Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = AFB1 detoxification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1951 KB  
Review
Intestinal Microecological Mechanisms of Aflatoxin B1 Degradation by Black Soldier Fly Larvae (Hermetia illucens): A Review
by Qiwen Yuan, Jing Xia, Chaorong Ge and Huaiying Yao
Animals 2025, 15(22), 3351; https://doi.org/10.3390/ani15223351 - 20 Nov 2025
Viewed by 617
Abstract
Aflatoxin B1 (AFB1) is a naturally occurring contaminant pervasively found in agricultural produce, exhibiting extremely high carcinogenicity, teratogenicity and immunotoxicity, thereby constituting a substantial menace to worldwide food security and public health. Consequently, developing green and efficient degradation strategies for AFB1 is highly [...] Read more.
Aflatoxin B1 (AFB1) is a naturally occurring contaminant pervasively found in agricultural produce, exhibiting extremely high carcinogenicity, teratogenicity and immunotoxicity, thereby constituting a substantial menace to worldwide food security and public health. Consequently, developing green and efficient degradation strategies for AFB1 is highly important. The intestinal tract of black soldier fly (Hermetia illucens) larvae (BSFL) contains complex, functionally diverse microbial communities that function as microbial reactors to degrade emerging environmental pollutants such as pesticides, microplastics, mycotoxins, and antibiotics. This functional characteristic offers a novel approach for mitigating AFB1 contamination. In this review, we systematically summarize the currently reported AFB1 degradation methods, focusing on the biological mode of action of the intestinal microbiota of BSFL. We elaborate on the efficacy of BSFL in AFB1 detoxification in terms of the host–microorganism co-degradation mechanism and discuss the core intestinal microbiota of BSFL and the main microbial degradation pathways involved in AFB1 metabolism during degradation. Given the low cost, high efficiency, safety, and sustainability of using the BSFL as living microbial reactors in which the core gut microbiota and the larval host detoxifying enzyme system synergistically degrade AFB1, this study provides a scientific reference for managing AFB1 pollution to overcome food security issues. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 3033 KB  
Article
Self-Sufficient Aflatoxin Decontamination System: MOF-Based Composite Membrane with Peroxidase-Mimic and Controlled H2O2 Generation
by Xiaofei Cheng, Wenzhong Zhu, Xueting Zhu, Jinmin Zhang, Jia Yang, Huali Wang, Xiaoqin Mo, Chi Zhang and Lina Wu
Toxins 2025, 17(10), 516; https://doi.org/10.3390/toxins17100516 - 20 Oct 2025
Viewed by 739
Abstract
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative [...] Read more.
Aflatoxin B1 (AFB1) and its metabolite aflatoxin M1 (AFM1) are stable and carcinogenic mycotoxins that are commonly found in dairy products, posing serious food safety concerns. However, conventional degradation methods face limited degradation efficiency and high energy demand. Here, we develop an innovative polyvinylidene fluoride (PVDF) composite membrane incorporating Fe/Co-based metal-organic frameworks (MOF) (Named Fe/Co-MIL-88B(NH2)) and CaO2 for targeted aflatoxin removal from milk. This system integrates two synergistic mechanisms: (1) hierarchical porous MOF structures enabling superior aflatoxin adsorption capacity and peroxidase-like catalytic activity, and (2) CaO2 acts as a controllable-release H2O2 donor, supplying a steady flux of reactive oxygen species without the addition of exogenous H2O2. Moreover, the PVDF membrane with mechanical stability offers uniform immobilization of active components, which prevents the aggregation of nanozymes. As a result, the integrated membrane achieves high degradation efficiency for AFB1 and AFM1, exceeding 95% within 60 min. By eliminating external oxidant addition and minimizing collateral nutrient damage, the technology demonstrates remarkable operational stability (>10 cycles) and milk quality preservation capability. This breakthrough establishes an efficient and reusable detoxification method, providing new opportunities for mycotoxin mitigation in dairy products through spatiotemporal control of reactive oxygen species. Full article
(This article belongs to the Special Issue Detection, Biosynthesis and Control of Mycotoxins (4th Edition))
Show Figures

