Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = AEMWE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1154 KB  
Review
A Critical Review of Green Hydrogen Production by Electrolysis: From Technology and Modeling to Performance and Cost
by Rafika Louli, Stefan Giurgea, Issam Salhi, Salah Laghrouche and Abdesslem Djerdir
Energies 2026, 19(1), 59; https://doi.org/10.3390/en19010059 - 22 Dec 2025
Cited by 2 | Viewed by 947
Abstract
As the world shifts toward a low-carbon future, green hydrogen has emerged as a critical pillar of the energy transition. It is produced using renewable energy to power water electrolysis, and it is a clean and flexible alternative to hydrogen made from fossil [...] Read more.
As the world shifts toward a low-carbon future, green hydrogen has emerged as a critical pillar of the energy transition. It is produced using renewable energy to power water electrolysis, and it is a clean and flexible alternative to hydrogen made from fossil fuels. However it is still hard to roll out on a large scale because of technological limits, high costs, and the need for infrastructure. This review critically analyzes current electrolysis methods, including established systems like alkaline and PEM electrolyzers, as well as newly developed concepts such as AEMWE and SOWE. It discusses how they can be used in renewable energy systems, important techno-economic and durability problems, system modeling, and grid interaction. This work clarifies both the technological potential and the practical limitations of green-hydrogen electrolyzer systems while highlighting key directions for future research and implementation. Full article
Show Figures

Figure 1

12 pages, 5722 KB  
Article
A Core–Shell Pt–NiSe@NiFe-LDH Heterostructure for Bifunctional Alkaline Water Splitting
by Shanshan Li, Yanping Guo, Ziqi Wang, Depeng Zhao, Rui Guo, Qingzhong Gao and Zhiqiang Zhang
Molecules 2025, 30(23), 4654; https://doi.org/10.3390/molecules30234654 - 4 Dec 2025
Cited by 1 | Viewed by 456
Abstract
The escalating global energy crisis has intensified the demand for sustainable hydrogen production through electrochemical water splitting. Herein, we report a novel oxygen-vacancy-rich bifunctional electrocatalyst, Pt-NiSe@NiFe-LDH-Ov, synthesized via a facile electrodeposition and reduction method. It demonstrates exceptional performance, requiring low overpotentials of 280 [...] Read more.
The escalating global energy crisis has intensified the demand for sustainable hydrogen production through electrochemical water splitting. Herein, we report a novel oxygen-vacancy-rich bifunctional electrocatalyst, Pt-NiSe@NiFe-LDH-Ov, synthesized via a facile electrodeposition and reduction method. It demonstrates exceptional performance, requiring low overpotentials of 280 mV for the HER and 344 mV for the OER to achieve current densities of 50 and 100 mA cm−2, respectively, in 1.0 M KOH. When employed for overall water splitting, the system requires a cell voltage of only 1.878 V to reach 50 mA cm−2. Notably, in an anion exchange membrane water electrolyzer (AEMWE), the performance shows significant enhancement with increasing operating temperature (20 to 60 °C), particularly at high current densities (>200 mA cm−2), highlighting its excellent thermal adaptability. The superior activity is attributed to the synergistic effect between the Pt-NiSe and NiFe-LDH interfaces and the abundant oxygen vacancies, which collectively enhance charge transfer and optimize the adsorption of reaction intermediates. Full article
Show Figures

