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Simple Summary: The greater wax moth, Galleria mellonella Linnaeus (Lepidoptera: Pyralidae),
is a ubiquitous pest of the apicultural industry. We identified two novel aldehyde oxidase genes
through transcriptomic analysis (GmelAOX2 and GmelAOX3) that are related to its olfactory system.
GmelAOX2 is part of the clade with odorant-degrading enzyme function and shows sex-biased
expression, and both GmelAOX2 and GmelAOX3 are more highly expressed in male antennae rather
than female antennae. These enzymes have a crucial role in metabolizing sex pheromone compounds
as well as plant-derived aldehydes, which are related to honeycombs and the life cycle of G. mellonella.

Abstract: Odorant-degrading enzymes (ODEs) are proposed to degrade/inactivate volatile organic
compounds (VOCs) on a millisecond timescale. Thus, ODEs play an important role in the insect
olfactory system as a reset mechanism. The inhibition of these enzymes could incapacitate the
olfactory system and, consequently, disrupt chemical communication, promoting and complementing
the integrated pest management strategies. Here, we report two novel aldehyde oxidases, AOX-
encoding genes GmelAOX2 and GmelAOX3, though transcriptomic analysis in the greater wax moth,
Galleria mellonella. GmelAOX2 was clustered in a clade with ODE function, according to phylogenetic
analysis. Likewise, to unravel the profile of volatiles that G. mellonella might face besides the sex
pheromone blend, VOCs were trapped from honeycombs and the identification was made by gas
chromatography–mass spectrometry. Semi-quantitative RT-PCR showed that GmelAXO2 has a sex-
biased expression, and qRT-PCR indicated that both GmelAOX2 and GmelAOX3 have a higher relative
expression in male antennae rather than female antennae. A functional assay revealed that antennal
extracts had the strongest enzymatic activity against undecanal (4-fold) compared to benzaldehyde
(control). Our data suggest that these enzymes have a crucial role in metabolizing sex pheromone
compounds as well as plant-derived aldehydes, which are related to honeycombs and the life cycle of
G. mellonella.

Keywords: beekeeping; bioinformatics; olfaction; sexual communication

1. Introduction

In insects, mating or threat avoidance, as well as host and food seeking, are mainly
results of the interaction between volatile organic compounds (VOCs) and a well-tuned
olfactory system [1,2]. The transport, transduction, and degradation of VOCs are carried
out by olfactory proteins, such as odorant-binding proteins (OBPs), odorant receptors (ORs),
and odorant-degrading enzymes (ODEs) [3–6]. Briefly, chemical cues enter through cutic-
ular pores placed in hair-like structures called sensilla on antennae, towards the sensillar
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lymph where OBPs bind and transport molecules to the ORs. Once receptors are activated, a
transduction signal is started, unleashing insect behavioral response. Finally, ODEs rapidly
degrade the odorant stimuli in order to avoid the accumulation of compounds in the periph-
eral space, leading to rapid signal termination [4]. This allows the recovery and maintenance
of the sensitivity of the olfactory system by its resetting on a millisecond (ms) timescale,
and thus receive new chemical signals [7]. Noteworthy, there are different families of ODEs
involved in stimuli deactivation, such as carboxylesterases (CXEs), aldehyde oxidases (AOXs),
glutathione-S-transferases (GSTs), and cytochrome P450 (CYPs). Particularly, CXEs and
AOXs have been studied as ODEs [8]; in fact, the first ODE (a CXE) was classified as a
pheromone-degrading enzyme (PDE), being specifically present in male antennae of moth
Antherea polyphemus Cramer [9]. This PDE was able to rapidly degrade (in an estimated
half-life of 15 ms) the sex pheromone (E,Z)-6,11-hexadecadienyl acetate according to in vivo
and in vitro assays [10]. Another PDE was identified in the scarab beetle Popillia japonica
Newman, being only expressed in male antennae. The authors reported that both the native
and recombinant enzymes showed preference against the sex pheromone, (R)-japonilure,
rather than its enantiomer, (S)-japonilure (behavioral antagonist) [11]. On the other hand,
the first AOX in moths was characterized in the tobacco hornworm Manduca sexta Lin-
naeus, and reported as a dimer from column chromatography with an estimated molecular
weight of 295 kDa [12]. This AOX was classified as a PDE (MsexAOX) because it had nearly
60% greater expression in male than female antennae. Additionally, kinetic parameters of
MsexAOX showed a preference for the pheromone compound, (E,Z)-10,12-hexadecadienal
(bombykal) (Km 5.4 µM), compared with other VOCs, such as propanal (Km 6.8 µM) and
benzaldehyde (Km 225.1 µM) [12]. Complementary, Merlin et al. [13] proposed that the
MbraAOX-encoding gene from cabbage armyworm Mamestra brassicae Linnaeus is active at
the sensillar lymph level and that its expression is restricted to olfactory sensilla (i.e., Sensilla
trichoidea, Str I) through in situ hybridization (ISH). In functional terms, these enzymes can
transform aldehyde-type semiochemicals into inactive forms, such as carboxylic acids [14].
Nowadays, several moth species use a blend of chemicals as sex pheromones, where alde-
hydes can act as either major or minor components. For example, (Z,Z)-7,11-hexadecadienal,
(E)-11,13-tetradecadienal, and (E,E,Z,Z)-4,6,11,13-hexadecatetraenal act as major pheromone
components for the moths citrus leaf-miner Phyllocnistis citrella Stainton, the eastern black-
headed budworm Acleris variana Fernald, and the promethea moth Callosamia promethea Drury,
respectively [15–17]. On the other hand, aldehyde-based pheromones can act as minor com-
ponents, such as (E)-10-hexadecenal, (E,E)-8,10-dodecadienal, and (E,Z)-6,11-hexadecadienal
for the legume podborer Maruca vitrata Fabricius, the codling moth Cydia pomonella Linnaeus,
and A. polyphemus, respectively [18–20]. Noteworthy, aldehydes can also act as behavioral
antagonists. For instance, females of Bombyx mori Linnaeus emit bombykal in their pheromone
blend in addition to bombykol as a behavioral antagonist [21].

