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Abstract: This study investigated the effect of the friction stir welding rotation rate and welding
speed on the quality and properties of the dissimilar joints between aluminum and carbon steel.
Plates of 4 mm thickness from both AA2024 and AISI 1018 were successfully friction stir butt welded
at rotation speeds of 200, 250, and 300 rpm and welding speeds of 25, 50, and 75 mm/min. The joint
quality was investigated along the top surface and the transverse cross-sections. Further investigation
using scanning electron microscopy was conducted to assess the intermetallic layers and the grain
refining in the stir zone. The mechanical properties were investigated using tensile testing for
two samples for each weld that wire cut perpendicular to the welding direction and the hardness
profiles were obtained along the transverse cross-section. Both the top surface and the transverse
cross-section macrographs indicated defect free joints at a rotation rate of 250 rpm with the different
welding speeds. The intermetallic compounds (IMCs) formation was significantly affected by the
heat input, where there is no formation of IMCs at the Al/steel interfaces when higher traverse
speed (75 mm/min) or lower rotation speed (200 rpm) were used, which gave the maximum tensile
strength of about 230 MPa at the low rotation speed (200 rpm) along with 3.2% elongation. This is
attributed to the low amount of heat input (22.32 J/mm) experienced. At the low traverse speed
(25 mm/min and 250 rpm), a continuous layer of Al-rich IMCs FeAl3 is formed at the joint interface
due to the high heat input experienced (79.5 J/mm). The formation of the IMCs facilitates fracture
and reduced the tensile strength of the joint to about 98 MPa. The fracture mechanism was found
to be of mixed mode and characterized by a cleavage pattern and dimples. The hardness profiles
indicated a reduction in the hardness at the aluminum side and an increase at the steel side.

Keywords: dissimilar friction stir welding; AA2024; aluminum alloy; AISI 1018; microstructure
evaluation; mechanical properties

1. Introduction

Aluminum alloys and steels are required to be welded together in a number of indus-
trial applications when weight reduction is needed. However, it is a challenge to produce
dissimilar metal joints using conventional fusion welding techniques because of enormous
variations in their melting temperature, mechanical, and physical characteristics, as well as
the large amounts of brittle intermetallic compounds (IMCs) formed [1–4]. For example,
inhomogeneous solidification microstructure, segregations and complex weld pool shapes are
appeared after the process and the severely low solubility of Fe in Al which creates excessive
Al-rich FexAly IMCs [5,6]. These IMCs deteriorate the mechanical properties [5] and lead
to the rapid fracture of the joints [7]. Recently, new studies on friction stir welding (FSW)
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have been widely increasing with the focus on the joining of dissimilar metals [3,8], whereas
pair metals in automotive and manufacturing industries are highly demanded. The FSW
offers numerous advantages such as enhanced fatigue resistance, tensile properties, process
quality, and reduced IMC formation, in addition to lower operating costs, energy efficiency,
and being environmental and health friendly [9–13]. In the automotive industry, FSW is
employed to produce tailor-welded blanks, larger extrusions and the joining of lightweight
materials [14,15]. Therefore, light-weight materials are considered a driving force for the
development of new joining methods for the dissimilar joints including aluminum alloys and
steels in research, or for industrial applications [16,17].

Different techniques such as resistance welding [18,19], friction welding [20–22], ultra-
sonic welding [23], and explosion welding [24] have been used to join aluminum to steel
but, most of them are only appropriate for specific weld joint types, limiting their scope of
application [25] and weld joint geometries [6]. In addition to other brazing methods, which
are successful but provide constrained strength in weld joint (e.g., furnace brazing [26],
cold metal transfer (CMT) [27,28] and vacuum brazing [29]). These dissimilar joints require
a novel welding technique, mainly solid-state joining method, in which it utilizes low heat
input [6,7] and no bulk melting of the basic components is involved [1,16,30]. FSW has
become the most remarkable solid state joining technique that provides a viable alternative
to join other metallic alloys over other conventional welding methods. This is attributed
to several reasons: first, FSW reduces residual stresses, hot cracks, porosity and loss of
volatile solutes. Second, it prevents solidification, and melting [6]. Third, it can be applied
for different types of joints (e.g., fillet shapes and T-butt) and also to many geometric
shapes [15,16]. Fourth, it precipitates distribution size and grain structures are changed via
FSW, which affected on the material response related to the projectile impact [31]. Further-
more, by using simple welding tools such as a tool manufactured from steel, the plastic
stirring of such lightweight materials (e.g., Al and Mg alloys) is obtained [6]. Shen et al. [32]
mentioned a number of advantages of using FSW for the dissimilar materials, such as
improving mechanical properties and process quality, lower health and environmental
concerns with low operating costs and consumables are completely avoided [4,16,32,33].

