Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,440)

Search Parameters:
Keywords = Active Transport

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2893 KB  
Article
Residual Dynamics of Fluopyram and Its Compound Formulations in Pinus massoniana and Their Efficacy in Preventing Pine Wilt Disease
by Wanjun Zhang, Anshun Ni, Jiao Zhang, Guohong Sun, Fan Xiang, Hao Cheng, Tingting Chen and Jianren Ye
Plants 2026, 15(2), 302; https://doi.org/10.3390/plants15020302 (registering DOI) - 20 Jan 2026
Abstract
Injecting chemical agents into tree trunks is a key method for preventing pine wilt disease (PWD). However, the long-term use of conventional trunk injection agents such as emamectin benzoate (EB) and avermectin (AVM) may lead to nematode resistance. Therefore, it is crucial to [...] Read more.
Injecting chemical agents into tree trunks is a key method for preventing pine wilt disease (PWD). However, the long-term use of conventional trunk injection agents such as emamectin benzoate (EB) and avermectin (AVM) may lead to nematode resistance. Therefore, it is crucial to evaluate the potential of new-generation nematicides, including fluopyram (FLU) and its compound formulations, as alternatives to EB and AVM in PWD prevention. In this study, four trunk injection agents, i.e., 5% FLU microemulsion (ME), 2% AVM + 6% FLU ME, 5% EB ME, and 5% AVM emulsifiable concentrate (EC), were injected into Pinus massoniana trunks, and their residual dynamics over time and preventive effects on PWD were compared. Results showed that all agents were transported to various parts of the trees within 90 days post-injection, with FLU showing significantly stronger translocation compared with EB and AVM. At 660 days post-injection, the active ingredient levels of 5% FLU ME in apical branches remained significantly higher than those of the other three agents at both tested doses (30 and 60 mL). Artificial inoculation with 10,000 Bursaphelenchus xylophilus nematodes per tree at 90 days post-injection showed that trees injected with 5% FLU ME and 2% AVM + 6% FLU ME had nearly 100% disease prevention rates at both doses, outperforming 5% EB ME and 5% AVM EC. A second nematode inoculation at 480 days post-injection showed that 2% AVM + 6% FLU ME showed 50% efficacy, outperforming 5% EB ME (25% efficacy). These findings offer a foundation for developing alternative trunk injection strategies for future PWD management in China. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 4356 KB  
Article
Loading-Controlled Photoactivity in TiO2@BiVO4 Heterostructures
by Małgorzata Knapik, Wojciech Zając, Agnieszka Wojteczko and Anita Trenczek-Zając
Molecules 2026, 31(2), 353; https://doi.org/10.3390/molecules31020353 (registering DOI) - 19 Jan 2026
Abstract
In this study, we have investigated heterostructural TiO2/BiVO4 anodes to determine the effect of the amount and form of BiVO4 nanoparticles on TiO2 on the response of photoanodes under UV and visible illumination. BiVO4 nanopowders were prepared [...] Read more.
In this study, we have investigated heterostructural TiO2/BiVO4 anodes to determine the effect of the amount and form of BiVO4 nanoparticles on TiO2 on the response of photoanodes under UV and visible illumination. BiVO4 nanopowders were prepared and annealed at temperatures ranging from 200 to 500 °C. Structural and optical characterization indicates that as the annealing temperature is increased, a phase transition from a weakly ordered to a dominant monoclinic BiVO4 phase is observed, which is accompanied by an increase in visible light absorption. Subsequently, the most crystalline powder was utilized to deposit BiVO4 on nanostructured TiO2 either as a compact overlayer (drop-casting) or as a progressively grown nanoparticle (TiO2@S series) in the successive ionic layer adsorption and reaction process (SILAR). Photoelectrochemical measurements were performed, revealing a morphology-dependent photocurrent response under UV and visible illumination. A further increase in the number of cycles systematically increases the photocurrent in the visible light range while limiting the response to UV radiation. The TiO2@d photoanode demonstrates the highest relative activity within the visible range; however, it also generates the lowest absolute photocurrent, indicating the presence of significant transport and recombination losses within the thick BiVO4 layer. The results demonstrate that the presence of BiVO4 nanoparticles on TiO2 exerts a substantial influence on the separation of charge between semiconductors and the synergistic utilization of photons from the UV and visible ranges. This research yielded a proposed scheme of mutual band arrangement and charge carrier transfer mechanism in TiO2@BiVO4 heterostructures. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

33 pages, 5661 KB  
Article
Daytime Sea Fog Detection in the South China Sea Based on Machine Learning and Physical Mechanism Using Fengyun-4B Meteorological Satellite
by Jie Zheng, Gang Wang, Wenping He, Qiang Yu, Zijing Liu, Huijiao Lin, Shuwen Li and Bin Wen
Remote Sens. 2026, 18(2), 336; https://doi.org/10.3390/rs18020336 (registering DOI) - 19 Jan 2026
Abstract
Sea fog is a major meteorological hazard that severely disrupts maritime transportation and economic activities in the South China Sea. As China’s next-generation geostationary meteorological satellite, Fengyun-4B (FY-4B) supplies continuous observations that are well suited for sea fog monitoring, yet a satellite-specific recognition [...] Read more.
