Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement
Abstract
:1. Introduction
2. Current Achievement of Commercial AEM for AEMWE and AEMFC Applications
2.1. Working Principles of AEMWE and AEMFC
2.2. Progress of Commercial AEMs in AEMWE and AEMFC
2.2.1. Fumatech: FAA Series
2.2.2. Dioxide Materials: Sustainion® X37-50
2.2.3. Tokuyama: A201 and A901
2.2.4. Aemion™ Series
2.2.5. Orion TM1
3. Electrochemical Applications of Commercial AEMs
3.1. Commercial AEMs in Anion Exchange Membrane Water Electrolysis (AEMWE) Systems
3.2. Commercial AEMs in Anion Exchange Membrane Fuel Cells (AEMFCs)
4. Future Challenges and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szulejko, J.E.; Kwon, E.E.; Kim, K.-H. Is mass-scale electrocatalysis of aqueous methanol an energetically and economically viable option for hydrogen production? J. Ind. Eng. Chem. 2022, 105, 58–62. [Google Scholar] [CrossRef]
- Qureshi, F.; Yusuf, M.; Arham Khan, M.; Ibrahim, H.; Ekeoma, B.C.; Kamyab, H.; Rahman, M.M.; Nadda, A.K.; Chelliapan, S. A State-of-The-Art Review on the Latest trends in Hydrogen production, storage, and transportation techniques. Fuel 2023, 340, 127574. [Google Scholar] [CrossRef]
- Tang, D.; Tan, G.-L.; Li, G.-W.; Liang, J.-G.; Ahmad, S.M.; Bahadur, A.; Humayun, M.; Ullah, H.; Khan, A.; Bououdina, M. State-of-the-art hydrogen generation techniques and storage methods: A critical review. J. Energy Storage 2023, 64, 107196. [Google Scholar] [CrossRef]
- Neumann, J.; da Rocha, R.C.; Debiagi, P.; Scholtissek, A.; Dammel, F.; Stephan, P.; Hasse, C. Techno-economic assessment of long-distance supply chains of energy carriers: Comparing hydrogen and iron for carbon-free electricity generation. Appl. Energy Combust. Sci. 2023, 14, 100128. [Google Scholar] [CrossRef]
- Rasul, M.G.; Hazrat, M.A.; Sattar, M.A.; Jahirul, M.I.; Shearer, M.J. The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 2022, 272, 116326. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Oko, E.; Kuang, B.; Bello, A.; Onwualu, A.P.; Oyagha, S.; Whidborne, J. The prospects of hydrogen in achieving net zero emissions by 2050: A critical review. Sustain. Chem. Clim. Action 2023, 2, 100024. [Google Scholar] [CrossRef]
- İnci, M. Future vision of hydrogen fuel cells: A statistical review and research on applications, socio-economic impacts and forecasting prospects. Sustain. Energy Technol. Assess. 2022, 53, 102739. [Google Scholar] [CrossRef]
- Yang, D.; Lee, J.; Song, N.C.; Lee, S.; Kim, S.; Lee, S.; Choi, S. Patent analysis on green hydrogen technology for future promising technologies. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Mohamad Nor, N.A.; Mohamed, M.A.; Jaafar, J. Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. J. Ind. Eng. Chem. 2022, 116, 32–59. [Google Scholar] [CrossRef]
- Ul Haq, T.; Haik, Y. A roadmap towards sustainable anode design for alkaline water electrolysis. Appl. Catal. B Environ. 2023, 334, 122853. [Google Scholar] [CrossRef]
- Wang, S.; Geng, Z.; Bi, S.; Wang, Y.; Gao, Z.; Jin, L.; Zhang, C. Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ. 2023. [Google Scholar] [CrossRef]
- Seo, K.; Nam, K.-H.; Han, H. Chain end-termination of p-polybenzimidazole by bulk segment for efficient electrochemical power generation and hydrogen separation. J. Ind. Eng. Chem. 2020, 91, 85–92. [Google Scholar] [CrossRef]
