Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = AXOS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5825 KB  
Review
Basic Pathological Mechanisms in Peripheral Nerve Diseases
by Angelo Schenone, Sara Massucco, Cristina Schenone, Consuelo Barbara Venturi, Paolo Nozza, Valeria Prada, Tania Pomili, Irene Di Patrizi, Giovanna Capodivento, Lucilla Nobbio and Marina Grandis
Int. J. Mol. Sci. 2025, 26(7), 3377; https://doi.org/10.3390/ijms26073377 - 4 Apr 2025
Viewed by 1793
Abstract
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in [...] Read more.
Pathological changes and the cellular and molecular mechanisms underlying axonopathy and myelinopathy are key to understanding a wide range of inherited and acquired peripheral nerve disorders. While the clinical indications for nerve biopsy have diminished over time, its diagnostic value remains significant in select conditions, offering a unique window into the pathophysiological processes of peripheral neuropathies. Evidence highlights the symbiotic relationship between axons and myelinating Schwann cells, wherein disruptions in axo-glial interactions contribute to neuropathogenesis. This review synthesizes recent insights into the pathological and molecular underpinnings of axonopathy and myelinopathy. Axonopathy encompasses Wallerian degeneration, axonal atrophy, and dystrophy. Although extensively studied in traumatic nerve injury, the mechanisms of axonal degeneration and Schwann cell-mediated repair are increasingly recognized as pivotal in non-traumatic disorders, including dying-back neuropathies. We briefly outline key transcription factors, signaling pathways, and epigenetic changes driving axonal regeneration. For myelinopathy, we discuss primary segmental demyelination and dysmyelination, characterized by defective myelin development. We describe paranodal demyelination in light of recent findings in nodopathies, emphasizing that it is not an exclusive indicator of demyelinating disorders. This comprehensive review provides a framework to enhance our understanding of peripheral nerve pathology and its implications for developing targeted therapies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 2461 KB  
Article
New Approaches for Basophil Activation Tests Employing Dendrimeric Antigen–Silica Nanoparticle Composites
by Silvia Calvo-Serrano, Esther Matamoros, Jose Antonio Céspedes, Rubén Fernández-Santamaría, Violeta Gil-Ocaña, Ezequiel Perez-Inestrosa, Cecilia Frecha, Maria I. Montañez, Yolanda Vida, Cristobalina Mayorga and Maria J. Torres
Pharmaceutics 2024, 16(8), 1039; https://doi.org/10.3390/pharmaceutics16081039 - 3 Aug 2024
Cited by 3 | Viewed by 1587
Abstract
In vitro cell activation through specific IgE bound to high-affinity receptors on the basophil surface is a widely used strategy for the evaluation of IgE-mediated immediate hypersensitivity reactions to betalactams. Cellular activation requires drug conjugation to a protein to form a large enough [...] Read more.
In vitro cell activation through specific IgE bound to high-affinity receptors on the basophil surface is a widely used strategy for the evaluation of IgE-mediated immediate hypersensitivity reactions to betalactams. Cellular activation requires drug conjugation to a protein to form a large enough structure displaying a certain distance between haptens to allow the cross-linking of two IgE antibodies bound to the basophil’s surface, triggering their degranulation. However, no information about the size and composition of these conjugates is available. Routine in vitro diagnosis using the basophil activation test uses free amoxicillin, which is assumed to conjugate to a carrier present in blood. To standardize the methodology, we propose the use of well-controlled and defined nanomaterials functionalized with amoxicilloyl. Silica nanoparticles decorated with PAMAM–dendrimer–amoxicilloyl conjugates (NpDeAXO) of different sizes and amoxicilloyl densities (50–300 µmol amoxicilloyl/gram nanoparticle) have been prepared and chemically characterized. Two methods of synthesis were performed to ensure reproducibility and stability. Their functional effect on basophils was measured using an in-house basophil activation test (BAT) that determines CD63+ or CD203chigh activation markers. It was observed that NpDeAXO nanocomposites are not only able to specifically activate basophils but also do so in a more effective way than free amoxicillin, pointing to a translational potential diagnosis. Full article
Show Figures

