Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = AH36 steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 12068 KiB  
Review
Preparation of High-Belite Calcium Sulfoaluminate Cement and Calcium Sulfoaluminate Cement from Industrial Solid Waste: A Review
by Huaiqin Liu, Chengjian Liu, Jing Wu, Yanjiao Gao, Jianwen Shao, Chenxia Wang, Tian Su, Fubo Cao, Weishen Zhang, Qifan Yang and Yutong Li
Sustainability 2025, 17(10), 4269; https://doi.org/10.3390/su17104269 - 8 May 2025
Cited by 1 | Viewed by 1201
Abstract
To address the high carbon emissions and resource dependency associated with conventional ordinary Portland cement (OPC) production, this study systematically investigated the preparation processes, hydration mechanisms, and chemical properties of high-belite calcium sulfoaluminate (HBCSA) and calcium sulfoaluminate (CSA) cements based from industrial solid [...] Read more.
To address the high carbon emissions and resource dependency associated with conventional ordinary Portland cement (OPC) production, this study systematically investigated the preparation processes, hydration mechanisms, and chemical properties of high-belite calcium sulfoaluminate (HBCSA) and calcium sulfoaluminate (CSA) cements based from industrial solid wastes. The results demonstrate that substituting natural raw materials (e.g., limestone and gypsum) with industrial solid wastes—including fly ash, phosphogypsum, steel slag, and red mud—not only reduces raw material costs but also mitigates land occupation and pollution caused by waste accumulation. Under optimized calcination regimes, clinkers containing key mineral phases (C4A3S and C2S) were successfully synthesized. Hydration products, such as ettringite (AFt), aluminum hydroxide (AH3), and C-S-H gel, were identified, where AFt crystals form a three-dimensional framework through disordered growth, whereas AH3 and C-S-H fill the matrix to create a dense interfacial transition zone (ITZ), thereby increasing the mechanical strength. The incorporation of steel slag and granulated blast furnace slag was found to increase the setting time, with low reactivity contributing to reduced strength development in the hardened paste. In contrast, Solid-waste gypsum did not significantly differ from natural gypsum in stabilizing ettringite (AFt). Furthermore, this study clarified key roles of components in HBCSA/CSA systems; Fe2O3 serves as a flux but substitutes some Al2O3, reducing C4A3S content. CaSO4 retards hydration while stabilizing strength via sustained AFt formation. CaCO3 provides nucleation sites and CaO but risks AFt expansion, degrading strength. These insights enable optimized clinker designs balancing reactivity, stability, and strength. Full article
Show Figures

Figure 1

10 pages, 2028 KiB  
Article
Understanding Intrinsic Electrochemical Properties of NiCo–Metal–Organic Framework-Derived NiCo2O4 as a Li-Ion Battery Anode
by Byoungnam Park and Soomin Kim
Molecules 2025, 30(3), 616; https://doi.org/10.3390/molecules30030616 - 30 Jan 2025
Cited by 4 | Viewed by 940
Abstract
This study explores the electrochemical properties of additive-free NiCo₂O₄ derived from NiCo–metal–organic frameworks (MOFs) as a high-performance anode material for lithium-ion batteries (LIBs), excluding the effect of additives. NiCo-MOF was synthesized via an ultrasonic-assisted method and deposited on stainless steel foils using alternating [...] Read more.
This study explores the electrochemical properties of additive-free NiCo₂O₄ derived from NiCo–metal–organic frameworks (MOFs) as a high-performance anode material for lithium-ion batteries (LIBs), excluding the effect of additives. NiCo-MOF was synthesized via an ultrasonic-assisted method and deposited on stainless steel foils using alternating current electrophoretic deposition (AC-EPD). The resulting thin films exhibited outstanding cycling stability and rate performance, maintaining a specific capacity of ~1200 mAh/g over 250 cycles at a high current density of 2.35 A/g, with nearly 100% Coulombic efficiency. Differential capacity analysis revealed enhanced redox activity at 0.8 V and 1.7 V during lithiation and delithiation, attributed to the decomposition of NiCo₂O₄ into metallic Ni and Co, followed by their oxidation to Ni2⁺ and Co3⁺, respectively. The gradual activation of electroactive sites, coupled with improved electrode kinetics and structural adjustments, contributed to the observed capacity increase over cycles. These findings underscore the potential of NiCo₂O₄ as a robust and efficient anode material for next-generation LIBs. Full article
Show Figures