Figure 1

14 pages, 1031 KB  
Review
Comprehensive Review of Dietary Probiotics in Reducing Aflatoxin B1 Toxicity
by Dasol Choi, Xingrui Fan and Jae-Hyuk Yu
Toxins 2025, 17(10), 482; https://doi.org/10.3390/toxins17100482 - 26 Sep 2025
Cited by 1 | Viewed by 1813
Abstract
Aflatoxin B1 (AFB1), the most potent and widespread mycotoxin produced by Aspergillus flavus and Aspergillus parasiticus, poses a significant global threat to food safety and human health, with chronic exposure strongly linked to hepatocellular carcinoma (HCC). While physical and [...] Read more.
Aflatoxin B1 (AFB1), the most potent and widespread mycotoxin produced by Aspergillus flavus and Aspergillus parasiticus, poses a significant global threat to food safety and human health, with chronic exposure strongly linked to hepatocellular carcinoma (HCC). While physical and chemical detoxification approaches exist, their limitations have led to an increased interest in biological strategies, particularly probiotic interventions. In this review, we synthesize current in vivo and clinical evidence on the ability of probiotic lactic acid bacteria—including Lactobacillus casei Shirota, Lactobacillus rhamnosus GG, Lactobacillus rhamnosus LC705, Lactococcus lactis, and selected Bifidobacterium species—to reduce AFB1 absorption and toxicity. We summarize mechanistic insights into cell wall adsorption, gut microbiota modulation, intestinal barrier protection, and antioxidant enhancement. Clinical trials have shown reductions in AFB1 biomarkers following probiotic supplementation, supporting their translational potential for human health. However, clinical evidence remains limited by small sample sizes, short intervention periods, and variability in endpoints. Collectively, this review consolidates mechanistic, preclinical, and clinical findings to position probiotic lactic acid bacteria as promising biological countermeasures against AFB1-induced hepatocellular carcinoma. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

33 pages, 953 KB  
Review
Aflatoxin Exposure in Immunocompromised Patients: Current State and Future Perspectives
by Temitope R. Fagbohun, Queenta Ngum Nji, Viola O. Okechukwu, Oluwasola A. Adelusi, Lungani A. Nyathi, Patience Awong and Patrick B. Njobeh
Toxins 2025, 17(8), 414; https://doi.org/10.3390/toxins17080414 - 16 Aug 2025
Viewed by 3996
Abstract
Aflatoxins (AFs), harmful secondary metabolites produced by the genus Aspergillus, particularly Aspergillus flavus and Aspergillus parasiticus, are one of the best-known potent mycotoxins, posing a significant risk to public health. The primary type, especially aflatoxin B1 (AFB1), is [...] Read more.
Aflatoxins (AFs), harmful secondary metabolites produced by the genus Aspergillus, particularly Aspergillus flavus and Aspergillus parasiticus, are one of the best-known potent mycotoxins, posing a significant risk to public health. The primary type, especially aflatoxin B1 (AFB1), is a potent carcinogen associated with liver cancer, immunosuppression, and other health problems. Environmental factors such as high temperatures, humidity, and inadequate storage conditions promote the formation of aflatoxin in staple foods such as maize, peanuts, and rice. Immunocompromised individuals, including those with HIV/AIDS, hepatitis, cancer, or diabetes, are at increased risk due to their reduced detoxification capacity and weakened immune defenses. Chronic exposure to AF in these populations exacerbates liver damage, infection rates, and disease progression, particularly in developing countries and moderate-income populations where food safety regulations are inadequate and reliance on contaminated staple foods is widespread. Biomarkers such as aflatoxin-albumin complexes, urinary aflatoxin M1, and aflatoxin (AF) DNA adducts provide valuable insights but remain underutilized in resource-limited settings. Despite the globally recognized health risk posed by AF, research focused on monitoring human exposure remains limited, particularly among immunocompromised individuals. This dynamic emphasizes the need for targeted studies and interventions to address the particular risks faced by immunocompromised individuals. This review provides an up-to-date overview of AF exposure in immunocompromised populations, including individuals with cancer, hepatitis, diabetes, malnutrition, pregnant women, and the elderly. It also highlights exposure pathways, biomarkers, and biomonitoring strategies, while emphasizing the need for targeted interventions, advanced diagnostics, and policy frameworks to mitigate health risks in these vulnerable groups. Addressing these gaps is crucial to reducing the health burden and developing public health strategies in high-risk regions. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