Sea fog is a major meteorological hazard that severely disrupts maritime transportation and economic activities in the South China Sea. As China’s next-generation geostationary meteorological satellite, Fengyun-4B (FY-4B) supplies continuous observations that are well suited for sea fog monitoring, yet a satellite-specific recognition method has been lacking. A key obstacle is the radiometric inconsistency between the Advanced Geostationary Radiation Imager (AGRI) sensors on FY-4A and FY-4B, compounded by the cessation of Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observations, which prevents direct transfer of fog labels. To address these challenges and fill this research gap, we propose a machine learning framework that integrates cross-satellite radiometric recalibration and physical mechanism constraints for robust daytime sea fog detection. First, we innovatively apply a radiation recalibration transfer technique based on the radiative transfer model to normalize FY-4A/B radiances and, together with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud/fog classification products and ERA5 reanalysis, construct a highly consistent joint training set of FY-4A/B for the winter-spring seasons since 2019. Secondly, to enhance the model’s physical performance, we incorporate key physical parameters related to the sea fog formation process (such as temperature inversion, near-surface humidity, and wind field characteristics) as physical constraints, and combine them with multispectral channel sensitivity and the brightness temperature (BT) standard deviation that characterizes texture smoothness, resulting in an optimized 13-dimensional feature matrix. Using this, we optimize the sea fog recognition model parameters of decision tree (DT), random forest (RF), and support vector machine (SVM) with grid search and particle swarm optimization (PSO) algorithms. The validation results show that the RF model outperforms others with the highest overall classification accuracy (0.91) and probability of detection (POD, 0.81) that surpasses prior FY-4A-based work for the South China Sea (POD 0.71–0.76). More importantly, this study demonstrates that the proposed FY-4B framework provides reliable technical support for operational, continuous sea fog monitoring over the South China Sea. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
45 pages, 2158 KB  
Review
Targeting Cancer Stem Cells with Phytochemicals: Molecular Mechanisms and Therapeutic Potential
by Ashok Kumar Sah, Joy Das, Abdulkhakov Ikhtiyor Umarovich, Shagun Agarwal, Pranav Kumar Prabhakar, Ankur Vashishtha, Rabab H. Eilshaikh, Ranjay Kumar Choudhary and Ayman Hussein Alfeel
Biomedicines 2026, 14(1), 215; https://doi.org/10.3390/biomedicines14010215 (registering DOI) - 19 Jan 2026
Abstract
Cancer stem cells (CSCs) represent a small but highly resilient tumor subpopulation responsible for sustained growth, metastasis, therapeutic resistance, and recurrence. Their survival is supported by aberrant activation of developmental and inflammatory pathways, including Wnt/β-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, STAT3, and NF-κB, as well [...] Read more.