The fact that A. polyphemus and B. mori use aldehydes in their life cycle supports the
presence of AOXs that could metabolize these semiochemicals. Thus, Rybczynski et al. [22]
identified antenna-specific aldehyde oxidases (AOXs) in antennal extracts from A. polyphemus
and B. mori, which were more abundant in males than females through polyacrylamide gel
electrophoresis (PAGE). Likewise, Zhang et al. [23] found four putative AOX genes in the
rice leaf-folder Cnaphalocrocis medinalis Guenné through transcriptomic analysis. The authors
reported that CmedAOX2-encoding transcript was more expressed in male than female anten-
nae, indicating a putative degradation role for the sex pheromone blend, (Z)-11-octadecenal
and (Z)-13-octadecenal. On the contrary, there are some exceptions where AOXs can degrade
other aldehyde-based pheromone compounds, with no involvement of sex-biased expression.
For instance, recent studies in the cotton bollworm Helicoverpa armigera Hübner identified
six full-length AOX genes, from which HarmAOX2 was suggested as PDE for inactivating
(Z)-11-hexadecenal and (Z)-9-hexadecenal through specific and significant expression in adult
antennae of both sexes [24].

The greater wax moth, Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), is an
important pest of honeybee products [25]. Larvae of G. mellonella use honeycombs to
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make silken galleries, disrupting the development and growth of bees; this event is called
Galleriasis [26]. Interestingly, its mating is highlighted by males producing an acoustic
signal and a sex pheromone blend, mainly formed by aldehydes nonanal and undecanal
(major components) [27] that attract conspecific females. These aldehyde-type compounds
have been reported from different sources, such as insect sex pheromone [17,28–31], VOCs
from plants [32–34], as well as in beehive products, such as honey, pollen, wax, and propo-
lis [35–38]. The usual methods to manage this pest are based on chemical insecticides, e.g.,
naphthalene, methyl bromide, paradichlorobenzene, and carbon dioxide (CO2); however,
these compounds (except CO2) represent a health risk and lead to residues in honeybee
products [25,39]. Furthermore, no environmentally friendly control methods have been
reported for G. mellonella thus far. Whereas research in OBPs, ORs, and other olfactory
proteins, such as ionotropic receptors (IRs), gustatory receptors (GRs), and chemosensory
proteins (CSPs) has been conducted in G. mellonella from transcriptome [40,41], no ODEs
have been studied in depth. Therefore, the understanding of semiochemical degradation
mechanisms by AOXs in antennae of G. mellonella would provide the necessary information
to corroborate or reject the use of these enzymes as targets through their inhibition and,
subsequently, disruption of chemical communication for insect pest control. In this work,
we take advantage of transcriptomic data from G. mellonella obtained in our laboratory
where some aldehyde oxidase enzymes might be involved in the degradation of pheromone
components, as well as beehive-derived volatiles. Here, we report the phylogenetic relation,
relative expression, and enzymatic activity of two novel AOX-encoding genes, GmelAOX2
and GmelAOX3, from the antennae of G. mellonella.