Figure 1

16 pages, 4676 KiB  
Article
A Thermodynamic and Experimental Analysis of Inclusions Modification in AH36 Liquid Steel by Calcium and Magnesium Treatment
by Lei Kang, Xiangwei Liao, Peng Zhang, Hui Kong and Ting Wu
Metals 2025, 15(2), 126; https://doi.org/10.3390/met15020126 - 27 Jan 2025
Cited by 1 | Viewed by 778
Abstract
The influence of calcium and magnesium treatment under different molten steel conditions, as well as that of the alloy proportion and addition sequence of calcium and magnesium in composite treatment, on the evolution of inclusions in AH36 liquid steel was analyzed systematically based [...] Read more.
The influence of calcium and magnesium treatment under different molten steel conditions, as well as that of the alloy proportion and addition sequence of calcium and magnesium in composite treatment, on the evolution of inclusions in AH36 liquid steel was analyzed systematically based on thermodynamic calculations. The results show that the inclusions in molten steel are mainly Al2O3, which gradually transform into a liquid phase after calcium treatment with a wide range of calcium contents, indicating that calcium treatment has a significant effect on inclusion modification. Magnesium treatment mainly converts Al2O3 into MgO·Al2O3 inclusions in molten steel; however, it is not suitable to modify inclusions with magnesium treatment alone since it does not produce a significant liquid phase. The effect of calcium and magnesium composite treatment varies with the alloy content composition and the order of alloy addition. The liquid phase range of inclusions follows the order of 80%Ca + 20%Mg composite treatment > calcium treatment > 50%Ca + 50%Mg composite treatment > 20%Ca + 80%Mg composite treatment. Combining the thermodynamic and experimental analysis results, it can be concluded that the composite treatment of magnesium followed by calcium is the best. Specifically, a small amount of magnesium should be added first as the nucleating particle to promote the fine dispersion of the inclusions, thus reducing their impact on steel performance. Then, calcium should be added to modify the surface of the inclusions into a liquid phase, which can effectively reduce nozzle clogging. Full article
Show Figures

Figure 1

14 pages, 7302 KiB  
Article
An Insight into Chip and Surface Texture Shaping Under Finish Turning of Powder Steels Infiltrated with Tin Bronze
by Kamil Leksycki, Eugene Feldshtein, Larisa Dyachkova, Katarzyna Arkusz, Maciej Ceglewski and Łukasz Czerwiec
Materials 2024, 17(24), 6244; https://doi.org/10.3390/ma17246244 - 20 Dec 2024
Viewed by 628
Abstract
The manufacturing of work parts made of powder (sintered) steels is currently widespread in industry, as it provides minimal processing allowances and high dimensional accuracy, as well as the required properties and unconventional chemical composition. At the same time, their low tensile or [...] Read more.
The manufacturing of work parts made of powder (sintered) steels is currently widespread in industry, as it provides minimal processing allowances and high dimensional accuracy, as well as the required properties and unconventional chemical composition. At the same time, their low tensile or bending strength must be considered a serious disadvantage. In order to minimize these disadvantages, a number of strengthening technologies are used, among which is the infiltration of porous base materials with metal alloys. In this study, the details of finish turning of sintered iron-graphite-based steel infiltrated with tin bronze with molybdenum disulfide addition are considered. Changes in the shape of chips and their geometric features, as well as the 3D parameters and topography features of the surface machined, are presented after finish turning with AH8015 carbide inserts. The cutting speed (vc) and feed rate (f) were used as variable parameters. It was found that when turning the powder steels under study, the chips took the shape of small fragments or element chips, including segmented chips. For quenching steel, the formation of irregular lamellae was observed and for the initial state, a serrated chip was registered. For the initial state, a reduction in Kb values was observed in the range of the vc of 50–100 m/min and f of 0.05–0.075 mm/rev, and for quenching in the range of 225–250 m/min and 0.05–0.075 mm/rev. Compared to the initial state, for quenching, depending on the cutting parameters, a 14% reduction in the chip spreading ratio Kb or an increase from 2 to 32% was registered. For the initial state and quenching, a decrease in the Sp and Sv parameters was achieved in the range of the vc of 200–250 m/min and f of 0.05–0.075 mm/rev, and there was an increase in the range of 50–150 m/min and 0.125–0.15 mm/rev. Compared to the initial state, an increase in the Sz parameter from 10 to 35% was observed for quenching. On the surfaces machined with vc = 50 m/min and f = 0.05 mm/rev, waves and single significant peaks were observed. On the other hand, vc = 250 m/min and f = 0.15 mm/rev provided classical feed tracks in the form of valleys and irregular ridges on the surfaces machined. The test results can be useful in the design and manufacturing of industrial parts made of powder steels. Full article
Show Figures