Cancer stem cells (CSCs) represent a small but highly resilient tumor subpopulation responsible for sustained growth, metastasis, therapeutic resistance, and recurrence. Their survival is supported by aberrant activation of developmental and inflammatory pathways, including Wnt/β-catenin, Notch, Hedgehog, PI3K/Akt/mTOR, STAT3, and NF-κB, as well as epithelial–mesenchymal transition (EMT) programs and niche-driven cues. Increasing evidence shows that phytochemicals, naturally occurring bioactive compounds from medicinal plants, can disrupt these networks through multi-targeted mechanisms. This review synthesizes current findings on prominent phytochemicals such as curcumin, sulforaphane, resveratrol, EGCG, genistein, quercetin, parthenolide, berberine, and withaferin A. Collectively, these compounds suppress CSC self-renewal, reduce sphere-forming capacity, diminish ALDH+ and CD44+/CD24 fractions, reverse EMT features, and interfere with key transcriptional regulators that maintain stemness. Many phytochemicals also sensitize CSCs to chemotherapeutic agents by downregulating drug-efflux transporters (e.g., ABCB1, ABCG2) and lowering survival thresholds, resulting in enhanced apoptosis and reduced tumor-initiating potential. This review further highlights the translational challenges associated with poor solubility, rapid metabolism, and limited bioavailability of free phytochemicals. Emerging nanotechnology-based delivery systems, including polymeric nanoparticles, lipid carriers, hybrid nanocapsules, and ligand-targeted formulations, show promise in improving stability, tumor accumulation, and CSC-specific targeting. These nanoformulations consistently enhance intracellular uptake and amplify anti-CSC effects in preclinical models. Overall, the consolidated evidence supports phytochemicals as potent modulators of CSC biology and underscores the need for optimized delivery strategies and evidence-based combination regimens to achieve meaningful clinical benefit. Full article
(This article belongs to the Section Cancer Biology and Oncology)
24 pages, 2009 KB  
Article
Effects of Dietary Paramylon on Nutrient Digestion and Absorption and Intestinal Health of Weaned Piglets
by Tianjiao Wu, Zhiming Zhang, Zheng Luo, Fangbao Shu, Qi Han, Jie Yin and Peng Bin
Animals 2026, 16(2), 304; https://doi.org/10.3390/ani16020304 - 19 Jan 2026
Abstract
Weaning stress frequently compromises intestinal integrity and nutrient absorption in piglets and induces structural perturbations in the gut microbiota. This study investigated the effects of dietary Paramylon, a linear β-1,3-glucan from Euglena gracilis, on growth and intestinal function. A total of 32 [...] Read more.
Weaning stress frequently compromises intestinal integrity and nutrient absorption in piglets and induces structural perturbations in the gut microbiota. This study investigated the effects of dietary Paramylon, a linear β-1,3-glucan from Euglena gracilis, on growth and intestinal function. A total of 32 healthy, 21-day-old weaned piglets (male, castrated, Duroc × Landrace × Yorkshire) were randomly allocated to four groups: control, 0.025%, 0.05%, and 0.1% Paramylon (8 pigs/group). The results showed that 0.05% dietary Paramylon quadratically increased average daily gain and feed intake (p < 0.05). Serum TC content significantly increased, while the serum urea level significantly decreased (p < 0.05). This optimal dose was used for mechanistic exploration. Dietary 0.05% Paramylon notably enhanced ileal morphology, increasing the villus height to crypt depth ratio (p < 0.01) and significantly improving apparent nutrient digestibility and ileal β-amylase activity (p < 0.05). The expression levels of SLC7A1 and GLUT2 in ileum tissues were significantly upregulated (p < 0.05). The expression level of SLC7A7 in the liver was also increased (p < 0.05). This nutrient transport-promoting effect was further confirmed in IPEC-J2 cells, which manifested because 10 ng/mL of pure Paramylon significantly upregulated the gene expressions of SLC38A2, EAAT3, PEPT1, and GLUT2 (p < 0.05). KEGG enrichment analysis on the ileum indicated that differentially abundant metabolites were enriched in amino acid-related metabolic pathways. Furthermore, the 16s sequencing results revealed that Romboutsia was significantly enriched in the Paramylon group. In conclusion, Paramylon, as an effective dietary supplement, helps promote nutrient digestion and absorption in weaned piglets and contributes to maintaining intestinal health. Full article
29 pages, 5399 KB  
Review
A Review on Modified Montmorillonite-Based Catalysts for Biofuel and Recycled Carbon Fuel Production
by Ouahiba Madjeda Mecelti, Denys Grekov and Sary Awad
Molecules 2026, 31(2), 339; https://doi.org/10.3390/molecules31020339 - 19 Jan 2026
Abstract
The maritime transport sector’s reliance on fossil-based fuels remains a major contributor to global greenhouse gas emissions, underscoring the urgent need for sustainable alternatives such as marine biofuels. Thermochemical pyrolysis of biomass and plastic waste represents a promising route for producing renewable and [...] Read more.