2. Materials and Methods
2.1. Insect Rearing

Wild G. mellonella were obtained from honeycombs located in the Quepe sector of La
Araucanía region, and their rearing was established according to the methodology reported
by Zamorano [42] using a diet based on a mixture of sugar in freshly boiled distilled water,
to which glycerin and vitamins were added. The food source was based on cereals Nestum®

and wheat germ, both mixed in the proportions suggested by the same author. Foster
boxes (plastic) were arranged with a rectangular top window, covered by a mesh bonded
with silicone, and stored in a growth chamber (ShelLab) at a temperature of 28 ± 1 ◦C.
Once eggs were obtained from moths, they were disposed in control tape towards the diet,
facilitating feeding and larval development. Larvae were individualized in plastic pots
until reaching the adult stage.

2.2. Collection of Honeycomb Volatiles

Volatiles were trapped by using four sterilized borosilicate glass chambers [43]. Hon-
eycomb pieces of 5 cm × 5 cm were introduced and placed at the bottom of the chambers.
In two upper outlets (per chamber) were Porapak-Q (Divinylbenzene/Ethyl vinyl ben-
zene) columns (100 mg). A positive/negative pressure air system was used according to
Agelopoulos et al. [44]; the air was dried and purified before passing through the glass
chamber. The trapping of volatile compounds was carried out for 24 h. Then, compounds
were desorbed from the Porapak-Q column with 1 mL of hexane and concentrated up to
50 µL under nitrogen (N2) flow [45].

2.3. Honeycomb Volatile Identification by GC/MS

The volatile compounds (1 µL) were analyzed using a gas chromatograph (Thermo
Scientific Trace 1300, Milan, Italy) coupled to a mass spectrometer (GC/MS) (Thermo
Scientific ISQ 7000) equipped with an HP-5 (5% cross-linked phenyl-methyl siloxane)
capillary column (30 m, 0.25 mm, 0.25 µm). Helium (He) was used as the carrier gas, with a
flow rate of 1 mL/min. Mass spectrum acquisition was performed in the mass range from
30 to 500 m/z. Ionization was performed by electron impact at 70 eV with an ion source
at 250 ◦C. The GC oven was programmed to remain at 40 ◦C for 2 min and increase by
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4 ◦C/min to 250 ◦C, holding for 5 min. The temperatures of the GC injector, transfer line,
and detector were 250 ◦C [45]. Tentative structural assignments were made by comparing
their mass spectra with the MS library (NIST), as well as by comparison of their Kovats
indices by using the n-alkanes (C9-C21) and (C21-C40) series with Kovats indices published
from the literature and the injection of standards (Sigma-Aldrich, St. Louis, MO, USA).

