Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = AISI 1018 steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 10906 KiB  
Article
Individual and Joint Effect of Oleic Acid Imidazoline and CeCl3 on Carbon Steel Corrosion in CO2-Saturated Brine Solution
by Tihomir Borko, Gordana Bilić, Katarina Žbulj and Helena Otmačić Ćurković
Coatings 2025, 15(1), 93; https://doi.org/10.3390/coatings15010093 - 15 Jan 2025
Cited by 2 | Viewed by 1079
Abstract
In production and transportation systems of the oil industry, brine solutions contain high concentrations of chloride and dissolved CO2, which is a very corrosive medium to which carbon steel is exposed. Therefore, finding new effective and environmentally friendly corrosion inhibitors is [...] Read more.
In production and transportation systems of the oil industry, brine solutions contain high concentrations of chloride and dissolved CO2, which is a very corrosive medium to which carbon steel is exposed. Therefore, finding new effective and environmentally friendly corrosion inhibitors is of great importance. The effect of CeCl3 (in concentrations from 5 mg dm−3 to 20 mg dm−3) and oleic acid imidazoline (IOA) (in concentrations from 5 mg dm−3 to 20 mg dm−3) separately and their mixtures (in concentrations from 5 mg dm−3 to 15 mg dm−3 of CeCl3 and from 5 mg dm−3 to 20 mg dm−3 of IOA) as corrosion inhibitors of AISI 1018 carbon steel corrosion in simulated brine solution saturated with CO2 at 60 °C were examined by means of weight-loss testing, electrochemical measurements (polarization resistance, linear polarization with Tafel extrapolation, electrochemical impedance spectroscopy) and surface analyses (scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses, Raman spectroscopy and X-ray diffraction). All test methods showed a higher efficiency of compounds′ mixtures (from 62.77% to 97.94%) and a higher degree of corrosion protection compared to the action of individual compounds (efficiency from 3.43% to 94.61% for IOA and from 57.58% to 96.27% for CeCl3). Imidazoline, a common corrosion inhibitor in CO2-saturated systems, most likely forms a surface film with voids via its adsorption on steel surface, while cerium carbonate tends to fill these voids by creating a more compact film. In this way, a denser and thicker surface film is formed. Full article
Show Figures

Figure 1

12 pages, 2940 KiB  
Article
Synthesis and Electrochemical Properties of Oleylamine as a Sour Saline Corrosion Inhibitor Under Laminar Flow at 40 °C
by Jorge Alvarez-Malpica, Karime Carrera-Gutiérrez, Manuel Chinchillas-Chinchillas, Manuel Herrera Zaldivar, Alfredo Martinez-Garcia and Victor M. Orozco-Carmona
Materials 2024, 17(21), 5284; https://doi.org/10.3390/ma17215284 - 30 Oct 2024
Viewed by 1112
Abstract
In this study, the synthesis of a long-chain aliphatic amino compound and its sour corrosion inhibition properties were reported. Oleylamine was obtained through the reaction of 4-(Aminomethyl) pyridine with 1-chloro-octadecane. The identification and characterization of reaction products were carried out through Fourier transform [...] Read more.
In this study, the synthesis of a long-chain aliphatic amino compound and its sour corrosion inhibition properties were reported. Oleylamine was obtained through the reaction of 4-(Aminomethyl) pyridine with 1-chloro-octadecane. The identification and characterization of reaction products were carried out through Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectroscopy (GC-MS). Oleylamine was tested as a sour corrosion inhibitor for steels. Different concentrations of oleylamine (0, 5, 10, 25, and 100 ppm) in a sour saline electrolyte were analyzed. The dynamic anticorrosive behavior of oleylamine on carbon mild steel (AISI 1018) surfaces was evaluated using a laminar flow of 100 rpm and tested with potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) measurements. After electrochemical testing, the surface of the steel specimens that were used was characterized with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The electrochemical results of the anticorrosive efficiency of oleylamine for steel showed an exponential behavior as a function of inhibitor concentration. At a concentration of 20 ppm of the inhibitor, the anticorrosive efficiency did not show any significant changes. However, at 100 ppm of the inhibitor, an efficiency of over 95% was achieved. After the electrochemical tests, the surface of the steel samples with the inhibitor revealed the formation of an inhibitor layer that prevented the corrosion of the steel. Full article
(This article belongs to the Special Issue Corrosion Electrochemistry and Protection of Metallic Materials)
Show Figures

