Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = AISI 316L stainless steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12003 KiB  
Article
Corrosion Mechanism of Austenitic Stainless Steel in Simulated Small Modular Reactor Primary Water Chemistry
by Iva Betova, Martin Bojinov and Vasil Karastoyanov
Metals 2025, 15(8), 875; https://doi.org/10.3390/met15080875 - 4 Aug 2025
Viewed by 78
Abstract
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis [...] Read more.
In the present paper, impedance spectroscopy was employed to study the corrosion and anodic oxidation of stainless steel (AISI 316L at 280 °C/9 MPa) in contact with the boron-free primary coolant of a small modular reactor at two levels of KOH concentration. Analysis of impedance spectra with a distribution of relaxation times revealed contributions from the oxide layer and its interface with the coolant. Glow-Discharge Optical Emission Spectroscopy (GDOES) was used to estimate the thickness and elemental composition of the formed oxides. A quantitative interpretation of the impedance data using the Mixed-Conduction Model allowed us to estimate the kinetic and transport parameters of oxide growth and dissolution, as well as iron dissolution through oxide. The film thicknesses following exposure agreed with ex-situ analyses. The obtained corrosion and release rates were used for comparison with laboratory and industrial data in nominal pressurized water reactor primary coolants. Full article
(This article belongs to the Special Issue Advances in Corrosion and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

19 pages, 4156 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 - 1 Aug 2025
Viewed by 161
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
Show Figures

Figure 1

7 pages, 10330 KiB  
Proceeding Paper
Evaluation of the Corrosion Behavior of Low-Temperature Nitrided AISI 316L Austenitic Stainless Steel
by Francesca Borgioli
Eng. Proc. 2025, 105(1), 1; https://doi.org/10.3390/engproc2025105001 - 1 Aug 2025
Viewed by 101
Abstract
Nitriding of austenitic stainless steels at low temperatures hinders the precipitation of chromium nitrides and causes the formation of a supersaturated solid solution of nitrogen atoms in the austenite lattice, known as expanded austenite. In this study, the corrosion behavior of low-temperature nitrided [...] Read more.
Nitriding of austenitic stainless steels at low temperatures hinders the precipitation of chromium nitrides and causes the formation of a supersaturated solid solution of nitrogen atoms in the austenite lattice, known as expanded austenite. In this study, the corrosion behavior of low-temperature nitrided AISI 316L is investigated in a NaCl solution using different electrochemical techniques, electrochemical impedance spectroscopy, cyclic potentiodynamic polarization and galvanostatic tests, in order to assess the effect of test conditions. The nitrided layer has an enhanced resistance to localized corrosion, but its ability to repassivate depends on the damage extent caused by the different tests. Full article
Show Figures

Figure 1

21 pages, 4865 KiB  
Article
Impact of Laser Power and Scanning Speed on Single-Walled Support Structures in Powder Bed Fusion of AISI 316L
by Dan Alexander Gallego, Henrique Rodrigues Oliveira, Tiago Cunha, Jeferson Trevizan Pacheco, Oksana Kovalenko and Neri Volpato
J. Manuf. Mater. Process. 2025, 9(8), 254; https://doi.org/10.3390/jmmp9080254 - 30 Jul 2025
Viewed by 275
Abstract
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing [...] Read more.
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing processes, L-PBF stands out, paving the way for the execution of part designs with geometries previously considered unfeasible. Despite offering several advantages, parts with overhang features require the use of support structures to provide dimensional stability of the part. Support structures achieve this by resisting residual stresses generated during processing and assisting heat dissipation. Although the scientific community acknowledges the role of support structures in the success of L-PBF manufacturing, they have remained relatively underexplored in the literature. In this context, the present work investigated the impact of laser power and scanning speed on the dimensioning, integrity and tensile strength of single-walled block type support structures manufactured in AISI 316L stainless steel. The method proposed in this work is divided in two stages: processing parameter exploration, and mechanical characterization. The results indicated that support structures become more robust and resistant as laser power increases, and the opposite effect is observed with an increment in scanning speed. In addition, defects were detected at the interfaces between the bulk and support regions, which were crucial for the failure of the tensile test specimens. For a layer thickness corresponding to 0.060 mm, it was verified that the combination of laser power and scanning speed of 150 W and 500 mm/s resulted in the highest tensile resistance while respecting the dimensional deviation requirement. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