Figure 1

10 pages, 15414 KiB  
Article
Protective Properties of Calcareous Deposit Layer for Cathodically Polarized AH36 Steel in Natural Seawater
by Quoc Quang Nong, Van Kien Dong, Van Trieu Nguyen, Van Chi Nguyen, Hong Quan Le and Nhat Linh Cao
Coatings 2024, 14(5), 644; https://doi.org/10.3390/coatings14050644 - 19 May 2024
Viewed by 1476
Abstract
A calcareous deposit is a by-product of the cathodic polarization in seawater environments. This study presents the results of evaluating the anticorrosion and anti-macro-biofouling effectiveness of a calcareous deposit layer on the surface of the cathodically polarized AH36 structural steel in tropical seawater. [...] Read more.
A calcareous deposit is a by-product of the cathodic polarization in seawater environments. This study presents the results of evaluating the anticorrosion and anti-macro-biofouling effectiveness of a calcareous deposit layer on the surface of the cathodically polarized AH36 structural steel in tropical seawater. The polarization is induced with initial current densities at which the calcareous deposit layer formed with both aragonite and brucite for 12 months continuously. The protective properties of the layer were compared with those of the passive layer from corrosion products under the same environmental conditions. The macro-biofouling in the tropical seawater is observed in the closed and open surfaces of the steel. The comparison of the anticorrosion property shows that, to some degree, the calcareous deposit layer contributes to surface passivation, as in the case of the corrosion product layer. In addition, the composition of the brucite and aragonite in the calcareous layer in the study plays a role as a macro-biofouling growth-limiting factor. Full article
Show Figures

Figure 1

17 pages, 3331 KiB  
Article
Fabrication and Characterization of Plasma Sprayed TiO2 and Li4Ti5O12 Materials as All Active Material Lithium-Ion Battery Electrodes
by Dean Yost, Jonathan Laurer, Kevin Childrey, Chen Cai and Gary M. Koenig
Batteries 2023, 9(12), 598; https://doi.org/10.3390/batteries9120598 - 17 Dec 2023
Cited by 3 | Viewed by 3128
Abstract
Two strategies to increase battery energy density at the cell level are to increase electrode thickness and to reduce the amount of inactive electrode constituents. All active material (AAM) electrodes provide a route to achieve both of those aims toward high areal capacity [...] Read more.
Two strategies to increase battery energy density at the cell level are to increase electrode thickness and to reduce the amount of inactive electrode constituents. All active material (AAM) electrodes provide a route to achieve both of those aims toward high areal capacity electrodes. AAM electrodes are often fabricated using hydraulic compression processes followed by thermal treatment; however, additive manufacturing routes could provide opportunities for more time-efficient and geometry-flexible electrode fabrication. One possible route for additive manufacturing of AAM electrodes would be to employ plasma spray as a direct additive manufacturing technology, and AAM electrode fabrication using plasma spray will be the focus of the work herein. TiO2 and Li4Ti5O12 (LTO) powders were deposited onto stainless steel substrates via plasma spray processing to produce AAM battery electrodes, and evaluated with regards to material and electrochemical properties. The TiO2 electrodes delivered low electrochemical capacity, <12 mAh g−1, which was attributed to limitations of the initial feed powder. LTO plasma sprayed AAM electrodes had much higher capacity and were comparable in total capacity at a low rate of discharge to composite electrodes fabricated using the same raw powder feed material. LTO material and electrochemical properties were sensitive to the plasma spray conditions, suggesting that tuning the material microstructure and electrochemical properties is possible by controlling the plasma spray deposition parameters. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Graphical abstract