Graphical abstract

12 pages, 30181 KiB  
Article
Enhanced Fracture Toughness of WC-CoCr Thermally Sprayed Coatings by the Addition of NiCrFeSiBC and Mo and Its Influence on Sliding Wear Behavior
by José de Jesús Ibarra, Marco Aurelio González, Eduardo Rodríguez, Gabriel Israel Vásquez, Ariosto Medina, José Bernal, Claudio Aguilar and Eduardo Enrique Velez
Coatings 2024, 14(9), 1207; https://doi.org/10.3390/coatings14091207 - 19 Sep 2024
Cited by 1 | Viewed by 1364
Abstract
Wear is a major issue in industry, particularly with metal components. Therefore, it is crucial to investigate methods that offer increased resistance to this phenomenon. In this research, three coating systems (pure WC-CoCr and WC-CoCr/NiCrFeSiBC+Mo, 88:12 and 83:17 wt.%) were thermally sprayed on [...] Read more.
Wear is a major issue in industry, particularly with metal components. Therefore, it is crucial to investigate methods that offer increased resistance to this phenomenon. In this research, three coating systems (pure WC-CoCr and WC-CoCr/NiCrFeSiBC+Mo, 88:12 and 83:17 wt.%) were thermally sprayed on an AISI 1018 steel substrate through the High-Velocity Oxygen Fuel (HVOF) process. The coatings were characterized using a field emission scanning electron microscope (FESEM) equipped with the energy dispersive spectroscope (EDS) and X-ray diffractometry (XRD). An analysis of the wear rate for ball-on-flat linear reciprocating sliding tribological tests for the coatings was also carried out. The coating microstructure presents well-dispersed NiCrFeSiBC splats. The WC-CoCr/NiCrFeSiBC+Mo, 88:12, system has the highest wear resistance, decreasing by 30.2% at high loads compared to commercial WC-CoCr CERMETs, and also exhibits the highest fracture toughness. Analysis of wear tracks shows that the material removal at all charges occurred mainly by an abrasive wear mechanism. Full article
Show Figures

Figure 1

20 pages, 9139 KiB  
Article
Assessment of the Amino Acid L-Histidine as a Corrosion Inhibitor for a 1018 Carbon Steel in Aqueous Sodium Chloride Solution
by Milena Jacinto da Silva Moura, Roberta Bastos Vasques, Saulo Jose de melo Magalhães, Francisco Wagner de Queiroz Almeida Neto, Pedro de Lima Neto, Luís Paulo Mourão dos Santos, Mauro Andres Cerra Florez, Gemma Fargas Ribas, Samuel Lucas Santos Medeiros, Francisco Carlos Carneiro Soares Salomão, Eduardo Bedê Barros and Walney Silva Araújo
Crystals 2024, 14(8), 703; https://doi.org/10.3390/cryst14080703 - 2 Aug 2024
Cited by 1 | Viewed by 1830
Abstract
The amino acid L-histidine, which has an imidazole ring, was investigated as a corrosion inhibitor for AISI 1018 carbon steel in chloride solution based on the effectiveness of inhibitors containing imidazole in their composition. A neutral environment was chosen for this study due [...] Read more.
The amino acid L-histidine, which has an imidazole ring, was investigated as a corrosion inhibitor for AISI 1018 carbon steel in chloride solution based on the effectiveness of inhibitors containing imidazole in their composition. A neutral environment was chosen for this study due to the scarcity of research on this amino acid in this environment type. Concentrations of 250, 500, and 1000 ppm were evaluated. Various methods were used to determine inhibition effectiveness, including mass loss, open circuit potential, linear potentiodynamic polarization, and electrochemical impedance spectroscopy. For mass loss, the inhibition efficiency varied from 83 to 88% according to the increase in concentration. For the electrochemical tests, the efficiency variation ranged from 62 to 90% with increasing amino acid concentration. Furthermore, a simulation analysis using quantum chemical calculations within the scope of Density Functional Theory (DFT) revealed that histidine’s nucleophilic character is crucial for its corrosion inhibitory capacity in an aqueous medium at pH 7. The inhibition efficiency increased with increasing concentration in a neutral medium, following the Langmuir isotherm for the adsorption of L-histidine. Additional studies were carried out using Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TGA). Analysis of the substrate surface by scanning electron microscopy (SEM) showed greater preservation with the addition of L-histidine, confirming its adsorption on the steel. Atomic Force Microscopy (AFM) also demonstrated an improvement in surface roughness in the presence of amino acids compared to the medium without an inhibitor. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Properties of Crystalline Materials)
Show Figures