Figure 1

16 pages, 3544 KB  
Article
GABAB Receptors Tonically Inhibit Motoneurons and Neurotransmitter Release from Descending and Primary Afferent Fibers
by Ximena Delgado-Ramírez, Nara S. Alvarado-Cervantes, Natalie Jiménez-Barrios, Guadalupe Raya-Tafolla, Ricardo Felix, Vladimir A. Martínez-Rojas and Rodolfo Delgado-Lezama
Life 2023, 13(8), 1776; https://doi.org/10.3390/life13081776 - 20 Aug 2023
Cited by 2 | Viewed by 2177
Abstract
Motoneurons receive thousands of excitatory and inhibitory synapses from descending tracts and primary afferent fibers. The excitability of these neurons must be precisely regulated to respond adequately to the requirements of the environment. In this context, GABAA and GABAB receptors regulate [...] Read more.
Motoneurons receive thousands of excitatory and inhibitory synapses from descending tracts and primary afferent fibers. The excitability of these neurons must be precisely regulated to respond adequately to the requirements of the environment. In this context, GABAA and GABAB receptors regulate motoneuron synaptic strength. GABAA and GABAB receptors are expressed on primary afferent fibers and motoneurons, while in the descending afferent fibers, only the GABAB receptors are expressed. However, it remains to be known where the GABA that activates them comes from since the GABAergic interneurons that make axo-axonic contacts with primary afferents have yet to be identified in the descending afferent terminals. Thus, the main aim of the present report was to investigate how GABAB receptors functionally modulate synaptic strength between Ia afferent fibers, excitatory and inhibitory descending fibers of the dorsolateral funiculus, and spinal motoneurons. Using intracellular recordings from the spinal cord of the turtle, we provide evidence that the GABAB receptor antagonist, CGP55845, not only prevents baclofen-induced depression of EPSPs but also increases motoneuron excitability and enhances the synaptic strength between the afferent fibers and motoneurons. The last action of CGP55845 was similar in excitatory and inhibitory descending afferents. Interestingly, the action of baclofen was more intense in the Ia primary afferents than in the descending afferents. Even more, CGP55845 reversed the EPSP depression induced by the increased concentration of ambient GABA produced by interneuron activation and GABA transporter blockade. Immunofluorescence data corroborated the expression of GABAB receptors in the turtle’s spinal cord. These findings suggest that GABAB receptors are extrasynaptic and tonically activated on descending afferent fibers and motoneurons by GABA released from astrocytes and GABAergic interneurons in the cellular microenvironment. Finally, our results also suggest that the antispastic action of baclofen may be due to reduced synaptic strength between descending fibers and motoneurons. Full article
(This article belongs to the Special Issue Ion Channels and Neurological Disease)
Show Figures

Figure 1

31 pages, 3751 KB  
Article
Potential Role of Protein Kinase FAM20C on the Brain in Raine Syndrome, an In Silico Analysis
by Icela Palma-Lara, Patricia García Alonso-Themann, Javier Pérez-Durán, Ricardo Godínez-Aguilar, José Bonilla-Delgado, Damián Gómez-Archila, Ana María Espinosa-García, Manuel Nolasco-Quiroga, Georgina Victoria-Acosta, Adolfo López-Ornelas, Juan Carlos Serrano-Bello, María Guadalupe Olguín-García and Carmen Palacios-Reyes
Int. J. Mol. Sci. 2023, 24(10), 8904; https://doi.org/10.3390/ijms24108904 - 17 May 2023
Cited by 2 | Viewed by 2927
Abstract
FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a [...] Read more.
FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS. Full article
(This article belongs to the Special Issue Protein Phosphorylation in Genetic Diseases)
Show Figures