17 pages, 7068 KiB  
Article
Effect of Ni-Based Buttering on the Microstructure and Mechanical Properties of a Bimetallic API 5L X-52/AISI 316L-Si Welded Joint
by Luis Ángel Lázaro-Lobato, Gildardo Gutiérrez-Vargas, Francisco Fernando Curiel-López, Víctor Hugo López-Morelos, María del Carmen Ramírez-López, Julio Cesar Verduzco-Juárez and José Jaime Taha-Tijerina
Metals 2025, 15(8), 824; https://doi.org/10.3390/met15080824 - 23 Jul 2025
Viewed by 317
Abstract
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic [...] Read more.
The microstructure and mechanical properties of welded joints of API 5L X-52 steel plates cladded with AISI 316L-Si austenitic stainless steel were evaluated. The gas metal arc welding process with pulsed arc (GMAW-P) and controlled arc oscillation were used to join the bimetallic plates. After the root welding pass, buttering with an ERNiCrMo-3 filler wire was performed and multi-pass welding followed using an ER70S-6 electrode. The results obtained by optical and scanning electron microscopy indicated that the shielding atmosphere, welding parameters, and electric arc oscillation enabled good arc stability and proper molten metal transfer from the filler wire to the sidewalls of the joint during welding. Vickers microhardness (HV) and tensile tests were performed for correlating microstructural and mechanical properties. The mixture of ERNiCrMo-3 and ER70S-6 filler materials presented fine interlocked grains with a honeycomb network shape of the Ni–Fe mixture with Ni-rich grain boundaries and a cellular-dendritic and equiaxed solidification. Variation of microhardness at the weld metal (WM) in the middle zone of the bimetallic welded joints (BWJ) is associated with the manipulation of the welding parameters, promoting precipitation of carbides in the austenitic matrix and formation of martensite during solidification of the weld pool and cooling of the WM. The BWJ exhibited a mechanical strength of 380 and 520 MPa for the yield stress and ultimate tensile strength, respectively. These values are close to those of the as-received API 5L X-52 steel. Full article
Show Figures

Figure 1

22 pages, 11295 KiB  
Article
Process-Driven Structural and Property Evolution in Laser Powder Bed Fusion of a Newly Developed AISI 316L Stainless Steel
by Amir Behjat, Morteza Shamanian, Fazlollah Sadeghi, Mohammad Hossein Mosallanejad and Abdollah Saboori
Materials 2025, 18(14), 3343; https://doi.org/10.3390/ma18143343 - 16 Jul 2025
Viewed by 346
Abstract
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser [...] Read more.
The lack of new materials with desired processability and functional characteristics remains a challenge for metal additive manufacturing (AM). Therefore, in this work, a new promising AISI 316L-based alloy with better performance compared to the commercially available one is developed via the laser powder bed fusion (L-PBF) process. Moreover, establishing process–structure–properties linkages is a critical point that should be evaluated carefully before adding newly developed alloys into the AM market. Hence, the current study investigates the influences of various process parameters on the as-built quality and microstructure of the newly developed alloy. The results revealed that increasing laser energy density led to reduced porosity and surface roughness, likely due to enhanced melting and solidification. Microstructural analysis revealed a uniform distribution of copper within the austenite phase without forming any agglomeration or secondary phases. Electron backscatter diffraction analysis indicated a strong texture along the build direction with a gradual increase in Goss texture at higher energy densities. Grain boundary regions exhibited higher local misorientation and dislocation density. These findings suggest that changing the process parameters of the L-PBF process is a promising method for developing tailored microstructures and chemical compositions of commercially available AISI 316L stainless steel. Full article
Show Figures