2.4. Identification of AOX Transcripts by Comparing Two Transcriptome Data of G. mellonella

The AOX identification was assisted by using the whole-head (head plus antennae)
transcriptome for G. mellonella [41] assembled in our laboratory, and the antennal transcrip-
tome assembled by Zhao et al. [40]. Firstly, an in-house database of lepidopteran AOXs
created with sequences reported in the literature was used in order to make a local BLAST
through the makeblastdb script for nucleotide and protein with the data set obtained
from the assembled transcriptomes. Subsequently, transcripts were identified by local
searches using the Tools of NCBI BLASTx and BLASTn [46] between our database and the
assembled data set of G. mellonella. BLAST hits with e-values < 1.0 × 10−5 were considered
to be significant [47], and genes were assigned to each contig based on the BLAST hits
with the highest score value. The open reading frame (ORF) of each unigene was deter-
mined by using the ORF finder tool (https://www.ncbi.nlm.nih.gov/orffinder, accessed on
25 July 2022), and sequences with >1000 amino acids (aa) were selected. These sequences
were used as a database in order to compare them with the transcriptome assembled by
Zhao et al. [40], and the identification was carried out as mentioned above. In addition,
the InterPro platform was used to evaluate their gene ontology (GO), and sequences were
submitted to Expasy to calculate their molecular weight in silico.

2.5. Phylogenetic Analysis of G. mellonella AOXs

The phylogenetic analysis was carried out using identified AOX transcripts in G. mellonella,
and sequences from a study on AOXs Lepidoptera [48]. Full-length aa sequences that include
conserved domains were aligned using MAFFT server7 [49]. GUIDANCE2 server8 was used
to check the consistency of the multiple sequence alignment [50]. Briefly, the consistency of
the alignment was measured with a score less than 0.5, in which sequences were deleted. It
is worth noting that confidence scores near 1 and 0 suggest a highly and poorly consistent
alignment, respectively. Finally, phylogenetic analysis was performed using the maximum-
likelihood method with FastTree software [51]. To highlight clades, specific taxa, and functional
evidence, the phylogenetic tree was edited using FigTree software9 and image editor Inkscape
0.48 software.

2.6. Total RNA Extraction, cDNA Synthesis, and Primer Design

Total RNA extraction was performed following the methodology proposed by Gu et al. [52],
using different tissue samples (antennae, n = 100; legs, n = 50; wings, n = 50; bodies without legs,
wings, and heads, n = 10) from males and females extracted with TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). Moreover, the RNA concentration was analyzed using a Quantus Fluorom-
eter (Promega). The RNA integrity was checked by 1% agarose gel electrophoresis, and samples
were stored at −80 ◦C until use. From the RNA samples, through the semi-quantitative RT-PCR
technique and using a thermocycler (GeneTechnologies), a stock of cDNA was generated at a
concentration of 100 ng/µL for each tissue. AffinityScript qPCR cDNA Synthesis Kit (Stratagene,
Cedar Creek, TX, USA) was used following the manufacturer's instructions. Finally, primers
used for every AOX transcript were designed using the PrimerQuest® program (IDT, Coralville,
IA, USA).

2.7. Analysis of Tissue Distribution by Semi-Quantitative RT-PCR

Amplification of GmelAOXs in several tissues (antennae, bodies, legs, and wings)
from males and females was carried out following Gu et al. [52] and Lizana et al. [41], and
the PCR mix is mentioned in Supplementary Table S1. The housekeeping gene β-actin
(accession code KP331524) was used as an endogenous gene and positive control for the
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analysis. The PCR program for β-actin was performed under the following conditions: an
initial denaturation step of 95 ◦C for 2 min, followed by 35 cycles of (1) denaturation step
of 95 ◦C for 30 s, (2) annealing step of 48 ◦C for 30 s, (3) extension of 72 ◦C for 1 min, and a
final extension for 10 min at 72 ◦C. PCR products were analyzed on 1% agarose gel and
visualized after staining with SYBR™. The PCR program for AOXs consisted of an initial
denaturation step of 95 ◦C for 3 min, followed by 35 cycles of (1) denaturation step of 95 ◦C
for 30 s, (2) annealing step of 50 ◦C for 30 s, (3) extension of 72 ◦C for 1 min, and a final
extension for 10 min at 72 ◦C.