Figure 1

14 pages, 4443 KiB  
Article
The Effect of the Environment on the Case Hardening Characteristics of AISI 1018 Steel during Cassava Leaf Pack Cyaniding
by Renee Erica Gordon, Egwu Eric Kalu, Adelana Rasak Adetunji, Dorr Campbell and Peter N. Kalu
Alloys 2024, 3(1), 1-14; https://doi.org/10.3390/alloys3010001 - 31 Dec 2023
Cited by 1 | Viewed by 2148
Abstract
As part of a comprehensive study on eco-friendly processing techniques, the influence of the heat treatment environment on the case hardening of AISI 1018 steel using pulverized cassava leaf was studied. The process was carried out at two different temperatures (850 °C and [...] Read more.
As part of a comprehensive study on eco-friendly processing techniques, the influence of the heat treatment environment on the case hardening of AISI 1018 steel using pulverized cassava leaf was studied. The process was carried out at two different temperatures (850 °C and 950 °C) and under three environmental conditions: Process 1, the control experiment, was carried out in air only; in Process 2, the medium comprised pulverized cassava leaves; and in Process 3 a combination of pulverized cassava leaves plus barium carbonate (BaCO3) was used as an energizer (CBC mixture). Vickers microhardness testing and scanning electron microscopy were used to evaluate the effect of the processing environment on the case hardening of the steel. As expected, regardless of the processing temperature, Process 1 resulted in little or no hardening of the steel surface. However, notable case hardening occurred when the steel specimens were subjected to either Process 2 or Process 3. Furthermore, the inclusion of barium carbonate in Process 3 significantly enhanced the case hardening effectiveness of the cassava leaf in terms of the rate of and maximum hardness achieved. A maximum enhancement was observed at 950 °C. After 1 h, the increase in hardness was 160% and 280% for Process 2 and Process 3, respectively. Upon increasing the processing time to 5 h, the increase in hardness due to Process 2 was raised to 254%, while that of Process 3 remained at approximately 280%. The diffusivity of AISI 1018 was calculated using the microhardness data. The diffusivity was highest in Process 2 samples with values of 1.568 × 10−9 m2/s at 850 °C and 1.893 × 10−9 m2/s at 950 °C. Effective case hardening of AISI 1018 steel was carried out using the medium of cassava leaf, without the addition of barium carbonate (BaCO3) as an energizer. Full article
Show Figures

Graphical abstract

16 pages, 7274 KiB  
Article
Low-Stress Abrasion of Novel Ni-P-Tribaloy Composite Coating
by Ahmed Mabrouk, Zoheir Farhat and Md. Aminul Islam
Coatings 2023, 13(9), 1647; https://doi.org/10.3390/coatings13091647 - 20 Sep 2023
Cited by 1 | Viewed by 1780
Abstract
Degradation of industrial machinery through wear can be mitigated with the deposition of protective coatings to reduce maintenance costs and prolong their service lifespans. Electroless nickel-based composite coatings is one possible method used to provide this protection. The addition of Tribaloy (CoMoCrSi alloy) [...] Read more.
Degradation of industrial machinery through wear can be mitigated with the deposition of protective coatings to reduce maintenance costs and prolong their service lifespans. Electroless nickel-based composite coatings is one possible method used to provide this protection. The addition of Tribaloy (CoMoCrSi alloy) particles has been found to produce composite coatings with high toughness. In this work, electroless Ni-P-Tribaloy composite coatings were plated on AISI 1018 steel substrates and subjected to low-stress abrasion tests following ASTM G65 standards to investigate the abrasion of the coating. The test was performed at 10 revolution increments, with a 45 N applied load, until coating failure was observed and the measured abrasion was reported as volume loss. The two Ni-P-Tribaloy coating samples lasted for 90 and 100 revolutions, exhibiting a wear rate of 0.170 mm3 per revolution, compared to 0.135 mm3 per revolution for the Ni-P coatings. The abrasive wear mechanism in the Ni-P-Tribaloy coating was found to be plowing of the matrix around the Tribaloy particles, followed by the removal of the particles once they are protruding, which subsequently contributes to the three-body wear of the coating. The particle removal was accelerated at the coating particle-matrix interface. It is concluded that the size of the Tribaloy is a major factor, and we recommend that further studies be carried out using finer particles to improve the wear resistance of the Ni-P-Tribaloy coating. Full article
Show Figures