Figure 1

24 pages, 11312 KiB  
Article
Effect of Thermomechanical Processing on Porosity Evolution and Mechanical Properties of L-PBF AISI 316L Stainless Steel
by Patrik Petroušek, Róbert Kočiško, Andrea Kasperkevičová, Dávid Csík and Róbert Džunda
Metals 2025, 15(7), 789; https://doi.org/10.3390/met15070789 - 12 Jul 2025
Viewed by 325
Abstract
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h [...] Read more.
Thermomechanical processing has a significant impact on the porosity and mechanical properties of AISI 316L stainless steel produced by laser powder bed fusion (L-PBF). This work evaluated the effect of three heat treatment conditions: as-built (HT0), annealed at 650 °C for 3 h with air cooling (HT1), and annealed at 1050 °C for 1 h followed by water quenching (HT2), combined with cold and hot rolling at different strain levels. The most pronounced improvement was observed after 20% hot rolling followed by water quenching (HR + WQ), which reduced porosity to 0.05% and yielded the most spherical pores, with a circularity factor (fcircle) of 0.90 and an aspect ratio (AsR) of 1.57. At elevated temperatures, the matrix becomes more pliable, which promotes pore closure and helps reduce stress concentrations. On the other hand, applying heat treatment without causing deformation resulted in the pores growing and increasing porosity in the build direction. The fractography supported these findings, showing a transition from brittle to more ductile fracture surfaces. Heat treatment combined with plastic deformation effectively reduced internal defects and improved both structural integrity and strength. Full article
(This article belongs to the Special Issue Metal Forming and Additive Manufacturing)
Show Figures

Figure 1

17 pages, 5661 KiB  
Article
Electrophoretic Co-Deposition of Chitosan and Cu-Doped Bioactive Glass 45S5 Composite Coatings on AISI 316L Stainless Steel Substrate for Biomedical Applications
by Sayed Mohammad Reza Mahmoudabadi, Abbas Bahrami, Mohammad Saeid Abbasi, Mojtaba Rajabinezhad, Benyamin Fadaei Ardestani and Farnaz Heidari Laybidi
Crystals 2025, 15(6), 549; https://doi.org/10.3390/cryst15060549 - 8 Jun 2025
Cited by 1 | Viewed by 1411
Abstract
The growing demands for highly functional biomedical implants necessitate introducing innovative and easy-to-apply surface functionalization techniques, especially when it comes to stainless steel substrates. This study investigated the co-deposition of chitosan and Cu-doped bioactive glass on AISI 316L steel surfaces, with the latter [...] Read more.
The growing demands for highly functional biomedical implants necessitate introducing innovative and easy-to-apply surface functionalization techniques, especially when it comes to stainless steel substrates. This study investigated the co-deposition of chitosan and Cu-doped bioactive glass on AISI 316L steel surfaces, with the latter providing a matrix in which fine bioactive glass powders are distributed. Cu-doping into the matrix of bioactive glass was conducted to assess its influence on the bioactivity, antibacterial properties, and structural integrity of the coating. The microstructure, mechanical properties, phase composition, and surface roughness of coated specimens were investigated through a scanning electron microscope (SEM), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), contact angles, adhesion tensile tests, and laser profilometry analyses. Results of adhesion tests indicated that Cu addition did not have a major implication for the mechanical properties of the coating layers. Results also revealed that the Cu-doped bioactive glass featured a hydrophilic and a rather uneven surface, both being upsides for biomedical properties. The cytotoxicity and antibacterial assessments showed promising cell viability and antibacterial properties of the deposited coatings. Full article
Show Figures