The maritime transport sector’s reliance on fossil-based fuels remains a major contributor to global greenhouse gas emissions, underscoring the urgent need for sustainable alternatives such as marine biofuels. Thermochemical pyrolysis of biomass and plastic waste represents a promising route for producing renewable and recycled marine fuel feedstocks. This review provides an integrated analysis of the full production and upgrading chain, encompassing pyrolysis of lignocellulosic biomass and polymer-derived resources, catalytic upgrading, and qualitative evaluation of product distribution and yield trends. Particular emphasis is placed on montmorillonite-based catalysts as naturally abundant, low-cost, and environmentally benign alternatives to conventional zeolites. The review systematically examines the influence of key montmorillonite modification strategies, including acid activation, pillaring, and ion-exchanged, on acidity, textural properties, and catalytic performance in catalytic cracking and hydrodeoxygenation processes. The analysis shows that catalyst modification strongly governs the yield, selectivity, and reproducibility of biofuels. By adopting this integrated perspective, the review extends beyond existing works focused on isolated upgrading steps or zeolitic catalysts. Key research gaps are identified, particularly regarding long-term catalyst stability, deep deoxygenation of real bio-oils, and compliance with marine fuel standards. Full article
(This article belongs to the Collection Recycling of Biomass Resources: Biofuels and Biochemicals)
Show Figures

Figure 1

22 pages, 2600 KB  
Article
Risk Identification and Chaotic Synchronization Control for Spent Fuel Road Transportation Based on Complex Network Evolution Models
by Wen Chen, Shuliang Zou, Changjun Qiu and Meiyan Gan
Appl. Sci. 2026, 16(2), 994; https://doi.org/10.3390/app16020994 (registering DOI) - 19 Jan 2026
Abstract
To improve the safety of road transportation of Spent Nuclear Fuel (SNF), this paper proposes a novel approach for risk identification and chaotic synchronous control in SNF road transportation systems. Firstly, a dynamic risk evolution model for the road transportation of SNF is [...] Read more.
To improve the safety of road transportation of Spent Nuclear Fuel (SNF), this paper proposes a novel approach for risk identification and chaotic synchronous control in SNF road transportation systems. Firstly, a dynamic risk evolution model for the road transportation of SNF is developed by analyzing the nonlinear interactions among vehicles, environmental conditions, and human factors using complex network analysis and nonlinear dynamics. Secondly, an enhanced K-shell decomposition method is applied to identify key risk nodes and assess the relative importance of different risk factors, providing a basis for targeted risk control. Finally, a chaotic synchronization control strategy based on Lyapunov stability is proposed to suppress risk divergence and restore system stability. Three targeted control schemes are evaluated by varying the control gain coefficients across the ‘Vehicle–Environment–Human’ dimensions. Simulation results indicate that the strategy prioritizing environmental and human risk control yields the fastest convergence, significantly outperforming vehicle-centric approaches. The results show that prioritizing both environmental and human-factor control is most effective for suppressing chaotic divergence. This provides a solid quantitative basis for the strategic shift from passive defense to active environmental warning, thereby significantly optimizing the dynamic risk management of the SNF transportation system. Full article
Show Figures

Figure 1

16 pages, 586 KB  
Article
Mathematical Modeling of Biological Rehabilitation of the Taganrog Bay Considering Its Salinization
by Alexander Sukhinov and Yulia Belova
Water 2026, 18(2), 255; https://doi.org/10.3390/w18020255 - 18 Jan 2026
Abstract
Taganrog Bay is part of the Azov Sea, which has significant environmental value. However, in recent years, anthropogenic activity and climate change have increasingly impacted this coastal system. These factors have led to increased sea salinity. These factors also contribute to abundant blooms [...] Read more.