- Ayers, K. High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes. Curr. Opin. Chem. Eng. 2021, 33, 100719. [Google Scholar] [CrossRef]
- Samad, S.; Loh, K.S.; Wong, W.Y.; Lee, T.K.; Sunarso, J.; Chong, S.T.; Wan Daud, W.R. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrogen Energy 2018, 43, 7823–7854. [Google Scholar] [CrossRef]
- Sinniah, J.D.; Wong, W.Y.; Loh, K.S.; Yunus, R.M.; Timmiati, S.N. Perspectives on carbon-alternative materials as Pt catalyst supports for a durable oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2022, 534, 231422. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Ramya, K.; Khalid, M.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Walvekar, R.; Kadhum, A.A.H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. Int. J. Hydrogen Energy 2019, 44, 6116–6135. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Hefny, M.; Al-Hinai, A.; Al-Muhtaseb, A.A.H.; Rooney, D.W. Hydrogen production, storage, utilisation and environmental impacts: A review. Environ. Chem. Lett. 2022, 20, 153–188. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Zhang, M.; Ma, Y.; Hu, J.; Qu, Y. Sustainable production of hydrogen with high purity from methanol and water at low temperatures. Nat. Commun. 2022, 13, 5527. [Google Scholar] [CrossRef]
- Lim, K.L.; Wong, C.Y.; Wong, W.Y.; Loh, K.S.; Selambakkannu, S.; Othman, N.A.; Yang, H. Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review. Membranes 2021, 11, 397. [Google Scholar] [CrossRef]
- Li, C.; Baek, J.-B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87, 106162. [Google Scholar] [CrossRef]
- Raja Sulaiman, R.R.; Wong, W.Y.; Loh, K.S. Recent developments on transition metal–based electrocatalysts for application in anion exchange membrane water electrolysis. Int. J. Energy Res. 2022, 46, 2241–2276. [Google Scholar] [CrossRef]
- Rahim Malik, F.; Yuan, H.-B.; Moran, J.C.; Tippayawong, N. Overview of hydrogen production technologies for fuel cell utilization. Eng. Sci. Technol. Int. J. 2023, 43, 101452. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Nam, S.Y. Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells. J. Ind. Eng. Chem. 2019, 70, 70–86. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Chen, Y.-Y.; Zhuang, Q.; Li, G. Recent advances in MOFs-based proton exchange membranes. Coord. Chem. Rev. 2022, 471, 214740. [Google Scholar] [CrossRef]
- Peera, S.G.; Liu, C. Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coord. Chem. Rev. 2022, 463, 214554. [Google Scholar] [CrossRef]
- Feng, Z.; Gupta, G.; Mamlouk, M. A review of anion exchange membranes prepared via Friedel-Crafts reaction for fuel cell and water electrolysis. Int. J. Hydrogen Energy 2023, 48, 25830–25858. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Park, S.-J.; Thorat, H.N.; Bodkhe, G.A.; Ramanavicius, A.; Ramanavicius, S.; Shirsat, M.D.; Ha, T.-J. Advanced energy materials: Current trends and challenges in electro- and photo-catalysts for H2O splitting. J. Ind. Eng. Chem. 2023, 119, 90–111. [Google Scholar] [CrossRef]
- Palmas, S.; Rodriguez, J.; Mais, L.; Mascia, M.; Herrando, M.C.; Vacca, A. Anion exchange membrane: A valuable perspective in emerging technologies of low temperature water electrolysis. Curr. Opin. Electrochem. 2023, 37, 101178. [Google Scholar] [CrossRef]