Figure 1

22 pages, 33061 KiB  
Article
Erosion–Corrosion of Novel Electroless Ni-P-NiTi Composite Coating
by Rielle Jensen, Zoheir Farhat, Md. Aminul Islam and George Jarjoura
Corros. Mater. Degrad. 2023, 4(1), 120-141; https://doi.org/10.3390/cmd4010008 - 8 Feb 2023
Cited by 4 | Viewed by 3270
Abstract
The lifespan of low-carbon steel petroleum pipelines can often be shortened by the erosion–corrosion damage caused by their service conditions. Applying electroless Ni-P coating is a promising option to protect the steel from the environment due to its high hardness and corrosion resistance. [...] Read more.
The lifespan of low-carbon steel petroleum pipelines can often be shortened by the erosion–corrosion damage caused by their service conditions. Applying electroless Ni-P coating is a promising option to protect the steel from the environment due to its high hardness and corrosion resistance. However, electroless Ni-P has a low toughness but can be increased by the addition of NiTi ductile particles. This work produced electroless Ni-P and Ni-P-NiTi coatings of different thicknesses on AISI 1018 substrates and compared their erosion, corrosion, and erosion–corrosion behaviors. The methodology involved conducting slurry pot erosion–corrosion tests on AISI 1018 steel substrate, the monolithic Ni-P coatings, and the composite Ni-P-NiTi coatings. Erosion resistance was highly influenced by coating thickness, presumably because of the relationship between the erosion-induced compressive stresses and the coating’s as-plated internal stresses. The NiTi nanoparticle addition was highly effective at improving the erosion–corrosion resistance of the coating. Pitting corrosion and cracking were present after erosion–corrosion on the monolithic Ni-P coatings. However, the Ni-P-NiTi composite coating had a relatively uniform material loss. Overall, the AISI 1018 steel substrate had the worst erosion–corrosion resistance and 25 μm thick Ni-P-NiTi coating had the best. Full article
Show Figures

Figure 1

26 pages, 9152 KiB  
Article
A Comparative Study in Forming Behavior of Different Grades of Steel in Cold Forging Backward Extrusion by Integrating Artificial Neural Network (ANN) with Differential Evolution (DE) Algorithm
by Praveenkumar M. Petkar, Vinayak N. Gaitonde, Vinayak N. Kulkarni, Ramesh S. Karnik and João Paulo Davim
Appl. Sci. 2023, 13(3), 1276; https://doi.org/10.3390/app13031276 - 18 Jan 2023
Cited by 5 | Viewed by 1969
Abstract
The cold forging backward extrusion is employed to produce parts that are characterized by better mechanical strength. However, in this process, punches are often prone to breakages because of the large forces encountered in deforming the steel billets. The service life of the [...] Read more.
The cold forging backward extrusion is employed to produce parts that are characterized by better mechanical strength. However, in this process, punches are often prone to breakages because of the large forces encountered in deforming the steel billets. The service life of the punches is affected majorly by the geometrical attributes, the type of steel undergoing deformation, and hence the present investigation focuses on the applications of natural computing algorithms such as artificial neural network (ANN) and differential evolution (DE) optimization algorithm to study the differential influence on the forming behavior of different grades steel and enhance the punch service life. The AISI steel grades, such as AISI 1010, 1018, and 1045, employed extensively in the production of automotive components, have been compared in terms of forming behavior, such as effective stress, strain, strain rate, and punch force. The multi-layer feed-forward ANN architecture was utilized for process modeling with forming responses of finite element (FE) simulations that are strategically planned through the design of experiments (DoE) approach. Considerable variations were found for the effective stress and punch force amongst the steels, while marginal deviations were observed for effective strain and strain rates. Confirmatory experiments were conducted to validate the results of optimal combinations obtained through the DE optimization technique, and the deviations were observed to be in the acceptable range. The cold forging backward extruded components have also been examined for better mechanical soundness through microstructure and micro-hardness analysis that clearly revealed the mechanical integrity and strength enhancement within the forged components. The proposed study would assist the industries engaged in the production of cold-forged steel components in determining the appropriate values of variables to minimize the forming responses and, thus, help in enhancing the life of the tooling. Full article
(This article belongs to the Special Issue Advances in Natural Computing: Methods and Application)
Show Figures