18 pages, 2333 KiB  
Article
Proof of Concept: The GREENcell—A Lithium Cell with a F-, Ni- and Co-Free Cathode and Stabilized In-Situ LiAl Alloy Anode
by Kathrin Schad, Dominic Welti and Kai Peter Birke
Batteries 2023, 9(9), 453; https://doi.org/10.3390/batteries9090453 - 4 Sep 2023
Viewed by 2229
Abstract
Given the rising upscaling trend in lithium-ion battery (LiB) production, there is a growing emphasis on the environmental and economic impacts alongside the high energy density demands. The cost and environmental impact of battery production primarily arise from the critical elements Ni, Co, [...] Read more.
Given the rising upscaling trend in lithium-ion battery (LiB) production, there is a growing emphasis on the environmental and economic impacts alongside the high energy density demands. The cost and environmental impact of battery production primarily arise from the critical elements Ni, Co, and F. This drives the exploration of Ni-free and Co-free cathode alternatives such as LiMn2O4 (LMO) and LiFePO4 (LFP). However, the absence of Ni and Co results in reduced capacity and insufficient cyclic stability, particularly in the case of LMO due to Mn dissolution. To compensate for both low cathode capacitance and low cycle stability, we propose the GREENcell, a lithium cell combining a F-free polyisobutene (PIB) binder-based LMO cathode with a stabilized in -situ LiAL alloy anode. A LiAl alloy anode with the chemical composition of LiAl already shows a theoretical capacity of 993 Ah·kg−1. Therefore, it promises extraordinarily higher energy densities compared to a commercial graphite anode with a capacity of 372 Ah·kg−1. Following an iterative development process, different optimization strategies, especially those targeting the stability of the Al-based anode, were evaluated. During Al foil selection, foil purity and thickness could be identified as two of the dominant influencing parameters. A pressed-in stainless steel mesh provides both mechanical stability to the anode and facilitates alloy formation by breaking up the Al oxide layer beforehand. Additionally, a binder-stabilized Al oxide or silicate layer is pre-coated on the Al surface, posing as a SEI-precursor and ensuring a uniform liquid electrolyte distribution at the phase boundary. Employing a commercially available Si-containing Al alloy mitigated the mechanical degradation of the anode, yielding a favorable impact on long-term stability. The applicability of the novel optimized GREENcell is demonstrated using laboratory coin cells with LMO and LFP as the cathode. As a result, the functionality of the GREENcell was demonstrated for the first time, and thanks to the anode stabilization strategies, a capacity retention of >70% after 200 was achieved, representing an increase of 32.6% compared to the initial Al foil. Full article
Show Figures