Taganrog Bay is part of the Azov Sea, which has significant environmental value. However, in recent years, anthropogenic activity and climate change have increasingly impacted this coastal system. These factors have led to increased sea salinity. These factors also contribute to abundant blooms of potentially toxic cyanobacteria. One additional method for preventing the abundant growth of cyanobacteria may be the introduction of green algae into the bay. The aim of this study was to conduct a computational experiment on the biological rehabilitation of Taganrog Bay using mathematical modeling methods. For this purpose, the authors developed and analyzed a mathematical model of phytoplankton populations. A software model was developed based on modern mathematical modeling methods. The input data for the software module included grid points for advective transport velocities, salinity, and temperature, as well as phytoplankton population and nutrient concentrations. The software module outputs three-dimensional distributions of green algae and cyanobacteria concentrations. A computational experiment on biological rehabilitation of the Taganrog Bay by introducing a suspension of green algae was conducted. Green algae and cyanobacteria concentrations were obtained over 15 and 30-day time intervals. The concentration and volume of introduced suspension were empirically determined to prevent harmful cyanobacteria growth without leading to eutrophication of the bay by green algae. Full article
(This article belongs to the Section Ecohydrology)
19 pages, 6939 KB  
Article
Identification of OCT Family Genes in Tomato (Solanum lycopersicum) and Function of SlOCT20 Under Cold Stress
by Rui Lv, Fulei Mo, Yuxin Liu, Huixin Zhang, Mingfang Feng, Peiwen Wang, Mozhen Cheng, Shusen Liu, Zhao Liu, Xiuling Chen and Aoxue Wang
Biology 2026, 15(2), 176; https://doi.org/10.3390/biology15020176 - 18 Jan 2026
Abstract
Plant organic cation transporters (OCTs) are involved in a variety of beneficial biological processes, such as cadaverine transfer in plants and soil, and play an active role in the formation of plant stress resistance. In this study, 52 OCT family genes were identified [...] Read more.
Plant organic cation transporters (OCTs) are involved in a variety of beneficial biological processes, such as cadaverine transfer in plants and soil, and play an active role in the formation of plant stress resistance. In this study, 52 OCT family genes were identified in tomato, and comprehensive bioinformatics analyses of these numbers, such as promoter cis-acting elements, gene mapping and collinearity, protein characterization and phylogenetic analysis. By analyzing the expression of tomato OCT family genes under cold and salt stresses using transcriptome data and qRT-PCR experiments, a key gene regulating cold stress tolerance, SlOCT20, was identified. Subcellular localization experiments indicated that SlOCT20 was mainly localized in the cell membrane. When the SlOCT20 gene was silenced in tomato, the tolerance to cold stress was significantly reduced and oxidative stress was aggravated, indicating that this gene positively regulates the tolerance to cold stress in tomato. Full article
Show Figures

Graphical abstract

40 pages, 1078 KB  
Review
Therapeutic Potential of Bovine Colostrum- and Milk-Derived Exosomes in Cancer Prevention and Treatment: Mechanisms, Evidence, and Future Perspectives
by Yusuf Serhat Karakülah, Yalçın Mert Yalçıntaş, Mikhael Bechelany and Sercan Karav
Pharmaceuticals 2026, 19(1), 168; https://doi.org/10.3390/ph19010168 - 17 Jan 2026
Viewed by 81
Abstract
Due to their therapeutic potential and effects on cells, exosomes derived from bovine colostrum (BCE) and milk (BME) are molecules that have been at the center of recent studies. Their properties include the ability to cross biological barriers, their natural biocompatibility, and their [...] Read more.