The majority of the previous studies have focused on the microstructure of the welding
joints, and their mechanical properties were only studied by few of them [3]; for example,
Watanabe et al. [34] examined the influence of tool rotation speed and pin position on
the tensile strength of the friction stir welded (FSWed) 2 mm-thick SS400 mild steel and
AA5083 aluminum sheets. They concluded that the tensile properties were increased with
about 86% compared to the ultimate tensile strength of an aluminum base alloy when 10%
of the cross-sectional area of pin was placed in the steel side. Furthermore, the fracture path
occurred along the interface between the Fe fragments and Al matrix as well as the IMCs
with the composition of FeAl3 and FeAl shown at the upper zone of the weld interface [4].
Chen [35] analyzed a parametric study of FSWed Al 6061-T651 aluminum alloy with
SS400 steel with the thickness of 6 mm. It was shown that rotation and traverse speeds
are relatively significant FSW process parameters compared to the tool tilt angle or pin
diameter. Additionally, by applying lower transverse and rotation speeds, the maximum
tensile strength was reached to 76% of the base Al alloy. Coelho et al. [6] revealed that IMCs
were formed due to the frictional heating and high shear strain. Therefore, IMCs have
a significant role in the weld joints strength. Previous works [1,4,32,33] have been noted
Fe-rich IMCs and a thin IMC layer enhances the mechanical properties without reducing
the joints strength. Nonetheless, other works [1,5,10,34,35] have reported that a thin layer
of IMCs decreases the weld strength. Consequently, the mechanical properties of the
joints are affected by IMCs. Hence, compared to all the conventional welding techniques,
FSW has a main advantage of reducing the growth or creation of brittle IMCs by limiting
the temperature rise within the weld region. For such a technique, residual stresses and
thermal distortion can be reduced.
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Based on the aforementioned research works conducted on Al/steel dissimilar weld-
ing by FSW, it can be said that there are is a number of FSW parameters affecting the
quality and properties of the joints, such as the tool rotation rate, welding speed, tool
offset towards the aluminum side, tool tilt angle and shoulder plunge depth (downward
force) [32–36]. In addition, a knowledge gap exists about the elimination of the IMC phase
formations due to their detrimental effects on the tensile properties and the quality of the
joints. Accordingly, the aim of this work was to explore the options for optimizing the FSW
parameters (e.g., welding and rotation speeds) for producing 2024 AA-T4 Al/AISI 1018
steel defect-free joints without IMCs or at least minimum IMC thickness.

2. Materials and Experimental Work
2.1. Friction Stir Welding

Aluminum alloy (AA2024-T4) and carbon steel (AISI 1018) plates of both 200 mm ×
100 mm × 4 mm in dimensions were friction stir butt welded using a homemade gantry
type FSW machine (EG-FSW-M1, design and manufacturing supervised by authors at Suez
University, Suez, Egypt). The chemical compositions and mechanical properties of these
base materials are given in Tables 1 and 2, respectively. Figure 1a shows the schematic
illustrations of the FSW experimental configuration. The tool pin plunged into the soft
material AA2024, positioned on the retreating side (RS) with an offset of 0.2 mm, while steel
was positioned on the advancing side (AS) to prevent the overheating of aluminum alloy
and reducing tool wear. The FSW experiments were carried out at room temperature and
using the H13 tool steel composed of a shoulder and unthreaded pin, as shown in Figure 1b.
Shoulder diameter, pin diameter, and pin length were 20, 6, and 3.6 mm, respectively. The
tool axis was titled by 3◦ to the normal direction.