2.8. Analysis of GmelAOXs Relative Expression by qRT-PCR

All qRT-PCR reactions were performed using Brilliant II SYBR Green qPCR Master
mix in qPCR-compatible equipment. The following cycling conditions were used: 95 ◦C
for 10 min, followed by 40 cycles at 95 ◦C for 30 s, 57 ◦C for 30 s, and 72 ◦C for 1 min.
The presence of a specific amplified PCR product was verified for each reaction by melt
curve analysis, with 95 ◦C for 15 s, 55 ◦C for 1 min, and 95 ◦C for 15 s. The specific
primers used in this study were designed using the PrimerQuest® program (IDT, Coralville,
IA, USA), and their efficiencies (ranging from 90% to 110%) were validated by standard
curve with five 10× serial dilutions of antennal cDNA. The housekeeping gene β-actin was
used as an internal control. All the experiments were performed using three biological
replicates, each with three technical replicates. The relative quantification was analyzed
by the 2−∆∆Ct based on the Pffafl method [53]. Statistical differences between tissues from
males and females were analyzed by one-way ANOVA with Tukey’s test (p < 0.05) using
SPSS Statistics 22. Semi-quantitative PCR and qRT-PCR primers are listed in Table S1.

2.9. AOX Activity from Antennal Extract

Enzymatic activity was performed using different aldehyde substrates according to
Wang et al. [54]. Thiazolyl blue tetrazolium bromide (MTT) was used as the electron
acceptor and phenazine methosulfate (PMS) was the electron donor. Then, the enzymatic
activity was measured according to the purple insoluble MTT formazan formation. Protein
concentration was measured by the Bradford method using bovine serum albumin as
a quantitative standard. The reaction contained fresh crude antennal extracts (75 µg),
3 mM aldehyde substrate dissolved in DMSO, 0.1 M potassium phosphate buffer (pH 8.0),
0.4 mM MTT, and 0.1 mM PMS. Then, it was incubated at 30 ◦C for 1 h, and the reaction
was quenched with 10% acetic acid. The reaction was determined at 570 nm using a UV-
5100B spectrophotometer (Metash Instruments, Shanghai, China). All experiments were
performed in triplicate.

3. Results
3.1. Volatile Organic Compounds in Honeycombs

Supplementary Table S1 contains the complete profile of volatiles according to re-
tention time and their structure class. A total of 74 VOCs were identified from infested
honeycombs. For instance, terpenes such as α-pinene, camphene, β-pinene, α-terpinene,
limonene, γ-terpinene, linalool, 3-terpineol, limonene-1,2-diol, solongifolene, (E)-thujopsene,
α-caryophyllene, β-ionone, (+)-β-selinene, α-muurolene, β-bisabolene, α-cadinol, (Z,Z)-farnesol,
murgantiol, and sclarene were identified. In addition, several esters were found, such
as hexyl acetate, ethyl phenylacetate, n-octyl acetate, linalyl butyrate, isobornyl butyrate,
3-octyl tiglate, methyl cycloundecanecarboxylate, isobutyl decanoate, ethyl tetradecanoate,
3-hexenyl-(Z)-cinnamate, 10-undecenyl angelate, ethyl-(Z)-7-hexadecenoate, (Z)-4-hexadecenyl
acetate, incensole acetate, methyl-(Z)-communate, 2-ethylhexyl-(E)-4-methoxycinnamate, and
integerrimine. Other types of compounds were identified, such as alcohols, ketones, ethers,
alkanes, furans, carboxylic acids, and phenols. Likewise, aldehyde-type compounds were
found, including octanal, nonanal, (E)-2-nonenal, undecanal, (Z)-2-dodecenal, α-sinensal,
(Z)-10-hexadecenal, and (E,E,Z,Z)-4,6,11,13-hexadecatetraenal (Table 1).
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Table 1. Honeycomb volatiles identified by GC/MS.

Compound Source Source Reference ng/Kg RT (min) Kexp Kref
Identification

Reference

Octanal Honey, honeybees, wax [55–57] 1.45 12.69 999 999 Standard *; [58]

Nonanal Honeybees, G. mellonella
pheromone, wax [25,55,59] 22 15.27 1085 1084 Standard *

(E)-2-Nonenal Propolis [60] - 17.26 1153 1155 [58]

Undecanal Honeybees, G. mellonella
pheromone [25,59] 35.3 21.00 1284 1284 Standard *

(Z)-2-Dodecenal - - - 25.70 1467 1467 [61]

α-Sinensal Honey [35] - 32.16 1752 1752 [62]

(Z)-10-Hexadecenal - - - 33.27 1804 1804 [61]

(E,E,Z,Z)-4,6,11,13-
Hexadecatetraenal - - - 35.78 1926 1926 [17]

RT= Retention time obtained from the mass spectrums; Kexp = Kovats determined by using the n-alkane series
(C9-C21 and C21-C40); Kref = Kovats based on the injection of Standards (*) and search in literature by the
comparison with GC/MS spectrometry library. (-) = Non reference on source of the tentative compounds.
Semiquantification (ng/Kg) was made by the comparison with area peaks of standards (50 ppm).