Figure 1

21 pages, 14336 KB  
Article
The Effect of Hydrolyzed and Fermented Arabinoxylan-Oligo Saccharides (AXOS) Intake on the Middle-Term Gut Microbiome Modulation and Its Metabolic Answer
by Andrea Polo, Marta Acin Albiac, Alessio Da Ros, Vimac Nolla Ardèvol, Olga Nikoloudaki, Fabienne Verté, Raffaella Di Cagno and Marco Gobbetti
Nutrients 2023, 15(3), 590; https://doi.org/10.3390/nu15030590 - 23 Jan 2023
Cited by 7 | Viewed by 3423
Abstract
Although fermentation and hydrolyzation are well-known processes to improve the bioavailability of nutrients and enable the fortification with dietary fibers, the effect of such pre-treatments on the prebiotic features of arabinoxylan-oligosaccharides (AXOS) had not been explored. The middle-term in vitro simulation through the [...] Read more.
Although fermentation and hydrolyzation are well-known processes to improve the bioavailability of nutrients and enable the fortification with dietary fibers, the effect of such pre-treatments on the prebiotic features of arabinoxylan-oligosaccharides (AXOS) had not been explored. The middle-term in vitro simulation through the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) demonstrated that the feeding with different formulations (namely oat bran, rye bran and wheat bran) containing hydrolyzed AXOS fermented by lactic acid bacteria significantly increased the synthesis of short-chain fatty acids (SCFA) by colon microbiota, with hydrolyzed and fermented rye bran displaying the highest effect. After two weeks from the interruption of intake, SCFA concentrations significantly decreased but remained still significantly higher compared to the original condition. The microbiome was also affected, with a significant abundance increase in Lactobacillaceae taxon after feeding with all fermented and hydrolyzed formulates. Hydrolyzed and fermented rye bran showed the highest changes. The fungal community, even if it had a lower variety compared to bacteria, was also modulated after feeding with AXOS formulations, with an increase in Candida relative abundance and a decrease in Issatchenkia. On the contrary, the intake of non-hydrolyzed and non-fermented wheat bran did not produce relevant changes of relative abundances. After two weeks from intake interruption (wash out period) such changes were mitigated, and the gut microbiome modulated again to a final structure that was more like the original condition. This finding suggests that hydrolyzed AXOS fermented by lactic acid bacteria could have a more powerful prebiotic effect compared to non-hydrolyzed and non-fermented wheat bran, shaping the colon microbiome and its metabolic answer. However, the intake should be continuous to assure persistent effects. Opening a window into the ecological evolutions and plausible underlying mechanisms, the findings reinforce the perspective to explore more in depth the use of hydrolyzed and fermented AXOS as additional ingredient for bread fortification. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

16 pages, 3052 KB  
Article
Characterization of Two Aldehyde Oxidases from the Greater Wax Moth, Galleria mellonella Linnaeus. (Lepidoptera: Pyralidae) with Potential Role as Odorant-Degrading Enzymes
by Ricardo Godoy, Ignacio Arias, Herbert Venthur, Andrés Quiroz and Ana Mutis
Insects 2022, 13(12), 1143; https://doi.org/10.3390/insects13121143 - 12 Dec 2022
Cited by 6 | Viewed by 2717
Abstract
Odorant-degrading enzymes (ODEs) are proposed to degrade/inactivate volatile organic compounds (VOCs) on a millisecond timescale. Thus, ODEs play an important role in the insect olfactory system as a reset mechanism. The inhibition of these enzymes could incapacitate the olfactory system and, consequently, disrupt [...] Read more.
Odorant-degrading enzymes (ODEs) are proposed to degrade/inactivate volatile organic compounds (VOCs) on a millisecond timescale. Thus, ODEs play an important role in the insect olfactory system as a reset mechanism. The inhibition of these enzymes could incapacitate the olfactory system and, consequently, disrupt chemical communication, promoting and complementing the integrated pest management strategies. Here, we report two novel aldehyde oxidases, AOX-encoding genes GmelAOX2 and GmelAOX3, though transcriptomic analysis in the greater wax moth, Galleria mellonella. GmelAOX2 was clustered in a clade with ODE function, according to phylogenetic analysis. Likewise, to unravel the profile of volatiles that G. mellonella might face besides the sex pheromone blend, VOCs were trapped from honeycombs and the identification was made by gas chromatography–mass spectrometry. Semi-quantitative RT-PCR showed that GmelAXO2 has a sex-biased expression, and qRT-PCR indicated that both GmelAOX2 and GmelAOX3 have a higher relative expression in male antennae rather than female antennae. A functional assay revealed that antennal extracts had the strongest enzymatic activity against undecanal (4-fold) compared to benzaldehyde (control). Our data suggest that these enzymes have a crucial role in metabolizing sex pheromone compounds as well as plant-derived aldehydes, which are related to honeycombs and the life cycle of G. mellonella. Full article
(This article belongs to the Special Issue Chemosensory Genes in Insects)
Show Figures