16 pages, 574 KB  
Article
In Vitro Evaluation of Aflatoxin B1 Detoxification by Lactobacillus, Pediococcus, and Bacillus Strains
by Sarra Rafai, Ana Moreno, Alessandra Cimbalo, Pilar Vila-Donat, Lara Manyes and Giuseppe Meca
Toxins 2025, 17(8), 403; https://doi.org/10.3390/toxins17080403 - 11 Aug 2025
Cited by 1 | Viewed by 1451
Abstract
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in [...] Read more.
Biologically based detoxification strategies are increasingly being explored as alternatives to conventional methods for the removal of toxic contaminants in food products. Among these, aflatoxin B1 (AFB1) is one of the most potent mycotoxins due to its high toxicity, genotoxicity, and persistence in the human body once ingested. In this study, the detoxification potential of bacterial strains belonging to the genera Lactobacillus/Pediococcus (n = 10) and Bacillus (n = 10) was evaluated using extracts from naturally contaminated corn flour. Detoxification was assessed after incubation for 12, 24, and 48 h in specific culture media. AFB1 quantification and metabolite profiling were performed at each time point using Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF-MS). The highest detoxification rates were observed with Lactobacillus curvatus 14 (L. curvatus 14) (41.1 ± 19.3%) and Pediococcus pentosaceus 4 (P. pentosaceus 4) (25.4 ± 11.3%) after 48 h, and Bacillus firmus 6 (B. firmus 6) (25.1 ± 12.9%) after 24 h. An in vitro digestion model was also applied to assess detoxification under gastrointestinal conditions. Results showed substantial AFB1 reduction at the colonic stage, reaching 72.26 ± 7.54% for P. pentosaceus 4 and 69.67 ± 9.70% for L. curvatus 14. These findings underscore the potential application of Lactobacillus, Pediococcus, and Bacillus strains in biological detoxification strategies to reduce dietary exposure to AFB1. Full article
(This article belongs to the Special Issue Aflatoxins: Contamination, Analysis and Control)
Show Figures

Figure 1

21 pages, 1915 KB  
Article
CYP1B1 Knockout in a Bovine Hepatocyte-like Cell Line (BFH12) Unveils Its Role in Liver Homeostasis and Aflatoxin B1-Induced Hepatotoxicity
by Silvia Iori, Ludovica Montanucci, Caterina D’Onofrio, Maija Lahtela-Kakkonen, Lorena Lucatello, Anisa Bardhi, Andrea Barbarossa, Francesca Capolongo, Anna Zaghini, Marianna Pauletto, Mauro Dacasto and Mery Giantin
Toxins 2025, 17(6), 294; https://doi.org/10.3390/toxins17060294 - 10 Jun 2025
Viewed by 1187
Abstract
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in [...] Read more.
CYP1B1 is a key enzyme involved in xenobiotic and endogenous metabolism, yet its physiological role in bovine liver homeostasis remains unclear. In this study, we generated a CYP1B1 knockout (CYP1B1KO) bovine hepatocyte-like cell line to indirectly investigate its role in liver function. Transcriptomic analysis revealed alterations in immune regulation, epithelial barrier integrity, and detoxification pathways, with concurrent compensatory CYP1A1 upregulation. Beyond its physiological role, CYP1B1 was found to actively participate in Aflatoxin B1 (AFB1) metabolism, a mycotoxin posing significant health risks to humans and livestock. Molecular docking suggested that CYP1B1 facilitates the conversion of AFB1 into AFM1 and AFBO. In agreement with these predictions, CYP1B1KO cells exposed to AFB1 showed reduced AFM1 production and decreased cytotoxicity. Further transcriptomic analysis indicated that CYP1B1KO cells exhibited mitigated oxidative stress and inflammatory responses, along with downregulation of CYP3A74, a key enzyme in AFB1 bioactivation. This suggests that CYP1B1 KO reduces AFB1 toxicity by directly limiting AFB1 bioactivation and indirectly modulating the broader hepatic CYP network, further limiting the formation of toxic intermediates. These findings provide novel insights into CYP1B1’s function in bovine hepatocytes, highlighting its dual role in maintaining liver homeostasis and mediating AFB1 metabolism. The observed interplay between CYP1B1, CYP1A1, and CYP3A74 underscores the complexity of AFB1 biotransformation and warrants further investigation into the coordinated regulation of xenobiotic metabolism in cattle. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