Due to their therapeutic potential and effects on cells, exosomes derived from bovine colostrum (BCE) and milk (BME) are molecules that have been at the center of recent studies. Their properties include the ability to cross biological barriers, their natural biocompatibility, and their structure, which enable them to act as stable nanocarriers. Exosomes derived from milk and colostrum stand out in cancer prevention and treatment due to these properties. BMEs can be enriched with bioactive peptides, lipids, and nucleic acids. The targeted drug delivery capacity of BMEs can be made more efficient through these enrichment processes. For example, BME enriched with an iRGD peptide and developed using hypoxia-sensitive lipids selectively transported drugs and reduced the survival rate of triple-negative breast cancer (TNBC) cells. ARV-825-CME formulations increased antitumor activity in some cancer types. The anticancer effects of exosomes are supported by these examples. In addition to their anticancer activities, exosomes also exhibit effects that maintain immune balance. BME and BCE can regulate inflammatory responses with their miRNA and protein loads. These effects of BMEs have been demonstrated in studies on colon, breast, liver, and lung cancers. The findings support the safety and scalability of these effects. However, significant challenges remain in terms of their large-scale isolation, load heterogeneity, and regulatory standardization. Consequently, BMEs represent a new generation of biogenic nanoplatforms at the intersection of nutrition, immunology, and oncology, paving the way for innovative therapeutic approaches. Full article
17 pages, 2856 KB  
Article
Valley-Dependent Topological Interface States in Biased Armchair Nanoribbons of Gapless Single-Layer Graphene for Transport Applications
by Zheng-Han Huang, Jing-Yuan Lai and Yu-Shu Wu
Materials 2026, 19(2), 380; https://doi.org/10.3390/ma19020380 - 17 Jan 2026
Viewed by 52
Abstract
Valley-dependent topological physics offers a promising avenue for designing nanoscale devices based on gapless single-layer graphene. To demonstrate this potential, we investigate an electrical bias-controlled topological discontinuity in valley polarization within a two-segment armchair nanoribbon of gapless single-layer graphene. This discontinuity is created [...] Read more.
Valley-dependent topological physics offers a promising avenue for designing nanoscale devices based on gapless single-layer graphene. To demonstrate this potential, we investigate an electrical bias-controlled topological discontinuity in valley polarization within a two-segment armchair nanoribbon of gapless single-layer graphene. This discontinuity is created at the interface by applying opposite in-plane, transverse electrical biases to the two segments. An efficient tight-binding theoretical formulation is developed to calculate electron states in the structure. In a reference configuration, we obtain energy eigenvalues and probability distributions that feature interface-confined electron eigenstates induced by the topological discontinuity. Moreover, to elucidate the implications of interface confinement for electron transport, a modified configuration is introduced to transform the eigenstates into transport-active, quasi-localized ones. We show that such states result in Fano “anti-resonances” in transmission spectra. The resilience of these quasi-localized states and their associated Fano fingerprints is examined with respect to fluctuations. Finally, a proof-of-concept band-stop electron energy filter is presented, highlighting the potential of this confinement mechanism and, more broadly, valley-dependent topological physics in designing nanoscale devices in gapless single-layer graphene. Full article
Show Figures

Figure 1

23 pages, 2620 KB  
Article
Secretome Profiling of Lactiplantibacillus plantarum CRL681 Predicts Potential Molecular Mechanisms Involved in the Antimicrobial Activity Against Escherichia coli O157:H7
by Ayelen Antonella Baillo, Leonardo Albarracín, Eliana Heredia Ojeda, Mariano Elean, Weichen Gong, Haruki Kitazawa, Julio Villena and Silvina Fadda
Antibiotics 2026, 15(1), 96; https://doi.org/10.3390/antibiotics15010096 (registering DOI) - 17 Jan 2026
Viewed by 172
Abstract
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface [...] Read more.