Figure 1

20 pages, 4928 KB  
Article
Two Subgroups within the GH43_36 α-l-Arabinofuranosidase Subfamily Hydrolyze Arabinosyl from Either Mono-or Disubstituted Xylosyl Units in Wheat Arabinoxylan
by Kai P. Leschonski, Svend G. Kaasgaard, Nikolaj Spodsberg, Kristian B. R. M. Krogh and Mirjam A. Kabel
Int. J. Mol. Sci. 2022, 23(22), 13790; https://doi.org/10.3390/ijms232213790 - 9 Nov 2022
Cited by 8 | Viewed by 2510
Abstract
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara [...] Read more.
Fungal arabinofuranosidases (ABFs) catalyze the hydrolysis of arabinosyl substituents (Ara) and are key in the interplay with other glycosyl hydrolases to saccharify arabinoxylans (AXs). Most characterized ABFs belong to GH51 and GH62 and are known to hydrolyze the linkage of α-(1→2)-Ara and α-(1→3)-Ara in monosubstituted xylosyl residues (Xyl) (ABF-m2,3). Nevertheless, in AX a substantial number of Xyls have two Aras (i.e., disubstituted), which are unaffected by ABFs from GH51 and GH62. To date, only two fungal enzymes have been identified (in GH43_36) that specifically release the α-(1→3)-Ara from disubstituted Xyls (ABF-d3). In our research, phylogenetic analysis of available GH43_36 sequences revealed two major clades (GH43_36a and GH43_36b) with an expected substrate specificity difference. The characterized fungal ABF-d3 enzymes aligned with GH43_36a, including the GH43_36 from Humicola insolens (HiABF43_36a). Hereto, the first fungal GH43_36b (from Talaromyces pinophilus) was cloned, purified, and characterized (TpABF43_36b). Surprisingly, TpABF43_36b was found to be active as ABF-m2,3, albeit with a relatively low rate compared to other ABFs tested, and showed minor xylanase activity. Novel specificities were also discovered for the HiABF43_36a, as it also released α-(1→2)-Ara from a disubstitution on the non-reducing end of an arabinoxylooligosaccharide (AXOS), and it was active to a lesser extent as an ABF-m2,3 towards AXOS when the Ara was on the second xylosyl from the non-reducing end. In essence, this work adds new insights into the biorefinery of agricultural residues. Full article
(This article belongs to the Topic Advances in Enzymes and Protein Engineering)
Show Figures

Graphical abstract

25 pages, 11311 KB  
Article
Dysfunction of Glutamate Delta-1 Receptor-Cerebellin 1 Trans-Synaptic Signaling in the Central Amygdala in Chronic Pain
by Pauravi J. Gandhi, Dinesh Y. Gawande, Gajanan P. Shelkar, Sukanya G. Gakare, Takaki Kiritoshi, Guangchen Ji, Bishal Misra, Ratnamala Pavuluri, Jinxu Liu, Volker Neugebauer and Shashank M. Dravid
Cells 2021, 10(10), 2644; https://doi.org/10.3390/cells10102644 - 3 Oct 2021
Cited by 14 | Viewed by 5888
Abstract
Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses [...] Read more.
Chronic pain is a debilitating condition involving neuronal dysfunction, but the synaptic mechanisms underlying the persistence of pain are still poorly understood. We found that the synaptic organizer glutamate delta 1 receptor (GluD1) is expressed postsynaptically at parabrachio-central laterocapsular amygdala (PB-CeLC) glutamatergic synapses at axo-somatic and punctate locations on protein kinase C δ -positive (PKCδ+) neurons. Deletion of GluD1 impairs excitatory neurotransmission at the PB-CeLC synapses. In inflammatory and neuropathic pain models, GluD1 and its partner cerebellin 1 (Cbln1) are downregulated while AMPA receptor is upregulated. A single infusion of recombinant Cbln1 into the central amygdala led to sustained mitigation of behavioral pain parameters and normalized hyperexcitability of central amygdala neurons. Cbln2 was ineffective under these conditions and the effect of Cbln1 was antagonized by GluD1 ligand D-serine. The behavioral effect of Cbln1 was GluD1-dependent and showed lateralization to the right central amygdala. Selective ablation of GluD1 from the central amygdala or injection of Cbln1 into the central amygdala in normal animals led to changes in averse and fear-learning behaviors. Thus, GluD1-Cbln1 signaling in the central amygdala is a teaching signal for aversive behavior but its sustained dysregulation underlies persistence of pain. Significance statement: Chronic pain is a debilitating condition which involves synaptic dysfunction, but the underlying mechanisms are not fully understood. Our studies identify a novel mechanism involving structural synaptic changes in the amygdala caused by impaired GluD1-Cbln1 signaling in inflammatory and neuropathic pain behaviors. We also identify a novel means to mitigate pain in these conditions using protein therapeutics. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