Figure 1

19 pages, 5084 KiB  
Article
4-Phenylcoumarin (4-PC) Glucoside from Exostema caribaeum as Corrosion Inhibitor in 3% NaCl Saturated with CO2 in AISI 1018 Steel: Experimental and Theoretical Study
by Araceli Espinoza-Vázquez, Francisco Javier Rodríguez-Gómez, Ignacio Alejandro Figueroa-Vargas, Araceli Pérez-Vásquez, Rachel Mata, Alan Miralrio, Ricardo Galván-Martínez, Miguel Castro and Ricardo Orozco-Cruz
Int. J. Mol. Sci. 2022, 23(6), 3130; https://doi.org/10.3390/ijms23063130 - 15 Mar 2022
Cited by 3 | Viewed by 2656
Abstract
The corrosion inhibition of 5-O-β-D-glucopyranosyl-7-methoxy-3′,4′-dihydroxy-4-phenylcoumarin (4-PC) in AISI 1018 steel immersed in 3% NaCl + CO2 was studied by electrochemical impedance spectroscopy (EIS). The results showed that, at just 10 ppm, 4-PC exerted protection against corrosion with ղ [...] Read more.
The corrosion inhibition of 5-O-β-D-glucopyranosyl-7-methoxy-3′,4′-dihydroxy-4-phenylcoumarin (4-PC) in AISI 1018 steel immersed in 3% NaCl + CO2 was studied by electrochemical impedance spectroscopy (EIS). The results showed that, at just 10 ppm, 4-PC exerted protection against corrosion with ղ = 90% and 97% at 100 rpm. At static conditions, the polarization curves indicated that, at 5 ppm, the inhibitor presented anodic behavior, while at 10 and 50 ppm, there was a cathodic-type inhibitor. The inhibitor adsorption was demonstrated to be chemisorption, according to the Langmuir isotherm for 100 and 500 rpm. By means of SEM–EDS, the corrosion inhibition was demonstrated, as well as the fact that the organic compound was effective for up to 72 h of immersion. At static conditions, dispersion-corrected density functional theory results reveal that the chemical bonds established by the phenyl group of 4-PC are responsible of the chemisorption on the steel surface. According with Fukui reactivity indices, the molecules adsorbed on the metal surface provide a protective cover against nucleophilic and electrophilic attacks, pointing to the corrosion inhibition properties of 4-PC. Full article
Show Figures