Figure 1

23 pages, 7150 KiB  
Article
Effect of Web Perforations on the Web Buckling Resistance of 7075-T6 and AA-6086 High-Strength Aluminium Alloy C-Shaped Members under End-Two-Flange Loading Case
by Xiaoyong Sun, Jianhang Fu and Gang Sun
Buildings 2023, 13(8), 1951; https://doi.org/10.3390/buildings13081951 - 31 Jul 2023
Viewed by 1444
Abstract
Recently, new types of C-shaped members made from AA-6086 and 7075-T6 high-strength aluminium alloy have become more popular due to their high yield strength and lower cost. These members are often manufactured with pre-punched web perforations to simplify the installation of services, but [...] Read more.
Recently, new types of C-shaped members made from AA-6086 and 7075-T6 high-strength aluminium alloy have become more popular due to their high yield strength and lower cost. These members are often manufactured with pre-punched web perforations to simplify the installation of services, but this can reduce their strength. Also, such aluminium C-shaped members that contain perforated webs are vulnerable to web buckling failure, as aluminium alloy has a lower elastic modulus compared to steel. However, this influence has not been investigated for high-strength aluminium alloy sections to date. An extensive numerical investigation was undertaken to examine the effect of web perforations on the web buckling resistance of high-strength aluminium alloy C-shaped members under an end-two-flange (ETF) loading case, and this study focused on two types of aluminium alloys, namely 7075-T6 and AA-6086. To achieve this, a nonlinear finite element (FE) model was developed and validated using the test data in the literature. The material properties used in the FE models were obtained from the relevant literature. A parametric investigation was carried out, consisting of a total of 1458 models. In this investigation, a number of variables were examined, including the web hole size, web hole location, bearing length, fillet radius and aluminium alloy grades. The results showed that increasing the a/h ratio from 0.1 to 0.5 resulted in a decrease of 9.7% and 9.3% in the web buckling resistance for the 7075-T6 aluminium and AA-6086 aluminium, respectively. When the length of the bearing plates (N) varied from 100 mm to 200 mm, the web buckling resistance experienced an average increase of 61.7% for the 7075-T6 aluminium and 54.1% for the AA-6086 aluminium. Also, the web buckling resistance increased by 6.2% for the 7075-T6 aluminium alloy, while the strength increased by 4.0% for the AA-6086 aluminium alloy when the x/h ratio increased from 0.1 to 0.5. The numerical data generated from the parametric study were used to assess the accuracy and suitability of the latest design recommendations, and it was found that the design rules presented in the previous literature cannot provide reliable and safe predictions for estimating the web buckling resistance of aluminium C-shaped members that contain perforated webs under an ETF loading case. Finally, new design formulas were proposed in the form of strength reduction factors. A reliability assessment was then undertaken, and the results of this analysis indicated that the proposed design formulas can accurately predict the web buckling resistance of such members with perforated webs. Full article
Show Figures

Figure 1

14 pages, 4694 KiB  
Article
Experimental and Numerical Study on Crack Propagation of Cracked Plates under Low Cycle Fatigue Loads
by Dong Qin, Xu Geng, Zhao Jie and Hu Yaoyu
J. Mar. Sci. Eng. 2023, 11(7), 1436; https://doi.org/10.3390/jmse11071436 - 18 Jul 2023
Cited by 4 | Viewed by 1913
Abstract
The traditional study on fatigue strength for ship structures usually focuses on high cycle fatigue and ignores low cycle fatigue. However, given the recent trend towards large-scale ship development, the stress and deformation experienced by ship structures are becoming increasingly significant, leading to [...] Read more.
The traditional study on fatigue strength for ship structures usually focuses on high cycle fatigue and ignores low cycle fatigue. However, given the recent trend towards large-scale ship development, the stress and deformation experienced by ship structures are becoming increasingly significant, leading to greater attention being paid to low cycle fatigue damage. Therefore, experimental and numerical studies on crack propagation behavior of cracked plates under low cycle fatigue loads were carried out in this paper, in order to explain the fatigue crack propagation mechanism. The effect of the stress ratio and maximum applied load on the crack propagation behavior was investigated by conducting experimental research on the cracked plate of AH32 steel. The experimental results show that an increasing maximum applied load and decreasing stress ratio will shorten the fatigue life of the cracked plate. Meanwhile, based on the finite element method, the distribution of the stress–strain field at the crack tip and the effect of crack closure were evaluated. The influencing factors such as the stress ratio and crack length were considered in numerical studies, which provided a new way to study the low cycle fatigue crack propagation behavior. Full article
(This article belongs to the Special Issue Advanced Analysis of Marine Structures)
Show Figures