Figure 1

21 pages, 17706 KB  
Article
Composite Anion Exchange Membranes Based on Functionalized Graphene Oxide and Poly(Terphenylene Piperidinium) for Application in Water Electrolysis and Fuel Cells
by Tamilazhagan Palanivel, Hosni Ahmed Elwan, Mohamed Mamlouk, Simon Doherty and Bruno G. Pollet
Processes 2025, 13(10), 3047; https://doi.org/10.3390/pr13103047 - 24 Sep 2025
Viewed by 1096
Abstract
Composite anion exchange membranes (AEMs) based on poly(terphenylene piperidinium) (PTPiQA) and impregnated with varying loadings of quaternized graphene oxide (QGO) as filler were developed, and their properties as anion exchange membranes for use in water electrolysis (AEMWEs) and fuel cells (AEMFCs) were explored. [...] Read more.
Composite anion exchange membranes (AEMs) based on poly(terphenylene piperidinium) (PTPiQA) and impregnated with varying loadings of quaternized graphene oxide (QGO) as filler were developed, and their properties as anion exchange membranes for use in water electrolysis (AEMWEs) and fuel cells (AEMFCs) were explored. This study investigates the trade-off between mechanical robustness, ionic conductivity, and alkaline stability in QGO-reinforced twisted polymer backbones. QGO synthesized by functionalization with ethylenediamine (EDA), followed by quaternization with glycidyl trimethylammonium chloride (GTMAC), was used as a filler for PTPiQA, and the properties of the resulting composites PTPiQA-QGO-X investigated as a function of QGO loading for X between 0.1 and 0.7 wt%. Among all compositions, PTPiQA-QGO-0.3% exhibited the highest OH conductivity of 71.56 mS cm−1 at room temperature, attributed to enhanced ionic connectivity and water uptake. However, this increase in conductivity was accompanied by a slight decrease in ion exchange capacity (IEC) retention (91.8%) during an alkaline stability test in 1 M KOH at 60 °C for 336 h due to localized cation degradation. Mechanical testing revealed that PTPiQA-QGO-0.3% offered optimal dry and wet tensile strength (dry TS of 42.77 MPa and wet TS of 30.20 MPa), whereas higher QGO loadings yielded low mechanical strength. These findings highlight that 0.3 wt% QGO balances ion transport efficiency and mechanical strength, while higher loadings improve alkaline durability, compromising mechanical durability and guiding the rational design of AEMs for AEMWEs and AEMFCs. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

18 pages, 3440 KB  
Article
Ambient Electromagnetic Wave Energy Harvesting Using Human Body Antenna for Wearable Sensors
by Dairoku Muramatsu and Kazuki Amano
Sensors 2025, 25(15), 4689; https://doi.org/10.3390/s25154689 - 29 Jul 2025
Cited by 1 | Viewed by 2635
Abstract
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to [...] Read more.
Wearable sensors are central to health-monitoring systems, but the limited capacity of compact batteries poses a challenge for long-term and maintenance-free operation. In this study, we investigated ambient electromagnetic wave (AEMW) energy harvesting using a human body antenna (HBA) as a means to supply power to wearable sensors. The power density and frequency distribution of AEMWs were measured in diverse indoor, outdoor, and basement environments. We designed and fabricated a flexible HBA–circuit interface electrode, optimized for broadband impedance matching when worn on the body. Experimental comparisons using a simulated AEMW source demonstrated that the HBA outperformed a conventional small whip antenna, particularly at frequencies below 300 MHz. Furthermore, the outdoor measurements indicated that the power harvested by the HBA was estimated to be −31.9 dBm (0.64 μW), which is sufficient for the intermittent operation of low-power wearable sensors and Bluetooth Low Energy modules. The electromagnetic safety was also evaluated through numerical analysis, and the specific absorption rate was confirmed to be well below the international safety limits. These findings indicate that HBA-based AEMW energy harvesting provides a practical and promising approach to achieving battery-maintenance-free wearable devices. Full article
(This article belongs to the Special Issue Energy Harvesting Technologies for Wireless Sensors)
Show Figures