Figure 1

13 pages, 4209 KiB  
Article
Partially Deacetylated and Fibrillated Shrimp Waste-Derived Chitin as Biopolymer Emulsifier for Green Cutting Fluids—Towards a Cleaner Production
by Oscar Aguilar-Rosas, Stephany Blanco, Mariana Flores, Keiko Shirai and Leonardo Israel Farfan-Cabrera
Polymers 2022, 14(3), 525; https://doi.org/10.3390/polym14030525 - 28 Jan 2022
Cited by 5 | Viewed by 3222
Abstract
Up to date, most metalworking fluids (MWFs) are emulsions made of petroleum-derived oil bases and sodium petroleum sulphonate emulsifiers. They are not readily biodegradable, and their waste is hazardous for users and the environment. Therefore, green MWFs are required for achieving cleaner production [...] Read more.
Up to date, most metalworking fluids (MWFs) are emulsions made of petroleum-derived oil bases and sodium petroleum sulphonate emulsifiers. They are not readily biodegradable, and their waste is hazardous for users and the environment. Therefore, green MWFs are required for achieving cleaner production processes. Recently, various MWFs have been developed using vegetable oil bases to meet biodegradability to some extent. However, the emulsifier has been scarcely replaced by a green product. This research aims to produce and evaluate Pickering emulsions made of Jatropha oil (JO) and partially deacetylated and fibrillated chitin (PDFC) as emulsifiers at different concentrations. JO is a non-edible biodegradable oil with remarkable lubricity properties, while PDFC is produced by extracting chitin from waste heads and shells of the shrimp species Litopenaeus vannameii, followed by partial deacetylation and further fibrillation, which improves wettability and stabilization. The prepared emulsions were characterized in terms of creaming index and size of emulsion droplets and evaluated as MWFs in actual turning operations of AISI 1018 steel bars via minimum quantity lubrication (MQL) technique. The findings suggest PDFC as a potential eco-friendly emulsifier to form green MWFs with acceptable stability generating low cutting forces and significant workpiece finishing and chips quality. Full article
Show Figures

Graphical abstract

15 pages, 3091 KiB  
Article
The Effect of the Formation of Superelastic NiTi Phase on Static and Dynamic Corrosion Performance of Ni-P Coating
by Zhi Li and Zoheir Farhat
Solids 2021, 2(3), 278-292; https://doi.org/10.3390/solids2030018 - 2 Aug 2021
Cited by 3 | Viewed by 2964
Abstract
The addition of superelastic NiTi particles is a great benefit to the toughness of the Ni-P coating. Nonetheless, NiTi nanopowder costs 10 times more than Ti nanopowder. Therefore, in the present study, to reduce the cost, Ni-P-NiTi composite coatings were prepared on AISI [...] Read more.
The addition of superelastic NiTi particles is a great benefit to the toughness of the Ni-P coating. Nonetheless, NiTi nanopowder costs 10 times more than Ti nanopowder. Therefore, in the present study, to reduce the cost, Ni-P-NiTi composite coatings were prepared on AISI 1018 steel substrates by the electroless incorporation of Ti nanoparticles into Ni-P followed by the annealing of Ni-P-Ti coatings. The effect of the formation of a superelastic NiTi phase on static and dynamic corrosion performance was investigated. It was found that the annealed Ni-P-Ti coating (i.e., Ni-P-NiTi coating) has much higher static corrosion resistance than the as-deposited Ni-P coating. The dynamic corrosion rates in the absence of abrasive particles are 10 times higher than the static corrosion rates of the coatings. The dynamic corrosion rates in the presence of abrasive particles are one order of magnitude higher than the dynamic corrosion rates in the absence of abrasive particles. The formation of a superelastic NiTi phase considerably improved the static and dynamic corrosion performance of the Ni-P coating. In the absence of abrasive particles under flowing condition, the dynamic corrosion resistance of the annealed Ni-P-Ti coating (i.e., Ni-P-NiTi coating) is 19 times higher than that of the as-deposited Ni-P coating. In the most aggressive environment (in the presence of abrasive particles), the dynamic corrosion resistance of the annealed Ni-P-Ti coating (i.e., Ni-P-NiTi coating) is four times higher than that of the as-deposited Ni-P coating. The annealed Ni-P-Ti coating (i.e., Ni-P-NiTi coating) can be used in applications where high corrosion resistance is required, especially in an extremely aggressive environment. Full article
(This article belongs to the Special Issue Feature Papers of Solids 2021)
Show Figures