Figure 1

20 pages, 6749 KiB  
Article
Computational Model Verification and Validation of Elastoplastic Buckling Due to Combined Loads of Thin Plates
by Guilherme Ribeiro Baumgardt, Cristiano Fragassa, Luiz Alberto Oliveira Rocha, Elizaldo Domingues dos Santos, Thiago da Silveira and Liércio André Isoldi
Metals 2023, 13(4), 731; https://doi.org/10.3390/met13040731 - 8 Apr 2023
Cited by 6 | Viewed by 1796
Abstract
Thin plates are widely used in various engineering applications. In some cases, these structural components may buckle due to compressive loads, which can be aggravated by lateral loads. Several authors have studied the elastoplastic buckling behavior of thin plates considering parameters such as [...] Read more.
Thin plates are widely used in various engineering applications. In some cases, these structural components may buckle due to compressive loads, which can be aggravated by lateral loads. Several authors have studied the elastoplastic buckling behavior of thin plates considering parameters such as material and geometric properties, support conditions, and initial out-of-plane imperfections. Some studies have also investigated the effects of notches and holes on the ultimate buckling stress of thin plates. The main goal of the present work is to verify and validate a computational model developed using the Finite Element Method via ANSYS® software, to simulate the mechanical behavior of metallic plates under uniaxial or biaxial compression combined with lateral load. The proposed numerical model was verified and validated by comparing its results with analytical, numerical, and experimental solutions found in the literature, reaching maximum differences and errors of around 5%. In sequence, the verified and validated computational model was used in a simple case study: a simply supported plate with a centered rectangular perforation and subjected to an in-plane compressive biaxial load combined with a lateral load, considering five different metallic materials: AISI 4130 steel, AH-36 steel, spheroidal graphite iron (SGI), compact graphite iron (CGI) and Al 7075-T651 aluminum alloy. The results obtained are consistent and, as expected, prove the applicability of the proposed computational model. From this, the biaxial elastoplastic buckling behavior was evaluated, indicating that among the studied cases the higher ultimate stress and the smallest maximum deflection were achieved, respectively, by the plates made of AISI 4130 steel and AH-36 steel. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

16 pages, 2573 KiB  
Article
Risk-Based Hybrid Light-Weight Ship Structural Design Accounting for Carbon Footprint
by Yordan Garbatov, Giulia Palomba and Vincenzo Crupi
Appl. Sci. 2023, 13(6), 3583; https://doi.org/10.3390/app13063583 - 10 Mar 2023
Cited by 8 | Viewed by 2460
Abstract
The study aims to develop an integrating risk-based formulation and cost-benefit analysis for identifying an optimal ship hull structural design solution where the steel cargo holds aluminium honeycomb sandwich panels to replace inner side shells. The risk of progressive structural failure includes hazards [...] Read more.
The study aims to develop an integrating risk-based formulation and cost-benefit analysis for identifying an optimal ship hull structural design solution where the steel cargo holds aluminium honeycomb sandwich panels to replace inner side shells. The risk of progressive structural failure includes hazards related to environmental pollution due to accidental fuel and oil spills, possible loss of cargo, crew members and ship during operations, and air pollution during shipyard construction and ship voyages. The structural failure incorporates progressive time-dependent structural degradation coupled with ship hull load-carrying capacity in predicting structural integrity during the service life. The ship hull structural failure and associated risk are estimated over the ship’s service life as a function of the design solution. The carbon footprint and cost to mitigate the impact for the entire steel and hybrid ship hull structural solution implemented as a sustainable life cycle solution are analysed where the steel ship hull structure is built through primary construction. The cost of structural measures accounts for redesigning the ship structure and implementing aluminium honeycomb composite panels instead of steel plates, reducing steel weight, environmental pollution and cost and increasing the transported cargo and corrosion degradation resistance. It has been found that design solutions AHS1 and AHS2, in which aluminium honeycomb panels replace the inner steel shell plates, enhance the corrosion degradation resistance, and reduce the ship hull’s lightweight, reflecting a better beta-reliability index at the time of the first repair with a lower repair cost and more transported cargo. The cost of the ship associated with the design solutions AHS1 and AHS2 is about 11% lower than the steel solutions. Full article
(This article belongs to the Special Issue Ship Structures: Design Loads and Reliability Assessment)
Show Figures