Background/Objectives. Lactiplantibacillus plantarum CRL681 has previously demonstrated a strong antagonistic effect against Escherichia coli O157:H7 in food matrices; however, the molecular mechanisms underlying this activity remain poorly understood. Since initial interactions between beneficial bacteria and pathogens occur mainly at the cell surface and in the extracellular environment, the characterization of the bacterial secretome is essential for elucidating these mechanisms. In this study, the secretome of L. plantarum CRL681 was comprehensively characterized using an integrated in silico and in vitro approach. Methods. The exoproteome and surfaceome were analyzed by LC-MS/MS under pure culture conditions and during co-culture with E. coli O157:H7. Identified proteins were functionally annotated, classified according to subcellular localization and secretion pathways, and evaluated through protein–protein interaction network analysis. Results. A total of 275 proteins were proposed as components of the CRL681 secretome, including proteins involved in cell surface remodeling, metabolism and nutrient transport, stress response, adhesion, and genetic information processing. Co-culture with EHEC induced significant changes in the expression of proteins associated with energy metabolism, transport systems, and redox homeostasis, indicating a metabolic and physiological adaptation of L. plantarum CRL681 under competitive conditions. Notably, several peptidoglycan hydrolases, ribosomal proteins with reported antimicrobial activity, and moonlighting proteins related to adhesion were identified. Conclusions. Overall, these findings suggest that the antagonistic activity of L. plantarum CRL681 against E. coli O157:H7 would be mediated by synergistic mechanisms involving metabolic adaptation, stress resistance, surface adhesion, and the production of non-bacteriocin antimicrobial proteins, supporting its potential application as a bioprotective and functional probiotic strain. Full article
Show Figures

Figure 1

21 pages, 5218 KB  
Article
Groundwater Pollution Transport in Plain-Type Landfills: Numerical Simulation of Coupled Impacts of Precipitation and Pumping
by Tengchao Li, Shengyan Zhang, Xiaoming Mao, Yuqin He, Ninghao Wang, Daoyuan Zheng, Henghua Gong and Tianye Wang
Hydrology 2026, 13(1), 36; https://doi.org/10.3390/hydrology13010036 - 17 Jan 2026
Viewed by 35
Abstract
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become [...] Read more.
Landfills serve as a primary disposal method for municipal solid waste in China, with over 20,000 operational sites nationwide; however, long-term operations risk leachate leakage and groundwater contamination. Amid intensifying climate change and human activities, understanding contaminant evolution mechanisms in landfills has become critically urgent. Focusing on a representative plain-based landfill in North China, this study integrated field investigations and groundwater monitoring to establish a monthly coupled groundwater flow–solute transport model (using MODFLOW and MT3DMS codes) based on site-specific hydrogeological boundaries and multi-year monitoring data, analyzing spatiotemporal plume evolution under the coupled impacts of precipitation variability (climate change) and intensive groundwater extraction (human activities), spanning the historical period (2021–2024) and future projections (2025–2040). Historical simulations demonstrated robust model performance with satisfactory calibration against observed water levels and chloride concentrations, revealing that the current contamination plume exhibits a distinct distribution beneath the site. Future projections indicate nonlinear concentration increases: in the plume core zone, concentrations rise with precipitation, whereas at the advancing front, concentrations escalate with extraction intensity. Spatially, high-risk zones (>200 mg/L) emerge earlier under wetter conditions—under the baseline scenario (S0), such zones form by 2033 and exceed site boundaries by 2037. Plume expansion scales positively with extraction intensity, reaching its maximum advancement and coverage under the high-extraction scenario. These findings demonstrate dual drivers—precipitation accelerates contaminant accumulation through enhanced leaching, while groundwater extraction promotes plume expansion via heightened hydraulic gradients. This work elucidates coupled climate–human activity impacts on landfill contamination mechanisms, proposing a transferable numerical modeling framework that provides a quantitative scientific basis for post-closure supervision, risk assessment, and regional groundwater protection strategies, thereby aligning with China’s Standard for Pollution Control on the Landfill Site of Municipal Solid Waste and the Zero-Waste City initiative. Full article
25 pages, 2024 KB  
Article
Nitrogen Dynamics and Environmental Sustainability in Rice–Crab Co-Culture System: Optimal Fertilization for Sustainable Productivity
by Hao Li, Shuxia Wu, Yang Xu, Weijing Li, Xiushuang Zhang, Siqi Ma, Wentao Sun, Bo Li, Bingqian Fan, Qiuliang Lei and Hongbin Liu
AgriEngineering 2026, 8(1), 34; https://doi.org/10.3390/agriengineering8010034 - 16 Jan 2026
Viewed by 77
Abstract
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm [...] Read more.