In this study, two groups of butt joints were produced. One group at a constant
rotation speed and different traverse welding speeds (welds 1, 2, and 3 in Table 3). The
second group produced at constant traverse welding speed and different rotation speeds
(welds 2, 4, and 5 in Table 4). The FSW process parameters for each butt joint under
investigation are listed in Table 3.

Table 1. Nominal chemical compositions (in wt.%) of AA2024-T4 and AISI 1018 base materials, data
from [37].

AA2024-T4
Al Cu Mn Mg Si

Bal. 3.8–4.9 0.3–0.9 1.2–1.8 ≤0.05

AISI 1018
Fe C Mn P S

Bal. 0.14–0.2 0.6–0.9 ≤0.04 ≤0.05

Table 2. The standard mechanical properties of AA2024-T4 and AISI 1018 base materials, data from [37].

Mechanical Properties AA2024-T4 AISI 1018

Ultimate tensile strength (MPa) 469 440
Yield strength (MPa) 324 370

% elongation 19 15
Hardness (HV) 137 131
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croscope (Quanta FEG-250 SEM, FEI company, Hillsboro, OR, USA). 

Figure 1. (a) Schematic illustration of the dissimilar friction stir welding (FSW) of aluminum and steel, and (b) photograph
and dimensions of the FSW tool used in this work made from H13 tool steel.

Table 3. FSW parameters of the friction stir welding applied for the aluminum–steel welds under in-
vestigation.

FSW Process Parameters
Welds

1 2 3 4 5

Rotation speed (rpm) 250 250 250 200 300
Traverse speed (mm/min) 25 50 75 50 50

Offset (mm) 0.2 0.2 0.2 0.2 0.2

Table 4. Shows amount of heat input, IMC thickness and fracture position for each rotation speed.

Rotation Speed
(rpm)

Heat Input
(Joule/mm)

IMC Thickness at Al/Steel
Interface (µm) Fracture Position

200 22.32 N/A Al side
250 39.77 N/A Interface
300 56.24 N/A Al side

2.2. Microstructural Characterization

The welds were sectioned perpendicularly to the welding direction to prepare the
metallographic samples and to perform macro/micro-structure characterizations. The
cross-sections of the samples were prepared using standard metallography methods. In-
deed, they were gently ground using abrasive papers with grades up to 2500, and polished
using 0.05 µm Al2O3 suspension. They were then etched using 2% Nital solution for
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about 8 s. The microstructure analyses of the cross-sections were carried out using optical
microscope (OM) Olympus-BX41M-LED, Olympus, Tokyo, Japan and scanning electron
microscope (Quanta FEG-250 SEM, FEI company, Hillsboro, OR, USA).

2.3. Mechanical Testing and Failure Investigations

The tensile specimens, two for each weld, were sectioned perpendicularly to the
welding direction using a wire electrical discharge machine in accordance with ASTM
E8M-04 standard using a 50 mm gage length and their dimensions are shown in Figure 2a.
Figure 2b shows the location of the tensile test specimens prepared for the tensile test. The
tensile tests were performed at a room temperature using a crosshead speed of 0.1 mm/s
using the universal testing machine Instron 4210, Norwood, MA, USA. Fracture morpholo-
gies of failed specimens and the phases present at the fracture surface were examined by
Quanta 250 with a field emission gun equipped with energy dispersive spectroscopy (EDS)
(EDAX, AMETEK, Draper, UT, USA). The Vickers macro-hardness test on the transvers
cross-sectional plane of the welds were carried out according to the ASTM: E384-11 stan-
dard using load of 2000 gf for 15 s dwell time through the whole processed zone from the
Al alloy side through the steel side.
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Figure 2. (a) Schematic representation and dimensions of the tensile test specimens according to
ASTM E8M-04 standard and (b) a top image for one of the aluminum–steel friction stir welded
(FSWed) joints with the tensile specimens superimposed. Note: All dimensions in (a) are in mm.