Figure 1

25 pages, 4500 KB  
Article
Cost-Effective Bimetallic Catalysts for Green H2 Production in Anion Exchange Membrane Water Electrolyzers
by Sabrina Campagna Zignani, Marta Fazio, Mariarosaria Pascale, Chiara Alessandrello, Claudia Triolo, Maria Grazia Musolino and Saveria Santangelo
Nanomaterials 2025, 15(13), 1042; https://doi.org/10.3390/nano15131042 - 4 Jul 2025
Cited by 1 | Viewed by 1207
Abstract
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing [...] Read more.
Green hydrogen production from water electrolysis (WE) is one of the most promising technologies to realize a decarbonized future and efficiently utilize intermittent renewable energy. Among the various WE technologies, the emerging anion exchange membrane (AEMWE) technology shows the greatest potential for producing green hydrogen at a competitive price. To achieve this goal, simple methods for the large-scale synthesis of efficient and low-cost electrocatalysts are needed. This paper proposes a very simple and scalable process for the synthesis of nanostructured NiCo- and NiFe-based electrode materials for a zero-gap AEMWE full cell. For the preparation of the cell anode, oxides with different Ni molar fractions (0.50 or 0.85) are synthesized by the sol–gel method, followed by calcination in air at different temperatures (400 or 800 °C). To fabricate the cell cathode, the oxides are reduced in a H2/Ar atmosphere. Electrochemical testing reveals that phase purity and average crystal size significantly influence cell performance. Highly pure and finely grained electrocatalysts yield higher current densities at lower overpotentials. The best performing membrane electrode assembly exhibits a current density of 1 A cm−2 at 2.15 V during a steady-state 150 h long stability test with 1 M KOH recirculating through the cell, the lowest series resistance at any cell potential (1.8 or 2.0 V), and the highest current density at the cut-off voltage (2.2 V) both at the beginning (1 A cm−2) and end of tests (1.78 A cm−2). The presented results pave the way to obtain, via simple and scalable techniques, cost-effective catalysts for the production of green hydrogen aimed at a wider market penetration by AEMWE. Full article
Show Figures

Figure 1

16 pages, 2908 KB  
Article
Substituting Natural Gas with Hydrogen for Thermal Application in a Hard-to-Abate Industry: A Real Case Study
by Seyed Ariana Mirshokraee, Stefano Bedogni, Massimiliano Bindi and Carlo Santoro
Hydrogen 2025, 6(2), 37; https://doi.org/10.3390/hydrogen6020037 - 1 Jun 2025
Cited by 1 | Viewed by 1490
Abstract
To pursue the total decarbonization goal set at 2050, the introduction of hydrogen to replace the usage of fossil fuel in hard-to-abate industrial sectors is crucial. Hydrogen will replace natural gas in hard-to-abate sectors where natural gas is required to make heat necessary [...] Read more.
To pursue the total decarbonization goal set at 2050, the introduction of hydrogen to replace the usage of fossil fuel in hard-to-abate industrial sectors is crucial. Hydrogen will replace natural gas in hard-to-abate sectors where natural gas is required to make heat necessary for the industrial process. Naturally, all this is worthwhile if hydrogen is produced following a green pathway, meaning that it is connected with renewable sources. In this manuscript, a techno-economic analysis related to a real case scenario is carried out. The real system addressed involves continuous high-temperature industrial furnace operation with a seasonally variable but stable thermal energy demand, representing typical conditions of hard-to-abate industrial processes. Solar photovoltaic panels combined with batteries are used to generate and store electricity that in turn is used to generate green hydrogen. Different scenarios are considered, including mixed natural gas/hydrogen, the seasonal variability of industrial needs, and the variability of solar production. The economic aspects considered include the usage of anion exchange membrane water electrolyzers (AEMWEs) to produce green hydrogen, the improvement in efficiency during operations (operational costs, OPEX), and the decrease in the AEMWE cost (Capital expenditures, CAPEX) that occur over time. The study shows that the hydrogen production cost could decrease from 12.6 EUR kg−1 in 2024 to 9.7 EUR kg−1 in 2030, with further reduction to 8.7 EUR kg−1 achievable through seasonal blending strategies. CO2 emissions are significantly reduced through partial displacement of natural gas with green hydrogen, highlighting the environmental potential of the system. Full article
Show Figures