Figure 1

23 pages, 6167 KiB  
Article
Microstructural Characterization of Martensitic Stainless Steel Blades Manufactured by Directed Energy Deposition (DED)
by Caroline Cristine de Andrade Ferreira, Rafael Humberto Mota de Siqueira, Johan Grass Nuñez, Fábio Edson Mariani, Reginaldo Teixeira Coelho, Daolun Chen and Milton Sérgio Fernandes de Lima
Metals 2025, 15(6), 612; https://doi.org/10.3390/met15060612 - 29 May 2025
Viewed by 625
Abstract
This study explores the feasibility of manufacturing martensitic stainless steel turbine blades via a directed energy deposition (DED) process using a powder precursor. Five different blade geometries were fabricated using AISI 431 L martensitic stainless steel deposited onto an AISI 304 L austenitic [...] Read more.
This study explores the feasibility of manufacturing martensitic stainless steel turbine blades via a directed energy deposition (DED) process using a powder precursor. Five different blade geometries were fabricated using AISI 431 L martensitic stainless steel deposited onto an AISI 304 L austenitic stainless steel substrate. The produced components were characterized in terms of microstructure, surface roughness, porosity, hardness, and residual stresses in both the as-processed condition and after heat treatment at 260 and 593 °C. Optical and scanning electron microscopy (SEM) analyses revealed a predominantly martensitic microstructure with well-defined grain boundaries. Heat treatment influenced the phase distribution and grain size, but did not have a significant impact on the surface roughness or modulus of elasticity. Tomographic assessments confirmed the absence of aligned or coalesced pores, which are critical sites for crack initiation. Residual stress analysis indicated the presence of compressive stresses in all blade geometries, which were effectively relieved by heat treatment. In addition, salt spray corrosion tests demonstrated that the corrosion resistance of the manufactured blades was similar to that of the base material. These findings suggest that DED is a viable technique for producing and repairing turbine blades, providing structural integrity and mechanical properties suitable for high-performance applications. Full article
Show Figures

Figure 1

14 pages, 4177 KiB  
Article
Comparative Evaluation of Corrosion Resistance of AISI 316L and Ti6Al4V Dental Materials Under Simulated Inflammatory Conditions
by Mojca Slemnik
Materials 2025, 18(10), 2243; https://doi.org/10.3390/ma18102243 - 12 May 2025
Viewed by 441
Abstract
Titanium and its alloys, as well as stainless steel, are commonly used materials for implants in the human body due to their excellent biocompatibility, corrosion resistance, and mechanical properties. However, the long-term performance of these materials in the oral cavity can be affected [...] Read more.
Titanium and its alloys, as well as stainless steel, are commonly used materials for implants in the human body due to their excellent biocompatibility, corrosion resistance, and mechanical properties. However, the long-term performance of these materials in the oral cavity can be affected by the complex oral environment, including the ingestion of food, beverages, and oral hygiene products, leading to the presence of various ions, pH fluctuations, and inflammatory processes. In this study, the corrosion properties of two biocompatible materials, Ti6Al4V and AISI 316L stainless steel, are investigated under varying oral inflammatory conditions. Using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), SEM, and EDS analysis, the corrosion behaviour of both materials was analysed in environments simulating mild and severe inflammation. Results indicate that Ti6Al4V exhibits superior corrosion resistance at low H2O2 concentrations mimicking mild inflammation, with significantly lower corrosion rates compared to AISI 316L. However, at higher H2O2 concentrations, which correspond to severe inflammation, AISI 316L shows better resistance despite its susceptibility to pitting corrosion. Both alloys show reduced passivation after 72 h, with corrosion products accumulating on the surface after 96 h, contributing to repassivation. These results emphasise the need for individualized material selection in dental applications based on a patient’s susceptibility to oral inflammation. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

19 pages, 4407 KiB  
Article
Heat Transfer and Pressure Loss Performance of Additively Manufactured Metamaterials in Annular Channels
by Emanuele Vaglio, Federico Scalzo, Marco Sortino and Luca Casarsa
Energies 2025, 18(10), 2486; https://doi.org/10.3390/en18102486 - 12 May 2025
Viewed by 456
Abstract
Additive manufacturing is revolutionizing the production of thermo-fluidic devices by enabling the creation of a wide variety of complex architectures, significantly enhancing performance and efficiency. Nevertheless, the range of structural types investigated to date remains limited, with most studies employing simplified methodologies and [...] Read more.
Additive manufacturing is revolutionizing the production of thermo-fluidic devices by enabling the creation of a wide variety of complex architectures, significantly enhancing performance and efficiency. Nevertheless, the range of structural types investigated to date remains limited, with most studies employing simplified methodologies and constrained operating conditions. This study explores the thermo-hydraulic performance of water-cooled annular channels incorporating BCC, Octahedral, and gyroid structures fabricated from AISI 316L stainless steel using Laser Powder Bed Fusion. The samples were experimentally tested across a broad spectrum of mass flow rates using a custom-designed test rig to evaluate heat transfer and pressure loss performance, and extensive morphological characterization was conducted to correlate the thermo-fluid dynamic behavior with the geometric and surface features specific to the manufacturing process. The investigation revealed that reticular configurations are preferable when low pressure losses are required, whereas gyroids are more suitable for high thermal loads. The topology of the structures was shown to be a key factor influencing overall performance, emphasizing the importance of selecting the appropriate structure for each specific application and the significant potential for performance improvements through the development of tailored metamaterials. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