3.2. AOX-Related Transcripts Obtained by Comparing Two Transcriptomes

According to the results from the comparison of the whole-head transcriptome as-
sembled in our laboratory and the antennal transcriptome reported by Zhao et al. [40],
it was possible to identify two AOX transcripts. From BLASTp analysis, sequences with
unigenes DN3568 and DN34847 were matched with two aldehyde oxidases (accession
code QPF77599.1 and QPF77600.1) of G. mellonella, which were retrieved from the NCBI
database with identity percentages of 99.13% and 99.18%, respectively. These sequences
were annotated as GmelAOX2 and GmelAOX3, and can be found in Supplementary Table S1.
Thus, GmelAOX2 and GmelAOX3 had ORFs of 3816 and 3675 nucleotides (nt), respectively.
In addition, both aa sequences presented the three typical domains of AOXs, namely
(1) two 2Fe-2S clusters, (2) FAD-binding, and (3) molybdenum cofactor (Moco) binding,
based on a search of the InterPro platform. On the other hand, the results of the the-
oretical molecular weight in these enzymes according to the Expasy platform showed
that GmelAOX2 and GmelAOX3 have subunits of 141 and 134 kDa, respectively. Accord-
ing to phylogenetic analysis (Figure 1), only GmelAOX2 has a linage related to the clade
with ODE function, and is closely associated to AtraAOX2 from the navel orangeworm
Amyelois transitella Walker, with a high bootstrap value (>70%).

3.3. Tissue Distribution and Relative Expression Levels of GmelAOX2 and GmelAOX3

Our results suggest that enzymes do not have a tissue-specific expression; GmelAOX2
and GmelAOX3 are slightly expressed in the male body, and the latter is also expressed in
the female body (Figure 2). Besides body, PCR products of both enzymes were presented in
male rather than female antennae. On the other hand, there were significant differences in
relative expression of GmelAOXs between tissues according to qRT-PCR results (Figure 3).
We found two GmelAOX genes (GmelAOX2 and GmelAOX3) enriched in antennae compared
to other tissues tested, and the level of these genes in male antennae was significantly higher
than in female antennae.
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Figure 1. Phylogenetic tree of AOXs identified in G. mellonella transcriptomes as well as sequences
from a previous report in lepidopteran [48]. Black circles show functional AOX reported in
A. transitella (AtraAOX2), P. xylostella (PxylAOX3), and B. mori (BmorAOX5). Gray line shows AOXs
clustered in the clade with ODE function. In green are the xanthine dehydrogenases (XDHs) and in
red are GmelAOXs. Confidence scores are indicated as red circles (>70%) in nodes.
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mA; female antennae, fA; male body, mB; female body, fB; male legs, mL; female legs, fL; male wings,
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3.4. AOXs Activity from Antennal Extract

In order to evaluate the enzymatic activity of GmelAOXs in antennal extracts, some
aldehydes of those previously identified from honeycombs, as well as pheromone com-
ponents, were selected. It is worth noting that some aldehydes were not commercially
available, and other structurally similar compounds were included, such as trans-2-hexenal,
hexenal, and decanal. Moreover, undecane was included as the corresponding alkane of
undecanal. The activity was presented as relative activity (%), where benzaldehyde was
used as a standard (100%) according to Choo et al. [29]. Figure 4 shows the results obtained,
where undecanal had the highest activity, followed by decanal, undecane, nonanal, hexanal,
trans-2-hexanal, and octanal. Notably, undecane showed the third-highest activity even
without presenting an aldehyde in its structure.
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of substrates (3 mM) by antennal extract (75 µg) was determined at 30 ◦C and quenched with 10%
acetic acid. The reduction in MTT was measured spectrophotometrically at 570 nm. Activity is
observed according to the purple insoluble MTT formazan formation. A blank was set as a negative
control by adding buffer only. ANOVA was followed by Tukey’s test for multiple comparisons for an
average mean comparison. Different letters indicate significant differences (p < 0.05).