Figure 1

13 pages, 5005 KB  
Article
Formicarium-Inspired Hierarchical Conductive Architecture for CoSe2@MoSe2 Catalysts Towards Advanced Anion Exchange Membrane Electrolyzers
by Zhongmin Wan, Zhongkai Huang, Changjie Ou, Lihua Wang, Xiangzhong Kong, Zizhang Zhan, Tian Tian, Haolin Tang, Shu Xie and Yongguang Luo
Molecules 2025, 30(10), 2087; https://doi.org/10.3390/molecules30102087 - 8 May 2025
Viewed by 855
Abstract
The exploration of high-performance, low-cost, and dual-function electrodes is crucial for anion exchange membrane water electrolysis (AEMWE) to meet the relentless demand for green H2 production. In this study, a heteroatom-doped carbon-cage-supported CoSe2@MoSe2@NC catalyst with a formicarium structure [...] Read more.
The exploration of high-performance, low-cost, and dual-function electrodes is crucial for anion exchange membrane water electrolysis (AEMWE) to meet the relentless demand for green H2 production. In this study, a heteroatom-doped carbon-cage-supported CoSe2@MoSe2@NC catalyst with a formicarium structure has been fabricated using a scalable one-step selenization strategy. The component-refined bifunctional catalyst exhibited minimal overpotential values of 116 mV and 283 mV at 10 mA cm−2 in 1 M KOH for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Specifically, rationally designed heterostructures and flexible carbonaceous sponges facilitate interfacial reaction equalization, modulate local electronic distributions, and establish efficient electron transport pathways, thereby enhancing catalytic activity and durability. Furthermore, the assembled AEMWE based on the CoSe2@MoSe2@NC bifunctional catalysts can achieve a current density of 106 mA cm−2 at 1.9 V and maintain a favorable durability after running for 100 h (a retention of 95%). This work highlights a new insight into the development of advanced bifunctional catalysts with enhanced activity and durability for AEMWE. Full article
(This article belongs to the Special Issue Water Electrolysis)
Show Figures

Graphical abstract

67 pages, 14319 KB  
Review
Water Electrolysis Technologies and Their Modeling Approaches: A Comprehensive Review
by Ajitanshu Vedrtnam, Kishor Kalauni and Rahul Pahwa
Eng 2025, 6(4), 81; https://doi.org/10.3390/eng6040081 - 21 Apr 2025
Cited by 18 | Viewed by 14847
Abstract
Hydrogen (H2) is a key energy vector in the global transition toward clean and sustainable energy systems. Among the various production methods, water electrolysis presents a promising pathway for zero-emission hydrogen generation when powered by renewables. This review provides a comprehensive [...] Read more.
Hydrogen (H2) is a key energy vector in the global transition toward clean and sustainable energy systems. Among the various production methods, water electrolysis presents a promising pathway for zero-emission hydrogen generation when powered by renewables. This review provides a comprehensive evaluation of water electrolysis technologies, including alkaline (AWE), proton exchange membrane (PEMWE), solid oxide (SOEC), anion exchange membrane (AEMWE), and microbial electrolysis cells (MEC). It critically examines their material systems, catalytic strategies, operational characteristics, and recent performance advances. In addition to reviewing experimental progress, the study presents a finite element modeling (FEM) case study that evaluates thermal and mechanical responses in PEM and AWE configurations—illustrating how FEM supports design optimization and performance prediction. To broaden methodological insight, other simulation frameworks such as computational fluid dynamics (CFD), response surface methodology (RSM), and system-level modeling (e.g., Aspen Plus®) are also discussed based on their use in recent literature. These are reviewed to guide future integration of multi-scale and multi-physics approaches in electrolyzer research. By bridging practical design, numerical simulation, and material science perspectives, this work provides a resource for researchers and engineers advancing next-generation hydrogen production systems. Full article
Show Figures