Figure 1

16 pages, 2802 KiB  
Article
Electrochemical Corrosion of Galvanized Steel in Binary Sustainable Concrete Made with Sugar Cane Bagasse Ash (SCBA) and Silica Fume (SF) Exposed to Sulfates
by Laura Landa-Ruiz, Miguel Angel Baltazar-Zamora, Juan Bosch, Jacob Ress, Griselda Santiago-Hurtado, Victor Manuel Moreno-Landeros, Sabino Márquez-Montero, Ce Tochtli Méndez, Adan Borunda, César A. Juárez-Alvarado, José M. Mendoza-Rangel and David. M. Bastidas
Appl. Sci. 2021, 11(5), 2133; https://doi.org/10.3390/app11052133 - 28 Feb 2021
Cited by 14 | Viewed by 3406
Abstract
This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica [...] Read more.
This research evaluates the behavior corrosion of galvanized steel (GS) and AISI 1018 carbon steel (CS) embedded in conventional concrete (CC) made with 100% CPC 30R and two binary sustainable concretes (BSC1 and BSC2) made with sugar cane bagasse ash (SCBA) and silica fume (SF), respectively, after 300 days of exposure to 3.5 wt.% MgSO4 solution as aggressive medium. Electrochemical techniques were applied to monitor corrosion potential (Ecorr) according to ASTM C-876-15 and linear polarization resistance (LPR) according to ASTM G59 for determining corrosion current density (icorr). Ecorr and icorr results indicate after more than 300 days of exposure to the sulfate environment (3.5 wt.% MgSO4 solution), that the CS specimens embedded in BSC1 and BSC2 presented greater protection against corrosion in 3.5 wt.% MgSO4 than the specimens embedded in CC. It was also shown that this protection against sulfates is significantly increased when using GS reinforcements. The results indicate a higher resistance to corrosion by exposure to 3.5 wt.% magnesium sulfate two times greater for BSC1 and BSC2 specimens reinforced with GS than the specimens embedding CS. In summary, the combination of binary sustainable concrete with galvanized steel improves durability and lifetime in service, in addition to reducing the environmental impact of the civil engineering structures. Full article
(This article belongs to the Special Issue Sustainable and Durable Building Materials)
Show Figures

Figure 1

17 pages, 8949 KiB  
Article
Kinetics of the Boride Layers Obtained on AISI 1018 Steel by Considering the Amount of Matter Involved
by Pablo A. Ruiz-Trabolsi, Julio Cesar Velázquez, Carlos Orozco-Álvarez, Rafael Carrera-Espinoza, Jorge A. Yescas-Hernández, Noé Eliseo González-Arévalo and Enrique Hernández-Sánchez
Coatings 2021, 11(2), 259; https://doi.org/10.3390/coatings11020259 - 23 Feb 2021
Cited by 24 | Viewed by 5487
Abstract
Boride layers are typically used to combat the wear and corrosion of metals. For this reason, to improve our knowledge of the boriding process, this research studied the effect of the size of the treated material on the kinetics of the growth of [...] Read more.
Boride layers are typically used to combat the wear and corrosion of metals. For this reason, to improve our knowledge of the boriding process, this research studied the effect of the size of the treated material on the kinetics of the growth of the boride layers obtained during a solid diffusion process. The purpose was to elucidate how the layers’ growth kinetics could be affected by the size of the samples since, as the amount of matter increases, the amount of energy necessary to make the process occur also increases. Furthermore, the level of activation energy seems to change as a function of the sample size, although it is considered an intrinsic parameter of each material. Six cylindrical samples with different diameters were exposed to the boriding process for three different exposure times (1.5, 3, and 5 h). The treatment temperatures used were 900, 950, and 1000 °C for each size and duration of treatment. The results show that the layer thickness increased not only as a function of the treatment conditions but also as a function of the sample diameter. The influence of the sample size on the growth kinetics of the boride layers is clear, because the growth rate increased even though the treatment conditions (time and temperature) remained constant. Full article
Show Figures