14 pages, 1695 KB  
Article
The Efficacy of Two Mycotoxin Detoxifications on Laying Performance, Antioxidant Capacity, and Liver Damage of Laying Hens Fed Diet Naturally Contaminated with Low-Level Mycotoxins
by Huimin Ma, Wentao Cheng, Usman Nazir, Chengfei Wang, Haiming Yang and Xiaoli Wan
Vet. Sci. 2025, 12(6), 520; https://doi.org/10.3390/vetsci12060520 - 26 May 2025
Viewed by 1173
Abstract
This study was conducted to investigate the effects of two mycotoxin detoxifications on laying hens. A total of 360 70-week-old Hy-Line Brown laying hens were randomly divided into 1 of the 4 dietary treatment groups, with 6 replicates per group and 15 hens [...] Read more.
This study was conducted to investigate the effects of two mycotoxin detoxifications on laying hens. A total of 360 70-week-old Hy-Line Brown laying hens were randomly divided into 1 of the 4 dietary treatment groups, with 6 replicates per group and 15 hens per replicate. The laying hens of the four treatments were fed with a basal diet (CON), a diet with naturally low-level mycotoxin contaminated corn (the levels of AFB1, ZEA, and DON in the corn of the CON group were 1.68 μg/kg, 42.75 μg/kg, and 585.40 μg/kg, respectively), replacing 73% of the corn in CON (MC), the MC diet with 1 g/kg modified silica-aluminate mycotoxin adsorbent (MA), and the MC diet with 1 g/kg mycotoxin degrading enzyme and bacteria complexes degradation agent (MD), respectively. Liver tissue and serum samples were extracted at the end of the trial to assess the antioxidant status and hepatic injury biomarkers. The experimental data were preliminarily interpreted in Excel and then analyzed by one-way ANOVA using SPSS, version 25 (SPSS Inc., Chicago, IL, USA). The results showed that compared to the CON, the MC group had decreased laying rate (p < 0.05), ferric reducing antioxidant potential in serum (p < 0.05), and reduced glutathione (GSH) content in the liver, and increased feed/egg ratio, serum alanine aminotransferase (ALT) activity, and malondialdehyde (MDA) content. Compared to the MC group, feed/egg ratio and serum ALT activity in the MA group and MD group decreased (p < 0.05), while serum GSH content and superoxide dismutase activity in the liver of the MA and MD groups increased. The liver glutathione peroxidase activity and the egg yolk percentage in the MA group decreased (p < 0.05) compared to the MC group. Histopathological alterations in liver tissues induced by mycotoxin included vacuolar degeneration, hepatocyte necrosis and disintegration, inflammatory cell infiltration, and enlarged hepatic sinuses. In short, both MA and MD were effective in mitigating the combined effects of low-level mycotoxins on laying hen performance, antioxidant capacity and liver damage. Full article
Show Figures