Graphical abstract

18 pages, 24223 KB  
Article
Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis
by Jong-Hyeok Park, Yeri Park, Tae-Seok Jeon, Yuna Seo and Jin-Soo Park
Appl. Sci. 2025, 15(3), 1495; https://doi.org/10.3390/app15031495 - 1 Feb 2025
Cited by 4 | Viewed by 2259
Abstract
This study investigates the development of pore-filling anion-exchange membranes (PFAEMs) for water-electrolysis applications. Ionomers using two different cross-linking monomers, namely hydrophilic C10 and hydrophobic C11, along with a common electrolyte monomer, E3, were compared in terms of through-plane ion conductivity, hydrogen permeability, mechanical [...] Read more.
This study investigates the development of pore-filling anion-exchange membranes (PFAEMs) for water-electrolysis applications. Ionomers using two different cross-linking monomers, namely hydrophilic C10 and hydrophobic C11, along with a common electrolyte monomer, E3, were compared in terms of through-plane ion conductivity, hydrogen permeability, mechanical and chemical stability, I-V polarization, and water-electrolysis durability. The results revealed that the E3-C10 PFAEM exhibited 40% higher OH conductivity (98.7 ± 7.0 mS cm−1) than the E3-C11 PFAEM with a similar ion-exchange capacity. This improvement was attributed to improved separation of hydrophobic and hydrophilic domains, creating well-connected ion channels by the hydrophilic C10. Alkaline stability tests demonstrated that the E3-C10 retained higher ion conductivity compared to E3-C11, due to the absence of ether linkages and increased resistance to nucleophilic attack. During water-electrolysis operations, the E3-C10 PFAEMs showed 10% better durability and 87% lower hydrogen permeability, confirming their suitability for anion-exchange-membrane water electrolysis (AEMWE). Despite the higher ion conductivity of the E3-C10 PFAEM, performance was limited by interfacial resistance. It is suggested that ionomer-coated electrodes could further enhance AEMWE performance by leveraging the higher ion conductivity of the E3-C10. Overall, this study provides valuable guidance on strategies for utilizing pore-filling membranes in water electrolysis. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 3524 KB  
Article
Enhanced Performance and Durability of Pore-Filling Membranes for Anion Exchange Membrane Water Electrolysis
by Minyoung Lee and Jin-Soo Park
Membranes 2024, 14(12), 269; https://doi.org/10.3390/membranes14120269 - 12 Dec 2024
Cited by 7 | Viewed by 3083
Abstract
Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the [...] Read more.
Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively. The AEMWE performance directly correlated with the hydrophilicity and ion exchange capacity (IEC) of the membranes. Specifically, AE_3C achieved the highest performance, supported by its superior IEC and ionic conductivity. Durability tests showed that AE_3C outlasted the commercial membrane, with a delayed voltage increase corresponding to its higher IEC, confirming the importance of increased ion-exchange functional groups in ensuring longevity. These results highlight the critical role of hydrophilic monomers and crosslinker structure in optimizing PFAEMs for enhanced performance and durability in AEMWE applications. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

15 pages, 7279 KB  
Article
Impact of Heat Treatment Conditions and Cold Plastic Deformation on Secondary Hardening and Performance of Cold Work Tool Steel X160CrMoV12
by Regita Bendikiene and Lina Kavaliauskiene
Metals 2024, 14(10), 1121; https://doi.org/10.3390/met14101121 - 1 Oct 2024
Cited by 1 | Viewed by 1729
Abstract
In this study, the effect of the cold plastic deformation of a Bridgman anvil at room temperature on the hardness and wear resistance of X160CrMoV12 steel was investigated by utilizing the hardness test, X-ray diffraction (XRD), abrasive emery wear (AEMW) test, optical examination, [...] Read more.
In this study, the effect of the cold plastic deformation of a Bridgman anvil at room temperature on the hardness and wear resistance of X160CrMoV12 steel was investigated by utilizing the hardness test, X-ray diffraction (XRD), abrasive emery wear (AEMW) test, optical examination, and scanning electron microscopy (SEM). Three batches of samples were prepared for the experiment: I—as-hardened, II—after hardening with subsequent tempering at 600 °C for 1.5 h, and III—after hardening with subsequent plastic deformation. The hardening of the samples was performed at three temperatures: 1100 °C, 1150 °C, and 1200 °C. The highest content of retained austenite, as much as 69.02%, was observed during hardening at 1200 °C, while 17.36% and 38.14% were formed at lower temperatures, respectively. After tempering (Batch II), the content of residual austenite decreased proportionally by a factor of about seven for each hardening temperature. The effect of plastic deformation (Batch III) is observed, analyzing the hardness of the samples from the surface to the depth, reaching an average hardened depth of 0.08 mm. To evaluate the wear resistance, the surfaces of the three test batches were subjected to an abrasive emery wear test under a 5 N load. Hardened and plastically deformed samples showed higher wear resistance than hardened and tempered samples. The results confirmed that the optimal hardening temperature to achieve the maximum wear resistance of this steel is 1100 °C. Full article
(This article belongs to the Special Issue Recent Insights into Mechanical Properties of Metallic Alloys)
Show Figures

