Antioxidants 2022, 11(2), 293; https://doi.org/10.3390/antiox11020293 - 31 Jan 2022
Cited by 7 | Viewed by 3869
Abstract
The rhizomes of Alpinia galanga (Thai ginger) have been used extensively as a spice in Southeast Asian and Arabian cuisines and reported to possess a wide range of biological properties, such as antioxidant, antimicrobial, and antibacterial. However, the specific molecular and cellular mechanisms [...] Read more.
The rhizomes of Alpinia galanga (Thai ginger) have been used extensively as a spice in Southeast Asian and Arabian cuisines and reported to possess a wide range of biological properties, such as antioxidant, antimicrobial, and antibacterial. However, the specific molecular and cellular mechanisms underlying the anti-tumor effects induced by Thai ginger and its corresponding active compounds have been poorly characterized. We found that upon EtOH extraction, Thai ginger extract exhibits cytotoxic activity (IC50 < 10 μg/mL) and triggers cell death via caspase-dependent apoptosis in human ovarian cancer cells. Among the three major compounds isolated from the extract, 1′-acetoxyeugenol acetate (AEA) exhibited potent cytotoxic activity in human ovarian cancer cells, SKOV3 and A2780. AEA induced apoptotic cell death through the activation of caspases-3 and -9. Notably, AEA enhanced the intracellular levels of reactive oxygen species (ROS), and the application of an antioxidant markedly reversed AEA-induced apoptosis of ovarian cancer cells. The knockdown of p47phox, a subunit of NADPH oxidase, suppressed both the pro-apoptotic and ROS-inducing effects of AEA. Additionally, the activation of the mitogen-activated protein kinase (MAPK) pathway by AEA through ROS regulation was found to be involved in AEA-induced apoptosis. Altogether, these results suggest that AEA exhibits potent apoptosis-inducing activity through the activation of the intrinsic pathway via ROS-mediated MAPK signaling in human ovarian cancer cells. Full article
Show Figures

Figure 1

12 pages, 2243 KiB  
Article
Alternative Approach for Specific Tyrosinase Inhibitor Screening: Uncompetitive Inhibition of Tyrosinase by Moringa oleifera
by Farah J. Hashim, Sukanda Vichitphan, Jaehong Han and Kanit Vichitphan
Molecules 2021, 26(15), 4576; https://doi.org/10.3390/molecules26154576 - 29 Jul 2021
Cited by 15 | Viewed by 4000
Abstract
Tyrosinase (TYR) is a type III copper oxidase present in fungi, plants and animals. The inhibitor of human TYR plays a vital role in pharmaceutical and cosmetic fields by preventing synthesis of melanin in the skin. To search for an effective TYR inhibitor [...] Read more.
Tyrosinase (TYR) is a type III copper oxidase present in fungi, plants and animals. The inhibitor of human TYR plays a vital role in pharmaceutical and cosmetic fields by preventing synthesis of melanin in the skin. To search for an effective TYR inhibitor from various plant extracts, a kinetic study of TYR inhibition was performed with mushroom TYR. Among Panax ginseng, Alpinia galanga, Vitis vinifera and Moringa oleifera, the extracts of V. vinifera seed, A. galanga rhizome and M. oleifera leaf reversibly inhibited TYR diphenolase activity with IC50 values of 94.8 ± 0.2 µg/mL, 105.4 ± 0.2 µg/mL and 121.3 ± 0.4 µg/mL, respectively. Under the same conditions, the IC50 values of the representative TYR inhibitors of ascorbic acid and kojic acid were found at 235.7 ± 1.0 and 192.3 ± 0.4 µg/mL, respectively. An inhibition kinetics study demonstrated mixed-type inhibition of TYR diphenolase by A. galanga and V. vinifera, whereas a rare uncompetitive inhibition pattern was found from M. oleifera with an inhibition constant of Kii 73 µg/mL. Phytochemical investigation by HPLC-MS proposed luteolin as a specific TYR diphenolase ES complex inhibitor, which was confirmed by the inhibition kinetics of luteolin. The results clearly showed that studying TYR inhibition kinetics with plant extract mixtures can be utilized for the screening of specific TYR inhibitors. Full article
(This article belongs to the Special Issue The Antioxidant Capacities of Natural Products 2021)
Show Figures

Figure 1

14 pages, 1223 KiB  
Article
Neuroprotective Assessment of Moringa oleifera Leaves Extract against Oxidative-Stress-Induced Cytotoxicity in SHSY5Y Neuroblastoma Cells
by Farah J. Hashim, Sukanda Vichitphan, Patcharee Boonsiri and Kanit Vichitphan
Plants 2021, 10(5), 889; https://doi.org/10.3390/plants10050889 - 28 Apr 2021
Cited by 33 | Viewed by 6079
Abstract
The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and [...] Read more.
The current trend worldwide is searching plant extracts towards prevention of neurodegenerative disorders. This study aimed to investigate the neuroprotective effect of Alpinia galanga leaves (ALE), Alpinia galanga rhizomes (ARE), Vitis vinifera seeds (VSE), Moringa oleifera leaves (MLE), Panax ginseng leaves (PLE) and Panax ginseng rhizomes (PRE) ethanolic extracts on human neuroblastoma (SHSY5Y) cells. The 1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging of VSE and MLE were 81% and 58%, respectively. Ferric-reducing antioxidant power (FRAP) of ALE and MLE (33.57 ± 0.20 and 26.76 ± 0.30 μmol Fe(ΙΙ)/g dry wt., respectively) were higher than for the other extracts. Liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) revealed MLE active compounds. Intracellular study by nitro-blue tetrazolium (NBT) test showed that MLE and VSE had high O2 scavenging (0.83 ± 0.09 vs. 0.98 ± 0.08 mg/mL, respectively). MLE had the highest ROS scavenging followed by PRE (0.71 ± 0.08 vs. 0.83 ± 0.08 mg/mL, respectively), by 2,7-dichlorodihydrofluorescein diacetate (DCFHDA) assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity and neuroprotection tests on SHSY5Y showed that PRE had a better neuroprotective effect but higher cytotoxicity compared to MLE (viable cells 51% vs. 44%, IC50 1.92 ± 0.04 vs. 2.7 ± 0.2 mg/mL, respectively). In conclusion, among the studied plants, MLE has potential for developing as a neuroprotective agent. Full article
(This article belongs to the Special Issue Phenolic Composition and Antioxidant Activity of Plant Extracts)
Show Figures

Figure 1

Back to TopTop