- Henkensmeier, D.; Najibah, M.; Harms, C.; Žitka, J.; Hnát, J.; Bouzek, K. Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis. J. Electrochem. Energy Convers. Storage 2020, 18, 024001. [Google Scholar] [CrossRef]
- Thompson, S.T.; Peterson, D.; Ho, D.; Papageorgopoulos, D. Perspective—The Next Decade of AEMFCs: Near-Term Targets to Accelerate Applied R&D. J. Electrochem. Soc. 2020, 167, 084514. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Liu, J.; Choi, H.J.; Meng, L.-Y. A review of approaches for the design of high-performance metal/graphene electrocatalysts for fuel cell applications. J. Ind. Eng. Chem. 2018, 64, 1–15. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Yuan, Z.-Y. Recent advances in transition metal layered double hydroxide based materials as efficient electrocatalysts. J. Ind. Eng. Chem. 2023, 120, 27–46. [Google Scholar] [CrossRef]
- Fashedemi, O.O.; Bello, A.; Adebusuyi, T.; Bindir, S. Recent trends in carbon support for improved performance of alkaline fuel cells. Curr. Opin. Electrochem. 2022, 36, 101132. [Google Scholar] [CrossRef]
- Du, N.; Roy, C.; Peach, R.; Turnbull, M.; Thiele, S.; Bock, C. Anion-Exchange Membrane Water Electrolyzers. Chem. Rev. 2022, 122, 11830–11895. [Google Scholar] [CrossRef]
- David, M.; Ocampo-Martínez, C.; Sánchez-Peña, R. Advances in alkaline water electrolyzers: A review. J. Energy Storage 2019, 23, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Miller, H.A.; Bouzek, K.; Hnat, J.; Loos, S.; Bernäcker, C.I.; Weißgärber, T.; Röntzsch, L.; Meier-Haack, J. Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions. Sustain. Energy Fuels 2020, 4, 2114–2133. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Zhang, J.; Wang, J.; Hu, Y.; Jiang, H.; Li, C. Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-Scaled Testing System and Performance Evaluation. EnergyChem 2022, 4, 100087. [Google Scholar] [CrossRef]
- Gohil, J.M.; Dutta, K. Structures and properties of polymers in ion exchange membranes for hydrogen generation by water electrolysis. Polym. Adv. Technol. 2021, 32, 4598–4615. [Google Scholar] [CrossRef]
- Salvatore, D.A.; Gabardo, C.M.; Reyes, A.; O’Brien, C.P.; Holdcroft, S.; Pintauro, P.; Bahar, B.; Hickner, M.; Bae, C.; Sinton, D.; et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 2021, 6, 339–348. [Google Scholar] [CrossRef]
- Han, J.; Song, W.; Cheng, X.; Cheng, Q.; Zhang, Y.; Liu, C.; Zhou, X.; Ren, Z.; Hu, M.; Ning, T.; et al. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. ChemSusChem 2021, 14, 5021–5031. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Noonan, K.J.T.; Coates, G.W. Alkaline-stable anion exchange membranes: A review of synthetic approaches. Prog. Polym. Sci. 2020, 100, 101177. [Google Scholar] [CrossRef]
- Wei, C.; Yu, W.; Zhang, Y.; Zhang, F.; Li, M.; Shen, X.; Zhang, K.; Ge, X.; Wu, L.; Xu, T. Alkaline anion exchange membrane containing pyrene-based π-π stacking interactions. J. Power Sources 2023, 553, 232247. [Google Scholar] [CrossRef]
- Raja Rafidah, R.S.; Rashmi, W.; Khalid, M.; Wong, W.Y.; Priyanka, J. Recent Progress in the Development of Aromatic Polymer-Based Proton Exchange Membranes for Fuel Cell Applications. Polymers 2020, 12, 1061. [Google Scholar] [CrossRef]