Figure 1

21 pages, 2184 KB  
Review
A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances
by Negar Shaya and Simon Glöser-Chahoud
Energies 2024, 17(16), 3968; https://doi.org/10.3390/en17163968 - 10 Aug 2024
Cited by 26 | Viewed by 12029
Abstract
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact, thereby reducing carbon emissions in the energy sector. Our research [...] Read more.
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact, thereby reducing carbon emissions in the energy sector. Our research evaluates current hydrogen production technologies, such as alkaline water electrolysis (AWE), proton exchange membrane water electrolysis (PEMWE), solid oxide electrolysis (SOEC), and anion exchange membrane water electrolysis (AEMWE). We systematically review life cycle assessments (LCA) for these technologies, analyzing their environmental impacts and recent technological advancements. This study fills essential gaps by providing detailed LCAs for emerging technologies and evaluating their scalability and environmental footprints. Our analysis outlines the strengths and weaknesses of each technology, guiding future research and assisting stakeholders in making informed decisions about integrating hydrogen production into the global energy mix. Our approach highlights operational efficiencies and potential sustainability enhancements by employing comparative analyses and reviewing advancements in membrane technology and electrocatalysts. A significant finding is that PEMWE when integrated with renewable energy sources, offers rapid response capabilities that are vital for adaptive energy systems and reducing carbon footprints. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

16 pages, 3129 KB  
Article
Three-Dimensional Modeling of Anion Exchange Membrane Electrolysis: A Two-Phase Flow Approach
by Erwan Tardy, Yann Bultel, Florence Druart, Antoine Bonnefont, Melaine Guillou and Benoit Latour
Energies 2024, 17(13), 3238; https://doi.org/10.3390/en17133238 - 1 Jul 2024
Cited by 2 | Viewed by 5020
Abstract
Anion exchange membrane water electrolyzers (AEMWEs) are attracting growing interest as a green hydrogen production technology. Unlike proton exchange membrane (PEM) systems, AEMWEs operate in an alkaline environment, allowing one to use less expensive, non-noble materials as catalysts for the reactions and non-fluorinated [...] Read more.
Anion exchange membrane water electrolyzers (AEMWEs) are attracting growing interest as a green hydrogen production technology. Unlike proton exchange membrane (PEM) systems, AEMWEs operate in an alkaline environment, allowing one to use less expensive, non-noble materials as catalysts for the reactions and non-fluorinated anion exchange polymer membranes. However, the performance and stability of AEMWEs strongly depend on the alkaline electrolyte concentration. In this work, a three-dimensional multi-physics model considering two-phase flow effects is applied to understand the impact of KOH electrolyte concentration and its flow rate on AEMWE performance, as well as on the current and gas volume fraction distributions. The numerical results were compared to experimental data published in the literature. For current densities above 1 A/cm2, a strongly non-uniform H2 and O2 gas volume distribution could be evidenced by the 3D simulations. Increasing the KOH electrolyte flow rate from 10 to 100 mL/min noticeably improves cell performance for current densities above 1 A/cm2. These results show the importance of accounting for the three-dimensional geometry of an AEMWE and two-phase flow effects to accurately describe its operation and performance. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