3. Results and Discussion
3.1. Joint Appearance and Macrostructure

Figure 3 shows the surface appearances of the AA2024/AISI1018 joints welded at
different rotation and traverse speeds. This figure shows that all joints welded at 250 rpm
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rotation speed and different traverse welding speeds are successfully joined without defects
such as porosity and cracks (Figure 3a–c). The top surface is smooth, with some flashes
observed in both steel and Al sides. However, macro-cracks at the top surface can be seen
near the end of the joints produced at 200 and 300 rpm (Figure 3d,e). The joint interface
is not vaguely observed at low rotation speed 200 rpm (Figure 3d), and at high traverse
speeds of 75 mm/min with 250 rpm rotation speed (Figure 3c).
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Figure 3. Top surface appearance along the joint line for the FSWed aluminum alloy AA2024 and carbon
steel 1018 joints at different welding conditions: (a) 250 rpm and 25 mm/min; (b) 250 rpm and 50 mm/min;
(c) 250 rpm and 75 mm/min; (d) 200 rpm and 50 mm/min; and (e) 300 rpm and 50 mm/min.

It should be mentioned here that the FSW tool used WAs made from heat-treated tool
steel. In order to prevent the sever contact between the tool material and the carbon steel
and also to prevent the excessive heat generation that can melt the aluminum, sufficient
offset was made towards the aluminum side. Figure 4 shows the macroscopic appearance
of the transverse cross-section of the Al/steel joints welded at different conditions. It can be
observed that the weld zones between the aluminum and steel are free of any macro-defects
and the interface between them can be seen at the different macrographs. The material
flow from the steel side to the aluminum side is clearly visible in the weld nugget with the
steel fragments in the aluminum side varied in size from a large size (Figure 4a,b,d) to very
small size (Figure 4c,e). Due to the offset towards the aluminum side, it can be seen that
both materials experienced sufficient stirring in the weld zone, where tiny steel fragments
from the advanced side (AS) move to the retreating side (RS) and mixed with the Al, while
the aluminum moves from the front of the tool to the back of the tool to generate the joint
in the solid state. Recently, Abd Elnabi et al. [36] conducted an experimental investigation
to study the dissimilar FSW of pure aluminum AA1050 and annealed low carbon steel.
They reported in their optimization step that all joints made at rotational speeds from 255
to 1225 rpm, traverse speed from 422 to 25 mm/min, and pin offset from 0 to 3 mm have
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sever surface defects. The minimum defect joint was obtained at the high rotation speed of
1550 rpm and at low traverse speed of 17 mm/min. It should be mentioned here that the
current study obtained defect free joints at almost all the investigated conditions as the low
range of rotation rates and traverse speeds used. This reduced the amount of heat input
experienced and enhanced the flow and mixing of the two materials. It can be concluded
that the low heat input is required to obtain defect-free joints between aluminum and steel.
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3.2. Microstructure Analysis

In the case of aluminum alloy FSW, four distinct macrostructural zones, namely the
stir zone (SZ), heat affected zone (HAZ), thermo-mechanically affected zone (TMAZ) and
base metal (BM) are commonly obtained and reported [10,31,38,39]. In the current case
where aluminum and steel undergo dissimilar welding, similar macrostructural features
can be observed in the aluminum side in addition to the fragments of steel that these
are being mixed with, as can be observed in Figure 5. However, the micro etching used
focused mainly on revealing the steel fragments and the SEM was used to trace the
microstructural features. Figure 6 shows the SEM micrographs obtained from the joint
produced at 200 rpm and at 50 mm/min. It shows different magnification microstructures
at the interface between aluminum and steel in Figure 6a,b,d. While Figure 6c shows the
BM microstructure, it can be observed that a significant grain refining occurred in the
steel and also that the interface has neither micro-cracks or intermetallic compound layer.
The fine grains obtained compared to the base material indicates the involved dynamic
recrystallization (DRX) mechanism [12,13]. Figure 7 shows the SEM micrographs at the stir
zone obtained from the joint produced using 250 rpm and at 25 mm/min in Figure 7a–c.
While Figure 7d shows the interface between the SZ and the TMAZ, it can be noted that an
intimate bonding occurred between Al and steel through the mixing of the steel fragments
with the aluminum and the metallurgical bonding occurs through the diffusion of atoms of
both metals in each other. The TMAZ (Figure 7d) is characterized by immensely deformed
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and elongated grains revealing that the material has been plastically deformed along the
rotating direction of the pin tool.