15 pages, 508 KB  
Review
Pathophysiological Roles of Abnormal Axon Initial Segments in Neurodevelopmental Disorders
by Masashi Fujitani, Yoshinori Otani and Hisao Miyajima
Cells 2021, 10(8), 2110; https://doi.org/10.3390/cells10082110 - 17 Aug 2021
Cited by 12 | Viewed by 5552
Abstract
The 20–60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative [...] Read more.
The 20–60 μm axon initial segment (AIS) is proximally located at the interface between the axon and cell body. AIS has characteristic molecular and structural properties regulated by the crucial protein, ankyrin-G. The AIS contains a high density of Na+ channels relative to the cell body, which allows low thresholds for the initiation of action potential (AP). Molecular and physiological studies have shown that the AIS is also a key domain for the control of neuronal excitability by homeostatic mechanisms. The AIS has high plasticity in normal developmental processes and pathological activities, such as injury, neurodegeneration, and neurodevelopmental disorders (NDDs). In the first half of this review, we provide an overview of the molecular, structural, and ion-channel characteristics of AIS, AIS regulation through axo-axonic synapses, and axo−glial interactions. In the second half, to understand the relationship between NDDs and AIS, we discuss the activity-dependent plasticity of AIS, the human mutation of AIS regulatory genes, and the pathophysiological role of an abnormal AIS in NDD model animals and patients. We propose that the AIS may provide a potentially valuable structural biomarker in response to abnormal network activity in vivo as well as a new treatment concept at the neural circuit level. Full article
(This article belongs to the Special Issue Pathophysiological Mechanism of Neurodevelopmental Disorders)
Show Figures

Figure 1

20 pages, 1038 KB  
Review
Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review
by Andrea Fuso, Davide Risso, Ginevra Rosso, Franco Rosso, Federica Manini, Ileana Manera and Augusta Caligiani
Foods 2021, 10(6), 1197; https://doi.org/10.3390/foods10061197 - 26 May 2021
Cited by 35 | Viewed by 7825
Abstract
Hazelnuts are one of the most widely consumed nuts, but their production creates large quantities of by-products, especially shells, that could be upcycled into much more valuable products. Recent studies have shown that hazelnut shell hemicellulose is particularly rich in compounds that are [...] Read more.
Hazelnuts are one of the most widely consumed nuts, but their production creates large quantities of by-products, especially shells, that could be upcycled into much more valuable products. Recent studies have shown that hazelnut shell hemicellulose is particularly rich in compounds that are potential precursors of xylooligosaccharides and arabino-xylooligosaccharides ((A)XOS), previously defined as emerging prebiotics very beneficial for human health. The production of these compounds on an industrial scale-up could have big consequences on the functional foods market. However, to produce (A)XOS from a lignocellulosic biomass, such as hazelnut shell, is not easy. Many methods for the extraction and the purification of these prebiotics have been developed, but they all have different efficiencies and consequences, including on the chemical structure of the obtained (A)XOS. The latter, in turn, is strongly correlated to the nutritional effects they have on health, which is why the optimization of the structural characterization process is also necessary. Therefore, this review aims to summarize the progress made by research in this field, so as to contribute to the exploitation of hazelnut waste streams through a circular economy approach, increasing the value of this biomass through the production of new functional ingredients. Full article
Show Figures