- Hossain, M.M.; Wu, L.; Liang, X.; Yang, Z.; Hou, J.; Xu, T. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells. J. Power Sources 2018, 390, 234–241. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Wang, J. Crosslinked anion exchange membrane with improved membrane stability and conductivity for alkaline fuel cells. J. Appl. Polym. Sci. 2019, 136, 48169. [Google Scholar] [CrossRef]
- Konovalova, A.; Kim, H.; Kim, S.; Lim, A.; Park, H.S.; Kraglund, M.R.; Aili, D.; Jang, J.H.; Kim, H.-J.; Henkensmeier, D. Blend membranes of polybenzimidazole and an anion exchange ionomer (FAA3) for alkaline water electrolysis: Improved alkaline stability and conductivity. J. Membr. Sci. 2018, 564, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Kaczur, J.J.; Yang, H.; Liu, Z.; Sajjad, S.D.; Masel, R.I. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes. Front. Chem. 2018, 6, 263. [Google Scholar] [CrossRef] [Green Version]
- Marinkas, A.; Struźyńska-Piron, I.; Lee, Y.; Lim, A.; Park, H.S.; Jang, J.H.; Kim, H.-J.; Kim, J.; Maljusch, A.; Conradi, O.; et al. Anion-conductive membranes based on 2-mesityl-benzimidazolium functionalised poly(2,6-dimethyl-1,4-phenylene oxide) and their use in alkaline water electrolysis. Polymer 2018, 145, 242–251. [Google Scholar] [CrossRef]
- Thomas, O.D.; Soo, K.J.W.Y.; Peckham, T.J.; Kulkarni, M.P.; Holdcroft, S. A Stable Hydroxide-Conducting Polymer. J. Am. Chem. Soc. 2012, 134, 10753–10756. [Google Scholar] [CrossRef]
- Hassan, N.U.; Motyka, E.; Kweder, J.; Ganesan, P.; Brechin, B.; Zulevi, B.; Colón-Mercado, H.R.; Kohl, P.A.; Mustain, W.E. Effect of porous transport layer properties on the anode electrode in anion exchange membrane electrolyzers. J. Power Sources 2023, 555, 232371. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Setzler, B.P.; Rojas-Carbonell, S.; Ben Yehuda, C.; Amel, A.; Page, M.; Wang, L.; Hu, K.; Shi, L.; et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat. Energy 2019, 4, 392–398. [Google Scholar] [CrossRef]
- Truong, V.M.; Yang, M.-K.; Yang, H. Functionalized Carbon Black Supported Silver (Ag/C) Catalysts in Cathode Electrode for Alkaline Anion Exchange Membrane Fuel Cells. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 711–721. [Google Scholar] [CrossRef]
- Lee, W.-H.; Park, E.J.; Han, J.; Shin, D.W.; Kim, Y.S.; Bae, C. Poly(terphenylene) Anion Exchange Membranes: The Effect of Backbone Structure on Morphology and Membrane Property. ACS Macro Lett. 2017, 6, 566–570. [Google Scholar] [CrossRef]
- Kressman, T.R.E. Ion Exchange Resin Membranes and Resin-Impregnated Filter Paper. Nature 1950, 165, 568. [Google Scholar] [CrossRef]
- Bayer, T.; Cunning, B.V.; Selyanchyn, R.; Daio, T.; Nishihara, M.; Fujikawa, S.; Sasaki, K.; Lyth, S.M. Alkaline anion exchange membranes based on KOH-treated multilayer graphene oxide. J. Membr. Sci. 2016, 508, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Moruno, F.L.; Rubio, J.E.; Santoro, C.; Atanassov, P.; Cerrato, J.M.; Arges, C.G. Investigation of patterned and non-patterned poly(2,6-dimethyl 1,4-phenylene) oxide based anion exchange membranes for enhanced desalination and power generation in a microbial desalination cell. Solid State Ion. 2018, 314, 141–148. [Google Scholar] [CrossRef]
- Sarapulova, V.; Pismenskaya, N.; Titorova, V.; Sharafan, M.; Wang, Y.; Xu, T.; Zhang, Y.; Nikonenko, V. Transport Characteristics of CJMAED™ Homogeneous Anion Exchange Membranes in Sodium Chloride and Sodium Sulfate Solutions. Int. J. Mol. Sci. 2021, 22, 31415. [Google Scholar] [CrossRef]