Due to the potential formation of the brittle IMCs, the Al/steel interface is considered
a critical zone. Indeed, the presence of IMCs leads to a significant reduction in the weld
joint strength. In this study, the effect of traverse and rotation speeds on the IMCs formation
at the Al/steel interface was investigated. Figure 8 illustrates the SEM micrographs on the
Al/steel joint interfaces under investigation.
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Figure 7. SEM micrographs for the FSWed joint produced at 250 rpm and 25 mm/min showing different magnifications at
the interface between Al and steel in (a–c); (d) at the interface between the thermo-mechanically affected zone (TMAZ) and
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At the traverse speed of 25 mm/min, there are some micro-cracks and a continuous a
layer of IMC with 2 µm thickness formed at the Al/steel interface as shown in Figure 8a,
which can facilitate crack propagation along the Al/steel interface. By increasing the
traverse speed to 50 mm/min, it is observed that there are micro-cracks formed on the
steel side in SZ and also a few steel fragments on the Al side (Figure 8b). However, there
is no IMC layer formed at the Al/steel interface, but larger IMCs have been formed on
the Al side which range from 0.6 to 6 µm. At the higher traverse speed of 75 mm/min,
Figure 8c revels that a defect-free weld with no voids and micro-cracks are formed. A long
steel fragment is observed in the Al side and there is no evidence of IMCs at the Al/steel
interface. Accordingly, increasing the traverse speed from 25 to 75 mm/min eliminate the
IMCs. Liu et al. [4] showed that in the FSW of 6061-T6 and advanced high strength steel,
lower welding speed can increase the thickness of the intermetallic layer due to the longer
high temperature period experienced.

At the rotation speed of 200 rpm, Figure 8d reveals that many steel fragments with
different sizes scattered into the Al side were formed without any IMCs at the Al/steel
interface. However, some IMCs formed between Fe and Al far away from the interface.
Increasing the rotation speed to 300 rpm, Figure 8e showed that a little amount of steel
fragments with different sizes scattered into the Al side were formed. Few IMCs are formed at
the Al/steel interface which measured about 1 µm. Indeed, increasing the rotation speed will
increase the heat input created by the friction between the workpiece and the shoulder and
then resulted in the formation of IMCs [1]. Only at the lowest welding speed of 25 mm/min
and rotation speed of 250 rpm an IMC of 2 µm layer thickness is observed due to the highest
heat input experienced of about 79 J/mm. The IMC thickness formed during the friction
stir butt welding of aluminum alloy to steel ranges between 0.25 and 5 µm [40–42]. This
IMC thickness compared to that obtained in other studies [36] for aluminum steel FSW can



Metals 2021, 11, 330 10 of 17

be considered low. This is attributed to the low tool rotation rates used in this study which
significantly reduced the heat input experienced during the welding process.

Metals 2020, 10, x FOR PEER REVIEW 11 of 19 

 

 

 
Figure 8. SEM micrographs at the Al–steel interfaces obtained from the FSWed aluminum alloy AA2024 and mild steel 
1018 joints produced at different welding conditions: (a) 250 rpm and 25 mm/min; (b) 250 rpm and 50 mm/min; (c) 250 
rpm and 75 mm/min; (d) 200 rpm and 50 mm/min; and (e) 300 rpm and 50 mm/min. Intermetallics (IMCs) positions are 
indicated on the micrographs.  
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To investigate the type of IMCs, SEM and EDS analysis were conducted. According to
the EDS line analyses of Fe and Al and the Fe–Al binary phase diagram the intermetallic layer
formed at a traverse speed of 25 mm/min consisted of Al-rich FeAl3 and has a thickness up
to 2 µm, as shown in Figure 9. It has been reported that the Al-rich IMCs are more brittle
than the Fe-rich ones [30,43]. These brittle Al-rich IMCs are detrimental to the mechanical
performance of the joint [34,44]. Watanabe et al. [34] showed that the presence of the brittle
Al-rich FeAl3 leads to a decrease in the joint strength. Figure 9b confirms that no intermetallic
compounds were formed at the Al/steel interface for 50 mm/min and 200 rpm.
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To summarize, higher traverse speed and lower rotation speed do not promote the
formation of IMCs at the Al/steel, however, they produce a large amount of steel fragments
on the Al side. At lower travel speed (25 mm/min), a continuous layer of IMC is formed at
the Al/steel interface.