Rice–crab co-culture systems (RC) represent promising sustainable intensification approaches, yet their nitrogen (N) cycling and optimal fertilization strategies remain poorly characterized. In this study, we compared RC with rice monoculture system (RM) across four N gradients (0, 150, 210, and 270 kg N·hm−2), assessing N dynamics in field water and N distribution in soil. The results showed that field water ammonium nitrogen (NH4+-N) concentrations increased nonlinearly, showing sharp increases beyond 210 kg N·hm−2. Notably, crab activity in the RC altered the N transformation and transport processes, leading to a prolonged presence of nitrate nitrogen (NO3-N) in field water for two additional days after tillering fertilization compared to RM. This indicates a critical window for potential nitrogen loss risk, rather than enhanced retention, 15 days after basal fertilizer application. Compared to RM, RC exhibited enhanced nitrogen retention capacity, with NO3-N concentrations remaining elevated for an additional two days following tillering fertilization, suggesting a potential critical period for nitrogen loss risk. Post-harvest soil analysis revealed contrasting nitrogen distribution patterns: RC showed enhanced NH4+-N accumulation in surface layers (0–2 cm) with minimal vertical NO3-N redistribution, while RM exhibited progressive NO3-N increases in subsurface layers (2–10 cm) with increasing fertilizer rates. The 210 kg N·hm−2 rate proved optimal for the RC, producing a rice yield 12.08% higher than that of RM and sustaining high crab yields, while avoiding the excessive aqueous N levels seen at higher rates. It is important to note that these findings are based on a single-site, single-growing season field experiment conducted in Panjin, Liaoning Province, and thus the general applicability of the optimal nitrogen rate may require further validation across diverse environments. We conclude that a fertilization rate of 210 kg N·hm−2 is the optimal strategy for RC, effectively balancing productivity and environmental sustainability. This finding provides a clear, quantitative guideline for precise N management in integrated aquaculture systems. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
26 pages, 5913 KB  
Article
Differential Regulatory Effects of Cannabinoids and Vitamin E Analogs on Cellular Lipid Homeostasis and Inflammation in Human Macrophages
by Mengrui Li, Sapna Deo, Sylvia Daunert and Jean-Marc Zingg
Antioxidants 2026, 15(1), 119; https://doi.org/10.3390/antiox15010119 - 16 Jan 2026
Viewed by 83
Abstract
Cannabinoids can bind to several cannabinoid receptors and modulate cellular signaling and gene expression relevant to inflammation and lipid homeostasis. Likewise, several vitamin E analogs can modulate inflammatory signaling and foam cell formation in macrophages by antioxidant and non-antioxidant mechanisms. We analyzed the [...] Read more.
Cannabinoids can bind to several cannabinoid receptors and modulate cellular signaling and gene expression relevant to inflammation and lipid homeostasis. Likewise, several vitamin E analogs can modulate inflammatory signaling and foam cell formation in macrophages by antioxidant and non-antioxidant mechanisms. We analyzed the regulatory effects on the expression of genes involved in cellular lipid homeostasis (e.g., CD36/FAT cluster of differentiation/fatty acid transporter and scavenger receptor SR-B1) and inflammation (e.g., inflammatory cytokines, TNFα, IL1β) by cannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) in human THP-1 macrophages with/without co-treatment with natural alpha-tocopherol (RRR-αT), natural RRR-αTA (αTAn), and synthetic racemic all-rac-αTA (αTAr). In general, αTAr inhibited both lipid accumulation and the inflammatory response (TNFα, IL6, IL1β) more efficiently compared to αTAn. Our results suggest that induction of CD36/FAT mRNA expression after treatment with THC can be prevented, albeit incompletely, by αTA (either αTAn or αTAr) or CBD. A similar response pattern was observed with genes involved in lipid efflux (ABCA1, less with SR-B1), suggesting an imbalance between uptake, metabolism, and efflux of lipids/αTA, increasing macrophage foam cell formation. THC increased reactive oxygen species (ROS), and co-treatment with αTAn or αTAr only partially prevented this. To study the mechanisms by which inflammatory and lipid-related genes are modulated, HEK293 cells overexpressing cannabinoid receptors (CB1 or TRPV-1) were transfected with luciferase reporter plasmids containing the human CD36 promoter or response elements for transcription factors involved in its regulation (e.g., LXR and NFκB). In cells overexpressing CB1, we observed activation of NFκB by THC that was inhibited by αTAr. Full article
(This article belongs to the Special Issue Health Implications of Vitamin E and Its Analogues and Metabolites)
Back to TopTop