- Čížek, J.; Cvejn, P.; Marek, J.; Tvrzník, D. Desalination Performance Assessment of Scalable, Multi-Stack Ready Shock Electrodialysis Unit Utilizing Anion-Exchange Membranes. Membranes 2020, 10, 347. [Google Scholar] [CrossRef]
- Carbone, A.; Zignani, S.C.; Gatto, I.; Pedicini, R.; Oldani, C.; Cattaneo, A.; Aricò, A.S. Aquivion-based anion exchange membranes: Synthesis optimization via dispersant agents and reaction time. Chem. Eng. J. 2023, 455, 140765. [Google Scholar] [CrossRef]
- Afsar, N.U.; Li, X.; Zhu, Y.; Ge, Z.; Zhou, Y.; Zhao, Z.; Hussain, A.; Ge, L.; Fu, R.; Liu, Z.; et al. In-situ interfacial polymerization endows surface enrichment of –COOH groups on anion exchange membranes for efficient Cl−/SO42− separation. J. Polym. Sci. 2022, 60, 3022–3034. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Lang, Q.; Tan, M.; Zhang, Y. Composite anion exchange membrane made by layer-by-layer method for selective ion separation and water migration control. Sep. Purif. Technol. 2018, 192, 278–286. [Google Scholar] [CrossRef]
- Wang, W.; Yang, C.; Wang, W.; Fu, R.; Wang, H. Novel compact ion exchange membranes through suppressing reverse permeation for high-efficiency recovery of inorganic acids. Sep. Purif. Technol. 2022, 289, 120725. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Ji, G.; Zhong, J.; Zhang, F.; Chen, M.; Tong, S.; Wang, P.; Wu, Z.; Han, B.; et al. Partially Nitrided Ni Nanoclusters Achieve Energy-Efficient Electrocatalytic CO2 Reduction to CO at Ultralow Overpotential. Adv. Mater. 2023, 35, 2205262. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, D.-X.; Deng, R.; Zhong, H.-X. Boosting Electrochemical Carbon Dioxide Reduction on Atomically Dispersed Nickel Catalyst. Front. Chem. 2022, 9, 837580. [Google Scholar] [CrossRef]
- Hao, J.; Zhuang, Z.; Hao, J.; Cao, K.; Hu, Y.; Wu, W.; Lu, S.; Wang, C.; Zhang, N.; Wang, D.; et al. Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO2 Reduction. ACS Nano 2022, 16, 3251–3263. [Google Scholar] [CrossRef]
- Cui, Y.-f.; Zhu, Y.-h.; Du, J.-y.; Zhang, Y.-l.; Li, K.; Liu, W.-q.; Huang, G.; Zhang, X.-b. A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding. Joule 2022, 6, 1617–1631. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Luo, L.; Li, H.; He, J.; Zu, H.; Liu, L.; Liu, H.; Wang, F.; Song, J. Blocking polysulfides with a Janus Fe3C/N-CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 2205–2213. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, H.; Ge, X.; Pan, R.; Huang, C.; Chen, D.; Hu, L.; Xie, H. Superior efficiency hydrogen peroxide production in acidic media through epoxy group adjacent to Co-O/C active centers on carbon black. Chem. Eng. J. 2023, 465, 142691. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, B.; Seo, J.Y.; Kim, Y.S.; Yoo, P.J.; Chung, C.-H. Water electrolysis and desalination using an AEM/CEM hybrid electrochemical system. Appl. Surf. Sci. 2023, 610, 155524. [Google Scholar] [CrossRef]
- Richard, I.; Masel, Q.C.; Liu, Z.; Kutz, R. Electrochemical Device for Converting Carbon Dioxide to a Reaction Product. U.S. Patent US9481939B2, 1 November 2016. [Google Scholar]