3.3. Mechanical Properties

The tensile tests were conducted for all investigated FSWed dissimilar joints. Figure 10a
shows the tensile stress–strain curves and the ultimate tensile strength (UTS) and elongation
results of the joints welded at three different rotation speeds of 200, 250 and 300 rpm and at a
constant traverse speed of 50 mm/min. From Figure 10a, the maximum tensile strength of
230 MPa was obtained at a 200 rpm along with a 3.2% elongation at fracture. By increasing the
rotation speed to 250 rpm, the joint strength decreases and reaches the lowest tensile strength
of 108 MPa along with 1.8% elongation at fracture. The joint processed at 300 rpm provided
a tensile strength of 147 MPa along with 1.7% elongation at fracture. Indeed, according to
the Table 4, which summarizes the amount of heat input, and the IMCs generated at Al/steel
interface and fracture position for each rotation speed under investigated. It is interesting to
note that the strength decreases as the heat input increases (i.e., as the rotation speed increases).
Moreover, there is no IMC formed at the Al/steel interface.

Figure 10b shows the tensile stress–strain curves and UTS and elongation results of
joints welded at three different traverse speeds of 25, 50 and 75 mm/min and at constant
rotation speed of 250 rpm. From Figure 10b, the maximum tensile strength of 203 MPa was
obtained at 75 mm/min due the absence of IMCs at the Al/steel interface. By decreasing the
traverse speed to 50 mm/min, the joint strength decreases and reaches a tensile strength of
108 MPa. The joint processed at 25 mm/min provided the lowest tensile strength. Table 5
summarizes the amount of heat input, and the IMCs generated at the Al/steel interface
and fracture position for each traverse speed under investigated. The table shows that the
strength increases with the traverse speed increasing from 25 to 75 mm/min as the heat input
amount decreases. Wang et al. [40] showed that the strength of defect-free joints increased
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with reduction in IMC thickness. Ultimate tensile strength of 289 MPa (90% of base aluminum
alloy) was achieved at the tool rotation rate of 500 rpm and traverse speed of 15 mm/min.

Metals 2020, 10, x FOR PEER REVIEW 13 of 19 

 

 

 
Figure 10. Stress–strain curves obtained by tensile test for the FSWed joints welded at (a) various rotation speeds; (b) 
various traverse speeds. 

Table 4. Shows amount of heat input, IMC thickness and fracture position for each rotation speed. 

Rotation Speed 
(rpm) 

Heat Input 
(Joule/mm) 

IMC Thickness at Al/Steel Inter-
face (μm) 

Fracture Posi-
tion 

200 22.32 N/A Al side 
250 39.77 N/A Interface 
300 56.24 N/A Al side 

Table 5. Shows the amount of heat input, IMC thickness and fracture position for each traverse 
speed. 

Traverse Speed 
(mm/min) 

Heat Input 
(Joule/mm) 

IMC Thickness at Al/Steel In-
terface (μm) 

Fracture Posi-
tion 

25 79.55 2 Al side 
50 39.77 N/A Interface 
75 26.52 N/A Al side 

To investigate the failure mode, the highest tensile strength joint (200 rpm and 50 
mm/min) and the lowest tensile strength joint (250 rpm and 25 mm/min) tensile specimens 
fracture surfaces were examined using SEM imaging. Figure 11 shows the SEM micro-
graphs of the fracture surface of FSWed joints welded at 200 rpm and 50 mm/min at dif-
ferent positions. Figure 11a,b show low and high magnification for a dimple feature posi-
tion and Figure 11c,d show low and high magnification in cleavage a fracture position. It 
can be observed that there is a mixed mode fracture characterized by dimples (Figure 
11a,b) and cleavage (Figure 11c,d). Figure 12 shows the SEM micrographs of the fracture 

Figure 10. Stress–strain curves obtained by tensile test for the FSWed joints welded at (a) various rotation speeds; (b)
various traverse speeds.

Table 5. Shows the amount of heat input, IMC thickness and fracture position for each traverse speed.