4. Discussion

Here, we identified several compounds in honeycombs infested with G. mellonella.
Among these chemicals, nonanal and undecanal are reported as part of its sex pheromone
blend [25,63]. Likewise, other aldehydes are associated with bees and their products, such
as octanal from honey and wax [55–57], (E)-2-nonenal with propolis [60], and α-sinensal
with honey [35]. On the other hand, (Z)-2-dodecenal is a volatile found in clementine
oil [64], (Z)-10-hexadecenal has been reported as a pheromone in some lepidopteran of the
Crambidae family [65,66], and (E,E,Z,Z)-4,6,11,13-hexadecatetraenal has been identified as
the major sex pheromone of C. promethea [17].

G. mellonella is a ubiquitous pest to honeycombs and a nocturnal insect which lays
eggs inside honeycombs, especially when bees are less active [67]. Moreover, when adults
emerge from the pupa stage, they fly toward the trees to mate. So, this moth must rely
on its olfactory system for detecting and decoding semiochemicals, and thus define its
behavior. The clearance of compounds that remain in the sensillar lymph is a critical step
in the olfaction process, which is carried out by ODEs, in order to facilitate the entrance
of new stimuli in the antennae [4]. Research around ODEs is limited, where most studies
have been reported in Lepidoptera, namely the antennal esterase SlCX7 in the cotton
leafworm Spodoptera littoralis Boisduval, which can hydrolyze the pheromone and plant
compounds [68]. In addition, Ref. [69] identified an ODE gene from the polyphagous moth
S. exigua Hübner, namely SexiCXE10, which showed high activity for ester plant volatiles.
In terms of AOXs, studies are even scarcer. Bioinformatic analyses have served to identify
putative enzymes; for instance, four AOXs were reported in C. medinalis, three mainly
found in the adult abdomen and one enriched in antennae [23]. Another author identified
three AOXs in the pink borer Sesamia inferens Walker; two were antennae-specific (SinfAOX1
and SinfAOX2) and one (SinfAOX3) was expressed in antennae and the abdomen [30]. The
phylogenetic relationships of these enzymes have allowed the clustering of AOXs with
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ODE function [48]. Phylogenetic analysis showed that both GmelAOX2 and GmelAOX3
have evolved from xanthine dehydrogenases (XDHs) (Figure 1), similarly to other reported
AOXs [23,70], due to gene duplication events [71]. Remarkably, GmelAOX2 was grouped in
the clade with ODE function, where other functionally studied AOXs [29,54,72] are found,
shedding light on its role as an ODE.

As a result of semi-quantitative RT-PCR, tissue-specific expression was not performed
because GmelAOX2 was expressed in the body and antennae of males, and GmelAOX3 was
expressed in the body of both sexes and male antennae only. However, we suggest that at
least GmelAOX2 has a sex-biased expression in male antennae according to RT-PCR, despite
its slight expression in the body. The expression of these enzymes in the body might be
associated with a detoxification process, due to the degradation of xenobiotic compounds
such as pesticides [70]. In fact, AOXs are able to use several compounds as substrates,
i.e., N-heterocyclics, N-oxides, azo dyes, and aldehydes with different hydrocarbon chain
sizes [73]. In contrast to the expression of AOXs in the body, their expression in antennae
would be involved in the degradation of sex pheromone components or aldehyde-type plant
volatiles, being potentially classified as PDEs [24]. Huang et al. [70] showed an expression
of two AOXs in C. pomonella (CpomAXO1 and CpomAOX2) in several tissues (antennae,
thoraxes, abdomens, legs, and wings), but they propose a role in odorant degradation
when these enzymes are expressed in antennae even if they are not specific to this tissue.
Insect antennae are the main olfactory organs; therefore, the expression of AOXs in these
structures would be closely related to the degradation process of semiochemicals [24]. Thus,
studies in S. inferens and C. medinalis have shown significant differences in the relative
expression of these AOXs (SinfAOX1, SinfAOX2, and CmedAOX2) according to qRT-PCR,
where male antennae showed a higher expression [23,30]. Here, GmelAOX2 and GmelAOX3
showed a higher expression in males (Figure 3). Interestingly, it is common for conspecific
females to synthesize and release the sex pheromone to attract males [74]; however, in
G. mellonella, males produce the sex pheromone [25]. Therefore, a higher expression of
AOXs in male antennae could help to rapidly degrade aldehyde-type compounds that are
part of the sex pheromone blend of G. mellonella, allowing the entrance of other chemical
cues. Notably, low mRNA expression does not always imply low protein levels or low
enzyme activities [75]. Preliminarily, these results indicate that both aldehyde oxidases in
G. mellonella could be classified as general odorant-degrading enzymes (GODEs) instead
of PDEs.