16 pages, 3392 KiB  
Article
DED Powder Modification for Single-Layer Coatings on High-Strength Steels
by Unai Garate, Enara Mardaras, Jon Arruabarrena, Garikoitz Artola, Aitzol Lamikiz and Luis Norberto López de Lacalle
J. Manuf. Mater. Process. 2025, 9(5), 152; https://doi.org/10.3390/jmmp9050152 - 6 May 2025
Cited by 1 | Viewed by 586
Abstract
In the design of L-DED (laser-directed energy deposition) cladding processes, the chemical composition of the metallic powders is typically assumed to match that of the intended coating. However, during the deposition of the first layer, dilution with the substrate alters the weld metal [...] Read more.
In the design of L-DED (laser-directed energy deposition) cladding processes, the chemical composition of the metallic powders is typically assumed to match that of the intended coating. However, during the deposition of the first layer, dilution with the substrate alters the weld metal composition, deviating from the nominal powder chemistry. Although the application of multiple layers can gradually reduce this dilution effect, it introduces additional complexity and processing time. This study proposes an alternative strategy to counteract substrate dilution from the very first deposited layer, eliminating the need for multilayer coatings. Specifically, to achieve a corrosion-resistant monolayer of AISI 316L stainless steel on a high-strength, quenched-and-tempered AISI 4140 steel substrate, a dilution-compensating alloy powder is added to the standard AISI 316L feedstock. Single-layer coatings, both with and without compensation, were evaluated in terms of chemical composition, microstructure, and corrosion resistance. The results show that unmodified coatings suffered a chromium depletion of approximately 2 wt.%, leading to a reduced pitting potential of Ep = 725 ± 6 mV in synthetic seawater. In contrast, the use of the compensation alloy preserved chromium content and significantly improved corrosion resistance, achieving a pitting potential of Ep = 890 ± 9 mV. Full article
(This article belongs to the Special Issue Advances in Directed Energy Deposition Additive Manufacturing)
Show Figures

Figure 1

25 pages, 3819 KiB  
Article
Application of Machine Learning in Predicting Quality Parameters in Metal Material Extrusion (MEX/M)
by Karim Asami, Maxim Kuehne, Tim Röver and Claus Emmelmann
Metals 2025, 15(5), 505; https://doi.org/10.3390/met15050505 - 30 Apr 2025
Viewed by 439
Abstract
Additive manufacturing processes such as the material extrusion of metals (MEX/M) enable the production of complex and functional parts that are not feasible to create through traditional manufacturing methods. However, achieving high-quality MEX/M parts requires significant experimental and financial investments for suitable parameter [...] Read more.
Additive manufacturing processes such as the material extrusion of metals (MEX/M) enable the production of complex and functional parts that are not feasible to create through traditional manufacturing methods. However, achieving high-quality MEX/M parts requires significant experimental and financial investments for suitable parameter development. In response, this study explores the application of machine learning (ML) to predict the surface roughness and density in MEX/M components. The various models are trained with experimental data using input parameters such as layer thickness, print velocity, infill, overhang angle, and sinter profile enabling precise predictions of surface roughness and density. The various ML models demonstrate an accuracy of up to 97% after training. In conclusion, this research showcases the potential of ML in enhancing the efficiency in control over component quality during the design phase, addressing challenges in metallic additive manufacturing, and facilitating exact control and optimization of the MEX/M process, especially for complex geometrical structures. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Graphical abstract