16 pages, 12195 KB  
Article
A Hydrophilic Polyethylene Glycol-Blended Anion Exchange Membrane to Facilitate the Migration of Hydroxide Ions
by Huaiming Gao, Chenglou Jin, Xia Li, Yat-Ming So and Yu Pan
Polymers 2024, 16(11), 1464; https://doi.org/10.3390/polym16111464 - 22 May 2024
Cited by 4 | Viewed by 2616
Abstract
As one of the most important sources for green hydrogen, anion exchange membrane water electrolyzers (AEMWEs) have been developing rapidly in recent decades. Among these components, anion exchange membranes (AEMs) with high ionic conductivity and good stability play an important role in the [...] Read more.
As one of the most important sources for green hydrogen, anion exchange membrane water electrolyzers (AEMWEs) have been developing rapidly in recent decades. Among these components, anion exchange membranes (AEMs) with high ionic conductivity and good stability play an important role in the performance of AEMWEs. In this study, we have developed a simple blending method to fabricate the blended membrane ImPSF-PEGx via the introduction of a hydrophilic PEG into the PSF-based ionic polymer. Given their hydrophilicity and coordination properties, the introduced PEGs are beneficial in assembling the ionic groups to form the ion-conducting channels. Moreover, an asymmetric structure is observed in ImPSF-PEGx membranes with a layer of finger-like cracks at the upper surface because PEGs can act as pore-forming agents. During the study, the ImPSF-PEGx membranes exhibited higher water uptake and ionic conductivity with lower swelling ratios and much better mechanical properties in comparison to the pristine ImPSF membrane. The ImPSF-PEG1000 membrane showed the best overall performance among the membranes with higher ionic conductivity (82.6 mS cm−1 at 80 °C), which was approximately two times higher than the conductivity of ImPSF, and demonstrated better mechanical and alkaline stability. The alkaline water electrolyzer assembled by ImPSF-PEG1000 achieved a current density of 606 mA cm−2 at 80 °C under conditions of 1 M KOH and 2.06 V, and maintained an essentially unchanged performance after 48 h running. Full article
Show Figures

Figure 1

30 pages, 5089 KB  
Review
Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement
by Wei Keat Ng, Wai Yin Wong, Nur Adiera Hanna Rosli and Kee Shyuan Loh
Separations 2023, 10(8), 424; https://doi.org/10.3390/separations10080424 - 26 Jul 2023
Cited by 52 | Viewed by 21689
Abstract
The utilization of anion exchange membranes (AEMs) has revolutionized the field of electrochemical applications, particularly in water electrolysis and fuel cells. This review paper provides a comprehensive analysis of recent studies conducted on various commercial AEMs, including FAA3-50, Sustainion, Aemion™, XION Composite, and [...] Read more.
The utilization of anion exchange membranes (AEMs) has revolutionized the field of electrochemical applications, particularly in water electrolysis and fuel cells. This review paper provides a comprehensive analysis of recent studies conducted on various commercial AEMs, including FAA3-50, Sustainion, Aemion™, XION Composite, and PiperION™ membranes, with a focus on their performance and durability in AEM water electrolysis (AEMWE) and AEM fuel cells (AEMFCs). The discussed studies highlight the exceptional potential of these membranes in achieving high current densities, stable operation, and extended durability. Furthermore, the integration of innovative catalysts, such as nitrogen-doped graphene and Raney nickel, has demonstrated significant improvements in performance. Additionally, the exploration of PGM-free catalysts, such as Ag/C, for AEMFC cathodes has unveiled promising prospects for cost-effective and sustainable fuel cell systems. Future research directions are identified, encompassing the optimization of membrane properties, investigation of alternative catalyst materials, and assessment of performance under diverse operating conditions. The findings underscore the versatility and suitability of these commercial AEMs in water electrolysis and fuel cell applications, paving the way for the advancement of efficient and environmentally benign energy technologies. This review paper serves as a valuable resource for researchers, engineers, and industry professionals seeking to enhance the performance and durability of AEMs in various electrochemical applications. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

Back to TopTop