Traverse Speed
(mm/min)

Heat Input
(Joule/mm)

IMC Thickness at Al/Steel
Interface (µm) Fracture Position

25 79.55 2 Al side
50 39.77 N/A Interface
75 26.52 N/A Al side

To investigate the failure mode, the highest tensile strength joint (200 rpm and
50 mm/min) and the lowest tensile strength joint (250 rpm and 25 mm/min) tensile
specimens fracture surfaces were examined using SEM imaging. Figure 11 shows the SEM
micrographs of the fracture surface of FSWed joints welded at 200 rpm and 50 mm/min
at different positions. Figure 11a,b show low and high magnification for a dimple fea-
ture position and Figure 11c,d show low and high magnification in cleavage a fracture
position. It can be observed that there is a mixed mode fracture characterized by dimples
(Figure 11a,b) and cleavage (Figure 11c,d). Figure 12 shows the SEM micrographs of the
fracture surface of the FSWed joints welded at 250 rpm and 25 mm/min at different po-
sitions. Figure 12a,b show low magnification and high magnification for mixed fracture
mode features and Figure 12c,d show low and high magnification for high-density IMC
positions. It can be noted that the fracture of high tensile strength sample is dominated by
ductile fracture with little features of the brittle fracture, whereas the fracture low tensile
strength sample is dominated by brittle fracture mode with a little ductile fracture feature.
This is consistent with the obtained tensile strength values. The bimodal behavior was
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reported by Zandsalimi et al. [45] when investigating the dissimilar FSW of 430 stainless
steel and 6061 aluminum alloy. These showed that this bimodal fracture occurs in the
aluminum HAZ, which has the lowest hardness.
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Figure 13 shows the hardness profile across the FSWed joint interface that was mea-
sured at the same position for all samples. This figure reveals two distinct hardness
profiles at the retreating side (Al) and advancing side (steel) due to the difference in the
material properties of steel and Al. At the Al side, the hardness values of the stirred
zone (SZ), thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ)
are lower than the base material due to the softening which occurred during the high
thermal cycle experienced which causes the dissolution of the hardening precipitates in
the TMAZ and coarsening in the HAZ/SZ region. It was reported that the coarsening
and dissolution of strengthening precipitates during the thermal cycle of the FSW cause
softening [15,38,46–50]. However, IMCs and steel fragments in the Al side cause peaks of
hardness in the weld zone as observed in the joint of 250 rpm and 50 mm/min. At the steel
side, the hardness values of SZ, TMAZ, and HAZ are higher than the base material. This
can be due to the grain refining which occurs due to the stirring action in the stir zone and
also due to the fast cooling occurring through the aluminum of high thermal conductivity.
Thus, the peak hardness values appear at SZ.
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4. Conclusions

In this study, 4 mm-thick AA2024 and AISI 1018 were friction stir butt welded. The
welding was carried out at rotation speeds of 200, 250, 300 rpm and welding speeds of
25, 50, and 75 mm/min. After the careful characterization of the joints, the following
conclusions can be outlined:
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• Defect-free joints are obtained at a rotation rate of 250 rpm with the different welding
speeds applied and also 200 rpm with 50 mm/min;

• The key factor in the intermetallic formation at the interface between Al/steel is the
level of heat input experienced during FSW. Reducing the heat input through either
the increase in the welding speed up to 75 mm/min or reducing the rotation rate up
to 200 mm/min eliminates the IMCs formation. Only at the lowest welding speed of
25 mm/min is an IMC of 2 µm layer thickness observed due to the highest heat input
experienced of about 79 J/mm.

• The maximum tensile strength of the joint is achieved (~230 MPa) at low rotation
speed (200 rpm) along with 3.2% elongation. No IMCs are formed at this condition
due to the lowest amount of heat input experienced (22.32 J/mm).

• Fracture surface of the highest (200 rpm and 50 mm/min) and lowest (250 rpm and
25 mm/min) tensile strength joints were investigated using SEM. Both showed mixed-
mode fracture mechanism characterized by cleavage pattern and dimples. However, in
the lowest tensile sample, the IMCs played a significant role in the failure acceleration.

• The hardness at the aluminum side showed the conventional behavior of the precipi-
tation hardened alloys with a reduction in hardness in the weld zone to values below
90 Hv from about 140 Hv; however, a significant increase in the hardness of the steel
side up to 150 Hv from about 120 Hv is observed, which could be due to the grain
refining observed.
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