Figure 1

23 pages, 6311 KB  
Article
Green-Engineered Montmorillonite Clays for the Adsorption, Detoxification, and Mitigation of Aflatoxin B1 Toxicity
by Johnson O. Oladele, Xenophon Xenophontos, Gustavo M. Elizondo, Yash Daasari, Meichen Wang, Phanourios Tamamis, Natalie M. Johnson and Timothy D. Phillips
Toxins 2025, 17(3), 131; https://doi.org/10.3390/toxins17030131 - 11 Mar 2025
Cited by 3 | Viewed by 2489
Abstract
Dietary and environmental exposure to aflatoxins via contaminated food items can pose major health challenges to both humans and animals. Studies have reported the coexistence of aflatoxins and other environmental toxins. This emphasizes the urgent need for efficient and effective mitigation strategies for [...] Read more.
Dietary and environmental exposure to aflatoxins via contaminated food items can pose major health challenges to both humans and animals. Studies have reported the coexistence of aflatoxins and other environmental toxins. This emphasizes the urgent need for efficient and effective mitigation strategies for aflatoxins. Previous reports from our laboratory have demonstrated the potency of the green-engineered clays (GECs) on ochratoxin and other toxic chemicals. Therefore, this study sought to investigate the binding and detoxification potential of chlorophyll (CMCH and SMCH) and chlorophyllin (CMCHin and SMCHin)-amended montmorillonite clays for aflatoxin B1 (AFB1). In addition to analyzing binding metrics including affinity, capacity, free energy, and enthalpy, the sorption mechanisms of AFB1 onto the surfaces of engineered clays were also investigated. Computational and experimental studies were performed to validate the efficacy and safety of the clays. CMCH showed the highest binding capacity (Qmax) of 0.43 mol/kg compared to the parent clays CM (0.34 mol/kg) and SM (0.32 mol/kg). Interestingly, there were no significant changes in the binding capacity of the clays at pH2 and pH6, suggesting that the clays can bind to AFB1 throughout the gastrointestinal track. In silico investigations employing molecular dynamics simulations also demonstrated that CMCH enhanced AFB1 binding as compared to parent clay and predicted hydrophobic interactions as the main mode of interaction between the AFB1 and CMCH. This was corroborated by the kinetic results which indicated that the interaction was best defined by chemosorption with favorable thermodynamics and Gibbs free energy (∆G) being negative. In vitro experiments in Hep G2 cells showed that clay treatment mitigated AFB1-induced cytotoxicity, with the exception of 0.5% (w/v) SMCH. Finally, the in vivo results validated the protection of all the clays against AFB1-induced toxicities in Hydra vulgaris. This study showed that these clays significantly detoxified AFB1 (86% to 100%) and provided complete protection at levels as low as 0.1%, suggesting that they may be used as AFB1 binders in feed and food. Full article
Show Figures

Figure 1

15 pages, 1631 KB  
Article
Impact of Bioactive Ingredients on the Fecal Excretion of Aflatoxin B1 and Ochratoxin A in Wistar Rats
by Pilar Vila-Donat, Dora Sánchez, Lara Manyes and Alessandra Cimbalo
Molecules 2025, 30(3), 647; https://doi.org/10.3390/molecules30030647 - 1 Feb 2025
Cited by 3 | Viewed by 1322
Abstract
This study evaluates the effects of fermented whey (FW) and pumpkin (P) on the excretion of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in rats using immunoaffinity column cleanup and high-performance liquid chromatography–fluorescence detection (IAC-LC-FLD). The method achieved detection limits of 0.1 µg/kg [...] Read more.
This study evaluates the effects of fermented whey (FW) and pumpkin (P) on the excretion of aflatoxin B1 (AFB1) and ochratoxin A (OTA) in rats using immunoaffinity column cleanup and high-performance liquid chromatography–fluorescence detection (IAC-LC-FLD). The method achieved detection limits of 0.1 µg/kg for AFB1 and 0.3 µg/kg for OTA, with recovery rates ranging from 72–92% for AFB1 and 88–98% for OTA. A fecal analysis of 100 rats showed peak AFB1 concentrations of 418 µg/kg and OTA of 1729 µg/kg. In the toxin-exposed groups, OTA levels were higher than AFB1, with males in the OTA-only group showing significantly higher OTA (1729 ± 712 µg/kg) than females (933 ± 512 µg/kg). In the AFB1-only group, the fecal levels were 52 ± 61 µg/kg in males and 91 ± 77 µg/kg in females. The AFB1 + FW group showed notable AFB1 concentrations (211 ± 51 µg/kg in males, 230 ± 36 µg/kg in females). The FW + P combination further influenced excretion, with higher AFB1 and OTA levels. These findings suggest that FW and P modulate mycotoxin excretion and may play a role in mycotoxin detoxification, providing insight into dietary strategies to reduce mycotoxin exposure and its harmful effects. Full article
Show Figures