Graphical abstract

18 pages, 1352 KB  
Article
Discovery of GLO1 New Related Genes and Pathways by RNA-Seq on A2E-Stressed Retinal Epithelial Cells Could Improve Knowledge on Retinitis Pigmentosa
by Luigi Donato, Concetta Scimone, Simona Alibrandi, Giacomo Nicocia, Carmela Rinaldi, Antonina Sidoti and Rosalia D’Angelo
Antioxidants 2020, 9(5), 416; https://doi.org/10.3390/antiox9050416 - 13 May 2020
Cited by 32 | Viewed by 5020
Abstract
Endogenous antioxidants protect cells from reactive oxygen species (ROS)-related deleterious effects, and an imbalance in the oxidant/antioxidant systems generates oxidative stress. Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis whose excess can [...] Read more.
Endogenous antioxidants protect cells from reactive oxygen species (ROS)-related deleterious effects, and an imbalance in the oxidant/antioxidant systems generates oxidative stress. Glyoxalase 1 (GLO1) is a ubiquitous cellular enzyme involved in detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis whose excess can produce oxidative stress. In retinitis pigmentosa, one of the most diffuse cause of blindness, oxidative damage leads to photoreceptor death. To clarify the role of GLO1 in retinitis pigmentosa onset and progression, we treated human retinal pigment epithelium cells by the oxidant agent A2E. Transcriptome profiles between treated and untreated cells were performed by RNA-Seq, considering two time points (3 and 6 h), after the basal one. The exposure to A2E highlighted significant expression differences and splicing events in 370 GLO1 first-neighbor genes, and 23 of them emerged from pathway clustered analysis as main candidates to be associated with retinitis pigmentosa. Such a hypothesis was corroborated by the involvement of previously analyzed genes in specific cellular activities related to oxidative stress, such as glyoxylate and dicarboxylate metabolism, glycolysis, axo-dendritic transport, lipoprotein activity and metabolism, SUMOylation and retrograde transport at the trans-Golgi network. Our findings could be the starting point to explore unclear molecular mechanisms involved in retinitis pigmentosa etiopathogenesis. Full article
(This article belongs to the Special Issue Redox Biology of Glyoxalases)
Show Figures

Figure 1

16 pages, 1899 KB  
Article
Purification, Identification, and Characterization of an Endo-1,4-β-Xylanase from Wheat Malt
by Zhaojun Peng and Yuhong Jin
Molecules 2020, 25(7), 1572; https://doi.org/10.3390/molecules25071572 - 29 Mar 2020
Cited by 12 | Viewed by 3681
Abstract
In this study, an endo-1,4-β-xylanase was purified from wheat malt following the procedures of ammonium sulfate precipitation, cation-exchange chromatography, and two-step anion-exchange chromatography. The purified endo-1,4-β-xylanase had a specific activity of 3.94 u/mg, demonstrating a weight average molecular weight (Mw) of approximately 58,000 [...] Read more.
In this study, an endo-1,4-β-xylanase was purified from wheat malt following the procedures of ammonium sulfate precipitation, cation-exchange chromatography, and two-step anion-exchange chromatography. The purified endo-1,4-β-xylanase had a specific activity of 3.94 u/mg, demonstrating a weight average molecular weight (Mw) of approximately 58,000 Da. After LC–MS/MS (Liquid chromatography-tandem mass spectrometry) identification, the purified enzyme had the highest matching degree with a GH10 (Glycoside Hydrolase 10) domain-containing protein from wheat, there were 23 match peptides with a score above the threshold and the prot-cover was 45.5%. The resulting purified enzyme was used to investigate its degradation ability on high viscosity wheat-derived water-extractable arabinoxylan (WEAX). Degradation experiments confirmed that the purified enzyme was a true endo-acting enzyme, which could degrade large WEAX into smaller WEAX. The average degree of polymerization (avDP) and the viscosity of WEAX decreased with the increasing reaction time. The enzyme could degrade a small amount of WEAX into arabinoxylan-oligosaccharides (AXOS) with a degree of polymerization of 2–6, but no monosaccharide was produced. The degradation occurred rapidly in the first 3.5 h and decreased with the further prolongation of reaction time. Full article
Show Figures