- Díaz-Sainz, G.; Alvarez-Guerra, M.; Irabien, A. Continuous electroreduction of CO2 towards formate in gas-phase operation at high current densities with an anion exchange membrane. J. CO2 Util. 2022, 56, 101822. [Google Scholar] [CrossRef]
- Yang, W.; Xue, Z.; Yang, J.; Xian, J.; Liu, Q.; Fan, Y.; Zheng, K.; Liao, P.; Su, H.; Liu, Q.; et al. Fe nanoparticles embedded in N-doped porous carbon for enhanced electrocatalytic CO2 reduction and Zn-CO2 battery. Chin. J. Catal. 2023, 48, 185–194. [Google Scholar] [CrossRef]
- Moreno-González, M.; Mardle, P.; Zhu, S.; Gholamkhass, B.; Jones, S.; Chen, N.; Britton, B.; Holdcroft, S. One year operation of an anion exchange membrane water electrolyzer utilizing Aemion+® membrane: Minimal degradation, low H2 crossover and high efficiency. J. Power Sources Adv. 2023, 19, 100109. [Google Scholar] [CrossRef]
- Fortin, P.; Khoza, T.; Cao, X.; Martinsen, S.Y.; Oyarce Barnett, A.; Holdcroft, S. High-performance alkaline water electrolysis using Aemion™ anion exchange membranes. J. Power Sources 2020, 451, 227814. [Google Scholar] [CrossRef]
- Gangrade, A.S.; Cassegrain, S.; Chandra Ghosh, P.; Holdcroft, S. Permselectivity of ionene-based, Aemion® anion exchange membranes. J. Membr. Sci. 2022, 641, 119917. [Google Scholar] [CrossRef]
- Khalid, H.; Najibah, M.; Park, H.S.; Bae, C.; Henkensmeier, D. Properties of Anion Exchange Membranes with a Focus on Water Electrolysis. Membranes 2022, 12, 989. [Google Scholar] [CrossRef]
- Faqeeh, A.H.; Symes, M.D. A standard electrolyzer test cell design for evaluating catalysts and cell components for anion exchange membrane water electrolysis. Electrochim. Acta 2023, 444, 142030. [Google Scholar] [CrossRef]
- Caprì, A.; Gatto, I.; Lo Vecchio, C.; Trocino, S.; Carbone, A.; Baglio, V. Anion Exchange Membrane Water Electrolysis Based on Nickel Ferrite Catalysts. ChemElectroChem 2023, 10, e202201056. [Google Scholar] [CrossRef]
- Gatto, I.; Caprì, A.; Lo Vecchio, C.; Zignani, S.; Patti, A.; Baglio, V. Optimal operating conditions evaluation of an anion-exchange-membrane electrolyzer based on FUMASEP® FAA3-50 membrane. Int. J. Hydrogen Energy 2023, 48, 11914–11921. [Google Scholar] [CrossRef]
- Carbone, A.; Zignani, S.C.; Gatto, I.; Trocino, S.; Aricò, A.S. Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis. Int. J. Hydrogen Energy 2020, 45, 9285–9292. [Google Scholar] [CrossRef]
- Tham, D.D.; Kim, D. C2 and N3 substituted imidazolium functionalized poly(arylene ether ketone) anion exchange membrane for water electrolysis with improved chemical stability. J. Membr. Sci. 2019, 581, 139–149. [Google Scholar] [CrossRef]
- Guo, W.; Kim, J.; Kim, H.; Hong, S.; Kim, H.; Kim, S.Y.; Ahn, S.H. Electrochemically activated Ni@Ni(OH)2 heterostructure as efficient hydrogen evolution reaction electrocatalyst for anion exchange membrane water electrolysis. Mater. Today Chem. 2022, 24, 100994. [Google Scholar] [CrossRef]
- López-Fernández, E.; Gómez-Sacedón, C.; Gil-Rostra, J.; Espinós, J.P.; Brey, J.J.; González-Elipe, A.R.; de Lucas-Consuegra, A.; Yubero, F. Optimization of anion exchange membrane water electrolyzers using ionomer-free electrodes. Renew. Energy 2022, 197, 1183–1191. [Google Scholar] [CrossRef]
- Chen, N.; Paek, S.Y.; Lee, J.Y.; Park, J.H.; Lee, S.Y.; Lee, Y.M. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm−2 and a durability of 1000 h. Energy Environ. Sci. 2021, 14, 6338–6348. [Google Scholar] [CrossRef]