Figure 1

17 pages, 9669 KB  
Review
Photocatalytic Degradation of Mycotoxins by Heterogeneous Photocatalysts
by Yawei Huang, Muyue Li and Jing Liu
Catalysts 2025, 15(2), 112; https://doi.org/10.3390/catal15020112 - 23 Jan 2025
Cited by 1 | Viewed by 2080
Abstract
Mycotoxins are highly toxic secondary metabolites that can pose a serious threat to food safety, human health, and the environment. As a promising detoxification method, photocatalysis has shown great potential for mycotoxin degradation due to its high efficiency, low cost, and green advantages. [...] Read more.
Mycotoxins are highly toxic secondary metabolites that can pose a serious threat to food safety, human health, and the environment. As a promising detoxification method, photocatalysis has shown great potential for mycotoxin degradation due to its high efficiency, low cost, and green advantages. Heterogeneous photocatalysis using a semiconductor as a mediator is now regarded as an effective approach for mycotoxin degradation. The aim of this study was to review the recent developments, mainly in the photocatalytic degradation of mycotoxin (e.g., AFB1, FB1, DON, and ZEN). The principle, feasibility, and main semiconducting catalysts of mycotoxin photodegradation are introduced and discussed, including metal oxides (transition, noble, and rare earth metals), carbons (graphene, carbon nitride, and biochar) and other composites (MOFs and LDHs). This review will contribute to the development of semiconductor photocatalysts and photocatalytic degradation for mycotoxins decontamination. Full article
Show Figures

Figure 1

13 pages, 866 KB  
Article
In Vivo Effectiveness of Pleurotus ostreatus in Degradation of Toxic Metabolites of Filamentous Fungi Such as Aflatoxin B1 and Zearalenone
by Agnieszka Zapaśnik, Marcin Bryła, Adrian Wojtczak and Barbara Sokołowska
Metabolites 2025, 15(1), 20; https://doi.org/10.3390/metabo15010020 - 5 Jan 2025
Cited by 2 | Viewed by 3310
Abstract
Background/Objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, [...] Read more.
Background/Objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, there is still a high risk associated with the occurrence of these toxins in food and feed. Biological methods of food preservation are an alternative option to conventional chemical and physical methods, characterized by their less negative impact on human health as well as their high efficiency against filamentous fungi and other foodborne pathogens. Mycoremediation is a new biotechnique based on the capability of fungi to detoxify matrices from various pullulans. Ligninolytic enzymes produced by white rot fungi (WRF) characterize a high efficiency in the degradation of various mycotoxins. Methods: In our study, Pleurotus ostreatus, as a representative of WRF, was cultivated on a medium contaminated by AFB1 and ZEN (mushroom substrate and maize) in a few variants of concentration. After the cultivation, medium and fruiting bodies were collected and analyzed with the usage of HPLC and LC/MS methods. Results: The reduction oscillated between 53 and 87% (AFB1) and 73 and 97% (ZEN) depending on the initial concentration of toxins in the medium. Grown fruiting bodies contained insignificant amounts of both toxins. Conclusions: These findings confirm the potential of P. ostreatus as an effective biological agent for reducing mycotoxins in contaminated medium, highlighting its applicability in developing sustainable and safe methods for detoxification. Full article
(This article belongs to the Special Issue Metabolic Properties of Microbial Cells or Enzymes)
Show Figures