13 pages, 2998 KiB  
Article
Study of Surface Treatment by Ionic Plasma and Self-Protective Pastes of AISI 304 and 316L Stainless Steels: Chemical, Microstructural, and Nanohardness Evaluation
by Francisco Martínez-Baltodano, Juan C. Díaz-Guillén, Lizsandra López-Ojeda, Gregorio Vargas-Gutiérrez and Wilian Pech-Rodríguez
Lubricants 2025, 13(5), 195; https://doi.org/10.3390/lubricants13050195 - 24 Apr 2025
Viewed by 569
Abstract
This work studied the effect of self-protective paste nitriding (SPN) and ion plasma nitriding (IPN) on the surface chemistry, microstructure, and nanohardness of AISI 304 and 316L stainless steels, with both treated at 440 °C for 5 h. Surface modifications analyzed using SEM [...] Read more.
This work studied the effect of self-protective paste nitriding (SPN) and ion plasma nitriding (IPN) on the surface chemistry, microstructure, and nanohardness of AISI 304 and 316L stainless steels, with both treated at 440 °C for 5 h. Surface modifications analyzed using SEM and nanoindentation revealed distinct outcomes. SPN induced an oxynitriding effect due to the oxidation properties of the pastes, forming Fe3O4 and FexC phases, while IPN produced an expanded austenite layer. Both methods enhanced surface nanohardness, but SPN showed superior results. For 316L SS, SPN increased nanohardness by 367.81% (6.83 GPa) compared to a 133.5% increase (3.41 GPa) with IPN. For 304 SS, SPN improved nanohardness by 26% (2.23 GPa), whereas IPN reduced it by 48% (0.92 GPa). These findings highlight SPN’s potential as an effective anti-wear treatment, particularly for 316L SS. The SPN process utilized a eutectic mixture of sodium cyanate and sodium carbonate, while IPN employed a N2:H2 (1:1) gas mixture. SEM analyses confirmed the formation of γ-Fe(N) phases, indicating dispersed iron nitrides (FeN, Fe3N, Fe4N). SPN’s simultaneous oxidation and nitrocarburization led to an oxide layer above the nitride diffusion layer, enhancing mechanical properties through iron oxides (Fe3O4) and carbides (FexC). Comparative analysis showed that AISI 316L exhibited better performance than AISI 304, underscoring SPN’s effectiveness for surface modification. Full article
(This article belongs to the Special Issue Structural Evolution and Wear of Steels)
Show Figures

Figure 1

24 pages, 9175 KiB  
Article
Investigating the Effects of H2 Additions to Helium and Argon Shielding Gases on TIG-Welded AISI 316L Stainless Steel
by Samir Khrais, Tariq Darabseh, Awsan Mohammed and Ahmad Abdel Al
J. Compos. Sci. 2025, 9(5), 199; https://doi.org/10.3390/jcs9050199 - 22 Apr 2025
Viewed by 709
Abstract
Adding hydrogen (H2) to shielding gas in Tungsten Inert Gas (TIG) welding has garnered attention for its potential to enhance weld quality. This study explores the effects of H2 and helium (He) content on AISI 316L stainless steel welding, focusing [...] Read more.
Adding hydrogen (H2) to shielding gas in Tungsten Inert Gas (TIG) welding has garnered attention for its potential to enhance weld quality. This study explores the effects of H2 and helium (He) content on AISI 316L stainless steel welding, focusing on their influence on weld bead geometry, microstructural properties, and mechanical properties. The H2 (1.5%, 3%, 4.5%) and He (10%, 20%, 30%) concentrations were evaluated in a shielding gas primarily composed of argon (Ar). The study underscores the need for precise gas blend control to balance enhanced performance with material safety. These findings offer insights into optimizing welding parameters for AISI 316L, with implications for broader applications in industries demanding high quality. The result shows that H2 (1.5–3.0%) improves penetration, geometry, and surface finish, while He (10–20%) enhances arc stability and smoothness; however, excessive levels of H2 (>4.5%) cause defects. Optimal mechanical properties (UTS: 714.54 MPa, YS: 449.03 MPa, hardness: 93.34 HRB, impact toughness: 34.45 J) are achieved with 3% H2, 30% He, and 150 A arc current. Full article
(This article belongs to the Special Issue Welding and Friction Stir Processes for Composite Materials)
Show Figures

Figure 1

Back to TopTop