Figure 1

18 pages, 8435 KiB  
Article
Dissimilar Friction Stir Welding of AA2024 and AISI 1018: Microstructure and Mechanical Properties
by Mohamed M. Z. Ahmed, Nabil Jouini, Bandar Alzahrani, Mohamed M. El-Sayed Seleman and Mohammad Jhaheen
Metals 2021, 11(2), 330; https://doi.org/10.3390/met11020330 - 14 Feb 2021
Cited by 27 | Viewed by 4853
Abstract
This study investigated the effect of the friction stir welding rotation rate and welding speed on the quality and properties of the dissimilar joints between aluminum and carbon steel. Plates of 4 mm thickness from both AA2024 and AISI 1018 were successfully friction [...] Read more.
This study investigated the effect of the friction stir welding rotation rate and welding speed on the quality and properties of the dissimilar joints between aluminum and carbon steel. Plates of 4 mm thickness from both AA2024 and AISI 1018 were successfully friction stir butt welded at rotation speeds of 200, 250, and 300 rpm and welding speeds of 25, 50, and 75 mm/min. The joint quality was investigated along the top surface and the transverse cross-sections. Further investigation using scanning electron microscopy was conducted to assess the intermetallic layers and the grain refining in the stir zone. The mechanical properties were investigated using tensile testing for two samples for each weld that wire cut perpendicular to the welding direction and the hardness profiles were obtained along the transverse cross-section. Both the top surface and the transverse cross-section macrographs indicated defect free joints at a rotation rate of 250 rpm with the different welding speeds. The intermetallic compounds (IMCs) formation was significantly affected by the heat input, where there is no formation of IMCs at the Al/steel interfaces when higher traverse speed (75 mm/min) or lower rotation speed (200 rpm) were used, which gave the maximum tensile strength of about 230 MPa at the low rotation speed (200 rpm) along with 3.2% elongation. This is attributed to the low amount of heat input (22.32 J/mm) experienced. At the low traverse speed (25 mm/min and 250 rpm), a continuous layer of Al-rich IMCs FeAl3 is formed at the joint interface due to the high heat input experienced (79.5 J/mm). The formation of the IMCs facilitates fracture and reduced the tensile strength of the joint to about 98 MPa. The fracture mechanism was found to be of mixed mode and characterized by a cleavage pattern and dimples. The hardness profiles indicated a reduction in the hardness at the aluminum side and an increase at the steel side. Full article
(This article belongs to the Special Issue Friction Stir Welding of Lightweight Alloys)
Show Figures

Figure 1

18 pages, 10653 KiB  
Article
Fuzzy Logic-Based Prediction of Drilling-Induced Temperatures at Varying Cutting Conditions along with Analysis of Chips Morphology and Burrs Formation
by Asim Ahmad Riaz, Riaz Muhammad, Naveed Ullah, Ghulam Hussain, Mohammed Alkahtani and Waseem Akram
Metals 2021, 11(2), 277; https://doi.org/10.3390/met11020277 - 5 Feb 2021
Cited by 9 | Viewed by 2730
Abstract
Friction and plastic deformation at the tool–chips interaction during a dry drilling process results in temperature rise and promotes tool wear and surface roughness. In most of the components produced in industries, a drilling process is used to make a hole for final [...] Read more.
Friction and plastic deformation at the tool–chips interaction during a dry drilling process results in temperature rise and promotes tool wear and surface roughness. In most of the components produced in industries, a drilling process is used to make a hole for final assembly. Therefore, knowledge of temperatures produced during drilling operation at various machining input parameters is required for the best quality product. A fuzzy logic-based algorithm is developed to predict the temperature generated in the drilling process of AISI 1018 mild steel. The algorithm used speed and feed rate of the drill bit as input parameters to the fuzzy domain. A set of rules was used in the fuzzy domain to predict maximum temperature produced in the drilling process. The developed algorithm is simulated for various input speed and feed rate parameters and was verified through the maximum temperature measured during drilling of the studied material at selected speed–feed combinations. Experiments were conducted to validate the results of developed fuzzy logic-based algorithm by using non-contact infrared pyrometer for drilling of AISI 1018 steel. A good agreement between the predicted and experimentally measured maximum temperature was observed with an error less than 6%. It is found that temperature increases with increase in cutting speed and feed rate. Size of roll back burr formation at the hole perimeter significantly increases with increase in drill speed and feed rate. Segmental continuity in spiral or helix chips morphology is more at low feed and high cutting speed. Chip radius increases with increase in feed rate and results in damaging of the machined surface and causes burr formation while the radius decreases with cutting speed along with improved hole surface finish. Full article
Show Figures

Figure 1

Back to TopTop