Figure 1

22 pages, 5491 KB  
Review
The Detoxification Effects of Melatonin on Aflatoxin-Caused Toxic Effects and Underlying Molecular Mechanisms
by Chongshan Dai, Daowen Li, Tony Velkov, Jianzhong Shen and Zhihui Hao
Antioxidants 2024, 13(12), 1528; https://doi.org/10.3390/antiox13121528 - 13 Dec 2024
Cited by 2 | Viewed by 2853
Abstract
Aflatoxins (AFTs) are a form of mycotoxins mainly produced by Aspergillus flavus and Aspergillus parasiticus, which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. [...] Read more.
Aflatoxins (AFTs) are a form of mycotoxins mainly produced by Aspergillus flavus and Aspergillus parasiticus, which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies. The detoxification of AFB1 is of great importance for safeguarding the health of animals and humans and has increasingly attracted global attention. Recent research has shown that melatonin supplementation can effectively mitigate AFB1-induced multiple toxic effects. The protection mechanisms of melatonin involve the inhibition of oxidative stress, the upregulation of antioxidant enzyme activity, the reduction of mitochondrial dysfunction, the inactivation of the mitochondrial apoptotic pathway, the blockade of inflammatory responses, and the attenuation of cytochrome P450 enzymes’ expression and activities. In summary, this review sheds new light on the potential role of melatonin as a potential detoxifying agent against AFB1. Further exploration of the precise molecular mechanisms and clinical efficacy of this promising treatment is urgently needed. Full article
(This article belongs to the Special Issue Environmental Pollution and Oxidative Stress)
Show Figures

Figure 1

14 pages, 8892 KB  
Article
Exploration of Aflatoxin B1 Degradation Products via Kocuria rosea: Structure Elucidation and Toxicity Analysis
by Jingying Wang, Jun Nan, Qiqi Chen, Ying Zhou, Xiujun Gao and Yuexin Li
Appl. Sci. 2024, 14(23), 11024; https://doi.org/10.3390/app142311024 - 27 Nov 2024
Cited by 2 | Viewed by 1411
Abstract
Aflatoxin B1, a natural mycotoxin produced by Aspergillus fungi with high toxicity and carcinogenicity to humans and animals, has attracted more and more attention in the past 40 years. In the study of the biological detoxification of aflatoxin B1—although [...] Read more.
Aflatoxin B1, a natural mycotoxin produced by Aspergillus fungi with high toxicity and carcinogenicity to humans and animals, has attracted more and more attention in the past 40 years. In the study of the biological detoxification of aflatoxin B1—although it has been confirmed that Kocuria rosea has the ability to efficiently remove aflatoxin B1—the degradation products, degradation pathways, and toxicity of the degradation products of aflatoxin B1 have not been clarified. Therefore, in this study, it was found that the functional groups of aflatoxin B1 changed after being cultured with Kocuria rosea, indicating the production of aflatoxin B1 degradation products. Ten main AFB1 degradation products (including aflatoxicol, aflatoxin D1, and aflatoxin D2) were identified, and their structures and fragmentation mechanisms were further elucidated by the parent ions and fragment ions of the products. The possible degradation pathway of aflatoxin B1 was proposed according to the structure of the degradation products. Additionally, the toxicity of the degradation products was analyzed according to the quantitative structure–activity relationship theory, and cytotoxicity experiments and dead–live cell staining experiments showed that the toxicity of the degradation products was significantly less than that of aflatoxin B1. In this study, the mechanism of aflatoxin B1 degradation by Kocuria rosea was explored from several perspectives, indicating that aflatoxin B1 degradation by Kocuria rosea is a promising biological method. Full article
Show Figures