Figure 1

17 pages, 6423 KiB  
Article
Experimental and Numerical Predictions of Cryogenic Leakages in Welded Steel Plates
by Dong Hyuk Kang, Le Trong Dai, Ki-Beom Park, Young-Hwan Choi, Jeong-Hyeon Kim, Seul-Kee Kim and Jae-Myung Lee
Appl. Sci. 2023, 13(5), 3132; https://doi.org/10.3390/app13053132 - 28 Feb 2023
Cited by 2 | Viewed by 2320
Abstract
This study presented experimental and numerical research to investigate the effect of cryogenic leakage on a plate structure of AH36-grade steel containing welded joints. To simulate the cryogenic leakage conditions, the welded plate was exposed to a temperature of −196 °C by supplying [...] Read more.
This study presented experimental and numerical research to investigate the effect of cryogenic leakage on a plate structure of AH36-grade steel containing welded joints. To simulate the cryogenic leakage conditions, the welded plate was exposed to a temperature of −196 °C by supplying liquid nitrogen (LN2) to the center of the steel plate. The time-dependent temperature history and strain variation were measured by using thermocouples and strain gauges attached to the plate surface. Additionally, the residual stress of the middle surface section before and after the cryogenic leakage process was measured by X-ray diffraction analysis (XRD). A three-dimensional finite element model was created with the use of a commercial finite element analysis (FEA) program to simulate the flux-cored arc welding process and cryogenic leakage process. The steel surface temperature dropped sharply and reached approximately −196 °C at 160 s after LN2 supplement. After the first 650 s of the LN2 leakage experiment, the outside of the trough reached approximately −75 °C and −25 °C, depending on the location of the thermal couples. Although there was a relative difference in the results, the experiment and numerical simulation results for temperature and stress distribution showed good agreement. The results could be utilized in the ship design stage adopting welded structures as a basic database. Full article
(This article belongs to the Special Issue Ship Structures: Design Loads and Reliability Assessment)
Show Figures

Figure 1

14 pages, 5644 KiB  
Article
Fatigue Strength of AH36 Thermal Cut Steel Edges at Sub-Zero Temperatures
by Marten Beiler, Jan-Hendrik Grimm, Trong-Nghia Bui, Franz von Bock und Polach and Moritz Braun
J. Mar. Sci. Eng. 2023, 11(2), 346; https://doi.org/10.3390/jmse11020346 - 4 Feb 2023
Cited by 1 | Viewed by 2566
Abstract
Cruise ships or yachts that operate in areas with seasonal freezing temperatures have large openings in the outer shell. Those are thermal cut edges, and they are exposed to very low temperatures. From fatigue crack growth testing of base materials, it is known [...] Read more.
Cruise ships or yachts that operate in areas with seasonal freezing temperatures have large openings in the outer shell. Those are thermal cut edges, and they are exposed to very low temperatures. From fatigue crack growth testing of base materials, it is known that low temperatures can accelerate the crack growth, which may reduce the fatigue life of a structure. However, the current guidelines and rules of classification societies do not provide design curves for the fatigue assessment of thermal cut steel edges at sub-zero temperatures. Therefore, fatigue tests of thermal cut edges are conducted at −20 C and −50 C as well as at room temperatures for reference. The specimens are plasma-cut and tested in a temperature chamber under uniaxial loading with a resonant testing machine. The test results are statistically evaluated using linear regression and the maximum likelihood method. The results show that the fatigue strength at sub-zero temperatures is significantly higher compared to room temperature. The test results of this study indicate that sub-zero temperatures down to −50 C do not seem to cause a reduced fatigue life of thermal cut steel edges. Full article
(This article belongs to the Special Issue Fatigue and Fracture Mechanics of Marine Structures)
Show Figures