The AOX function in insects towards semiochemical degradation has been recently
studied from pheromone gland extracts of B. mori (BmorAOX5), where they were active over
several aldehydes (i.e., benzaldehyde, salicylaldehyde, vanillic aldehyde, heptanal, and
propanal) [72]. Furthermore, Wang et al. [54] evaluated the activity of a recombinant AOX
(PxylAOX3) from the diamondback moth Plutella xylostella Linnaeus, where it was capable
of degrading its sex pheromone components and several aldehyde-type volatiles derived
from plants. Antennal extracts were capable of metabolizing aldehyde-type compounds,
such as some of those identified from infested honeycombs. Data published by Leyrer and
Monroe [27] indicate that G. mellonella’s sex pheromone blend has two major components,
nonanal and undecanal, in a ratio of 7:3. Taking this into account, the strongest activity on
undecanal (4-fold) compared to benzaldehyde (control) in antennal extracts is consistent.
Although nonanal is present in a greater proportion than undecanal, 1.7-fold higher enzyme
activity compared with control was obtained. Moreover, hexanal, octanal, and decanal,
reported as minor sex pheromone components of G. mellonella [25], performed more activity
than control. Studies show that aldehyde-type VOCs have insecticide activity against
some dipterans, such as hexanal and octanal as toxic compounds to Drosophila sechellia
Tsacas and Baechli and D. melanogaster Meigen, respectively [76]. In addition, decanal has
shown toxicity against the scarab beetle Tribolium castaneum Herbst [77], and nonanal has
shown toxicity against S. frugiperda Wlaker [78]. Undecanal was also reported as a repellent
against mosquito Anopheles gambiae (s.l.) [79]. The degradation of these compounds by
GmelAOXs shed light on the key role in the olfaction process of this insect. The fact
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that males present a higher expression of AOXs supports a metabolization of their own
pheromone components. The antennal extracts also showed activity over trans-2-hexenal,
a compound also reported as an insecticide to T. castaneum [80]. Although undecane was
surprisingly active in antennal extracts, it is likely that other enzymes are present in the
antennae, i.e., monooxygenases [81,82], that are capable of transforming the alkane to a
corresponding alcohol (undecanol), and then it is dehydrogenated to the corresponding
aldehyde (undecanal) by alcohol dehydrogenases [30,70]. Bearing this in mind, this study
shows that AOXs presented in antennal extracts were able to metabolize several compounds.
GmelAOX2 could play a more active role in the degradation of aldehyde-type compounds
compared to GmelAOX3 due to its phylogenetic relationship with AtraAOX2 from the
pyralid moth A. transitella. Moreover, we have not had success in the expression of the
active forms of both enzymes GmelAOX2 and GmelAOX3 by using a bacterial expression
system. Other heterologous expression systems (e.g., baculovirus expression system) could
be evaluated in further studies in order to corroborate a pheromone-biased degradation of
these enzymes.

In conclusion, we have demonstrated that two novel AOX transcripts are expressed in
G. mellonella, and GmelAOX2 has a sex-biased expression. These enzymes have a crucial role
in metabolizing sex pheromone compounds as well as plant-derived aldehydes, which are
related to honeycombs and the life cycle of G. mellonella. Thus, new strategies for integrated
pest management are required, and in the case of G. mellonella, the search for antagonist
compounds capable of inhibiting AOXs represents an alternative.
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