Figure 1

21 pages, 3774 KB  
Review
Aflatoxin Exposure-Caused Male Reproductive Toxicity: Molecular Mechanisms, Detoxification, and Future Directions
by Dongyun Ye, Zhihui Hao, Shusheng Tang, Tony Velkov and Chongshan Dai
Biomolecules 2024, 14(11), 1460; https://doi.org/10.3390/biom14111460 - 17 Nov 2024
Cited by 6 | Viewed by 3607
Abstract
Widespread endocrine disorders and infertility caused by environmental and food pollutants have drawn considerable global attention. Aflatoxins (AFTs), a prominent class of mycotoxins, are recognized as one of the key contributors to environmental and food contamination. Aflatoxin B1 (AFB1) is [...] Read more.
Widespread endocrine disorders and infertility caused by environmental and food pollutants have drawn considerable global attention. Aflatoxins (AFTs), a prominent class of mycotoxins, are recognized as one of the key contributors to environmental and food contamination. Aflatoxin B1 (AFB1) is the most potent and toxic pollutant among them and is known to cause multiple toxic effects, including neuro-, nephro-, hepato-, immune-, and genotoxicity. Recently, concerns have been raised regarding AFB1-induced infertility in both animals and humans. Exposure to AFB1 can disrupt the structure and functionality of reproductive organs, leading to gametogenesis impairment in males, subsequently reducing fertility. The potential molecular mechanisms have been demonstrated to involve oxidative stress, cell cycle arrest, apoptosis, inflammatory responses, and autophagy. Furthermore, several signaling pathways, including nuclear factor erythroid 2-related factor 2; NOD-, LRR-, and pyrin domain-containing protein 3; nuclear factor kappa-B; p53; p21; phosphoinositide 3-kinase/protein kinase B; the mammalian target of rapamycin; adenosine 5′-monophosphate-activated protein kinase; and mitochondrial apoptotic pathways, are implicated in these processes. Various interventions, including the use of small molecules, Chinese herbal extracts, probiotic supplementation, and camel milk, have shown efficacy in ameliorating AFB1-induced male reproductive toxicity, by targeting these signaling pathways. This review provides a comprehensive summary of the harmful impacts of AFB1 exposure on male reproductive organs in mammals, highlighting the potential molecular mechanisms and protective agents. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

13 pages, 4807 KB  
Article
The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators
by Mengshuang Jia, Xiaohu Yu, Kun Xu, Xiaodan Gu, Nicholas J. Harmer, Youbao Zhao, Yuqiang Xiang, Xia Sheng, Chenglong Li, Xiang-Dang Du, Jiajia Pan and Wenbo Hao
Toxins 2024, 16(11), 477; https://doi.org/10.3390/toxins16110477 - 4 Nov 2024
Cited by 9 | Viewed by 2619
Abstract
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is [...] Read more.
Mycotoxin cocontamination is a severe threat to health and economic security worldwide. The mycotoxins aflatoxin B1 (AFB1), zearalenone (ZEN), deoxynivalenol, T-2 toxin, fumonisin B1, and ochratoxin A are of particular concern due to their substantial toxicity. Lac-W is a laccase with the unique property of degrading these six mycotoxins in the absence of redox mediators. Nevertheless, their degradation rates are low. This work aims to improve the ability of Lac-W to degrade these six mycotoxins and to elucidate its detoxification mechanism. Including redox mediators increased the Lac-W degradation efficiency drastically, and completely degraded AFB1 and ZEN within one hour. Additionally, Lac-W-AS has good temperature, pH, and ions adaptability in ZEN degradation. Lac-W-AS reduced the ZEN toxicity because ZEN degradation products significantly restored the bioluminescence intensity of Vibrio fischeri. A Lac-W-AS-mediated oxidation product of ZEN was structurally characterized as 15-OH-ZEN by UHPLC-MS/MS. Linear sweep voltammetry showed that AS affected the potential of Lac-W and accelerated the oxidation of ZEN. Finally, the combination of mediators (acetosyringone and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate)) improved the degradation rate of mycotoxins. This work highlights that the combination of Lac-W with mediators serves as a good candidate for degrading multi-mycotoxin contaminants in food and feedstuff. Full article
Show Figures

Figure 1

Back to TopTop