Figure 1

11 pages, 5697 KiB  
Article
Electrodeposition of Cu-Reinforced Polyaniline Coating for Protection of AH36 Steel in Natural Seawater
by Nguyen Van Chi, Le Hong Quan, Cao Nhat Linh, Nong Quoc Quang, Nguyen Duc Anh, Dong Van Kien and Nguyen Van Hoa
Coatings 2022, 12(11), 1680; https://doi.org/10.3390/coatings12111680 - 4 Nov 2022
Cited by 4 | Viewed by 2190
Abstract
The marine environment is highly corrosive for mild and low alloy steels. This study aimed to enhance the corrosion resistance of the AH36 steel in a saline medium by coating it with a copper particles reinforced polyaniline (PANI) layer. PANI and Cu particles [...] Read more.
The marine environment is highly corrosive for mild and low alloy steels. This study aimed to enhance the corrosion resistance of the AH36 steel in a saline medium by coating it with a copper particles reinforced polyaniline (PANI) layer. PANI and Cu particles were grown on the steel surface by electrodepositing methods. Firstly, PANI was electropolymerized in the presence of oxalic acid, followed by the electrodeposition of Cu particles at different deposition times. The coating showed a well-distribution of Cu particles in the polymer matrix and excellent adhesion. Furthermore, the Cu particles and PANI-coated steels exhibited corrosion resistance significantly in the saline medium compared to the bare substrate and pristine PANI-coated samples. The improved corrosion protection of a Cu@PANI coating on the AH36 steel could contribute to forming a physical barrier by filling Cu particles on the PANI pores. Full article
(This article belongs to the Special Issue Multi-Functional Nanostructured Sustainable Coatings)
Show Figures

Figure 1

12 pages, 7619 KiB  
Article
Low-Energy Pulsed-Laser Welding as a Root Pass in a GMAW Joint: An Investigation on the Microstructure and Mechanical Properties
by Mariane Chludzinski, Rafael Eugenio dos Santos, Marta Ortega-Iguña, Cristina Churiaque, Manuel Porrúa-Lara and José María Sánchez-Amaya
Materials 2022, 15(21), 7741; https://doi.org/10.3390/ma15217741 - 3 Nov 2022
Cited by 2 | Viewed by 2450
Abstract
Root pass is a fundamental step in multi-pass welding. In gas metal arc welding (GMAW), the weld bead qualities depend on the process parameters, filler materials, and welder abilities. This work investigates the effect of a Nd: YAG pulsed laser as a first [...] Read more.
Root pass is a fundamental step in multi-pass welding. In gas metal arc welding (GMAW), the weld bead qualities depend on the process parameters, filler materials, and welder abilities. This work investigates the effect of a Nd: YAG pulsed laser as a first pass to reduce the welders’ reliance on the AH36 low-alloy steel with 5.5 mm thickness. This autogenous automatable process delivers reduced thermal impact due to the concentrated high-energy source, pulse overlap, and higher penetration depth-to-power ratio than continuous lasers. The outcomes indicate that the PL as a root welding generated a small HAZ compared to the GMAW condition. In addition, the subsequent arc passes positively affected the microstructure, reducing the hardness from around 500 to 230 HV. The PL + GMAW achieved similar strength results to the GMAW, although its Charpy impact values at −50 °C were around 15% lower than the arc condition. Full article
(This article belongs to the Special Issue Feature Papers in "Metals and Alloys" Section)
Show Figures

Figure 1

Back to TopTop