Figure 1

16 pages, 2300 KB  
Review
CD38, CD157, and RAGE as Molecular Determinants for Social Behavior
by Haruhiro Higashida, Minako Hashii, Yukie Tanaka, Shigeru Matsukawa, Yoshihiro Higuchi, Ryosuke Gabata, Makoto Tsubomoto, Noriko Seishima, Mitsuyo Teramachi, Taiki Kamijima, Tsuyoshi Hattori, Osamu Hori, Chiharu Tsuji, Stanislav M. Cherepanov, Anna A. Shabalova, Maria Gerasimenko, Kana Minami, Shigeru Yokoyama, Sei-ichi Munesue, Ai Harashima, Yasuhiko Yamamoto, Alla B. Salmina and Olga Lopatinaadd Show full author list remove Hide full author list
Cells 2020, 9(1), 62; https://doi.org/10.3390/cells9010062 - 25 Dec 2019
Cited by 46 | Viewed by 8971
Abstract
Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 [...] Read more.
Recent studies provide evidence to support that cluster of differentiation 38 (CD38) and CD157 meaningfully act in the brain as neuroregulators. They primarily affect social behaviors. Social behaviors are impaired in Cd38 and Cd157 knockout mice. Single-nucleotide polymorphisms of the CD38 and CD157/BST1 genes are associated with multiple neurological and psychiatric conditions, including autism spectrum disorder, Parkinson’s disease, and schizophrenia. In addition, both antigens are related to infectious and immunoregulational processes. The most important clues to demonstrate how these molecules play a role in the brain are oxytocin (OT) and the OT system. OT is axo-dendritically secreted into the brain from OT-containing neurons and causes activation of OT receptors mainly on hypothalamic neurons. Here, we overview the CD38/CD157-dependent OT release mechanism as the initiation step for social behavior. The receptor for advanced glycation end-products (RAGE) is a newly identified molecule as an OT binding protein and serves as a transporter of OT to the brain, crossing over the blood–brain barrier, resulting in the regulation of brain OT levels. We point out new roles of CD38 and CD157 during neuronal development and aging in relation to nicotinamide adenine dinucleotide+ levels in embryonic and adult nervous systems. Finally, we discuss how CD38, CD157, and RAGE are crucial for social recognition and behavior in daily life. Full article
Show Figures

Figure 1

22 pages, 316 KB  
Article
Effects of Two Dietary Fibers as Part of Ready-to-Eat Cereal (RTEC) Breakfasts on Perceived Appetite and Gut Hormones in Overweight Women
by David W. Lafond, Kathryn A. Greaves, Kevin C. Maki, Heather J. Leidy and Dale R. Romsos
Nutrients 2015, 7(2), 1245-1266; https://doi.org/10.3390/nu7021245 - 13 Feb 2015
Cited by 42 | Viewed by 10839
Abstract
The effects of an enzyme-hydrolyzed arabinoxylan from wheat (AXOS) versus an intact arabinoxylan from flax (FLAX) added to a ready-to-eat cereal (RTEC) on the postprandial appetitive, hormonal, and metabolic responses in overweight women (BMI 25.0–29.9 kg/m2) were evaluated. Subsequent meal energy [...] Read more.
The effects of an enzyme-hydrolyzed arabinoxylan from wheat (AXOS) versus an intact arabinoxylan from flax (FLAX) added to a ready-to-eat cereal (RTEC) on the postprandial appetitive, hormonal, and metabolic responses in overweight women (BMI 25.0–29.9 kg/m2) were evaluated. Subsequent meal energy intake was also assessed. Two randomized, double-blind, crossover design studies were completed. For trial 1, the participants consumed the following RTEC breakfast, matched for total weight and varied in energy content: low-fiber (LF, 4 g); high-fiber (HF, 15 g) as either AXOS or FLAX. For trial 2, the participants consumed LF, HF-AXOS, and HF-FLAX RTECs but also consumed another LF breakfast that was isocaloric (LF-iso) to that of the HF breakfasts. Perceived appetite and blood samples (trial 2 only) were assessed before and after breakfast. An ad libitum lunch was offered 4 h post-breakfast. No differences in postprandial appetite responses were observed among any breakfasts in either trial. The HF-AXOS and HF-FLAX led to increased postprandial GLP-1 and peptide YY (PYY) concentrations vs. LF-iso. No differences were observed in lunch meal energy intake among breakfast meals in either trial. Collectively, these data suggest that 15 g of low molecular weight fiber added to RTECs did not affect perceived appetite or subsequent energy intake despite differences in satiety hormone signaling in overweight females. Full article
Show Figures

Figure 1

Back to TopTop