- Motealleh, B.; Liu, Z.; Masel, R.I.; Sculley, J.P.; Richard Ni, Z.; Meroueh, L. Next-generation anion exchange membrane water electrolyzers operating for commercially relevant lifetimes. Int. J. Hydrogen Energy 2021, 46, 3379–3386. [Google Scholar] [CrossRef]
- Guo, W.; Kim, J.; Kim, H.; Ahn, S.H. Cu–Co–P electrodeposited on carbon paper as an efficient electrocatalyst for hydrogen evolution reaction in anion exchange membrane water electrolyzers. Int. J. Hydrogen Energy 2021, 46, 19789–19801. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeong, J.; Noh, Y.; Jang, M.J.; Lee, J.; Lee, K.H.; Lim, D.C.; Seo, M.H.; Kim, W.B.; Yang, J.; et al. Commercial anion exchange membrane water electrolyzer stack through non-precious metal electrocatalysts. Appl. Catal. B Environ. 2021, 292, 120170. [Google Scholar] [CrossRef]
- Cho, M.K.; Park, H.-Y.; Lee, H.J.; Kim, H.-J.; Lim, A.; Henkensmeier, D.; Yoo, S.J.; Kim, J.Y.; Lee, S.Y.; Park, H.S.; et al. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content. J. Power Sources 2018, 382, 22–29. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, J.; Zhao, Z.; Shi, L.; Wu, B.; Zeng, L. Iron-doped metal-organic framework with enhanced oxygen evolution reaction activity for overall water splitting. Int. J. Hydrogen Energy 2021, 46, 34565–34573. [Google Scholar] [CrossRef]
- Khataee, A.; Shirole, A.; Jannasch, P.; Krüger, A.; Cornell, A. Anion exchange membrane water electrolysis using Aemion™ membranes and nickel electrodes. J. Mater. Chem. A 2022, 10, 16061–16070. [Google Scholar] [CrossRef]
- Ruck, S.; Körner, A.; Hutzler, A.; Bierling, M.; Gonzalez, J.; Qu, W.; Bock, C.; Thiele, S.; Peach, R.; Pham, C.V. Carbon supported NiRu nanoparticles as effective hydrogen evolution catalysts for anion exchange membrane water electrolyzers. J. Phys. Energy 2022, 4, 044007. [Google Scholar] [CrossRef]
- Xia, L.; Jiang, W.; Hartmann, H.; Mayer, J.; Lehnert, W.; Shviro, M. Multistep Sulfur Leaching for the Development of a Highly Efficient and Stable NiSx/Ni(OH)2/NiOOH Electrocatalyst for Anion Exchange Membrane Water Electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 19397–19408. [Google Scholar] [CrossRef]
- Caielli, T.; Ferrari, A.R.; Bonizzoni, S.; Sediva, E.; Caprì, A.; Santoro, M.; Gatto, I.; Baglio, V.; Mustarelli, P. Synthesis, characterization and water electrolyzer cell tests of poly(biphenyl piperidinium) Anion exchange membranes. J. Power Sources 2023, 557, 232532. [Google Scholar] [CrossRef]
- Wan, L.; Xu, Z.; Wang, B. Green preparation of highly alkali-resistant PTFE composite membranes for advanced alkaline water electrolysis. Chem. Eng. J. 2021, 426, 131340. [Google Scholar] [CrossRef]
- Patra, S.; Soman, B.; Vineesh, T.; Shyaga, N.; Narayanan, T.N. Eggshell membrane-based water electrolysis cells. Mater. Chem. Front. 2020, 4, 567–573. [Google Scholar] [CrossRef]
- Vincent, I.; Kruger, A.; Bessarabov, D. Development of efficient membrane electrode assembly for low cost hydrogen production by anion exchange membrane electrolysis. Int. J. Hydrogen Energy 2017, 42, 10752–10761. [Google Scholar] [CrossRef]
- Aguedo, J.; Lorencova, L.; Barath, M.; Farkas, P.; Tkac, J. Electrochemical Impedance Spectroscopy on 2D Nanomaterial MXene Modified Interfaces: Application as a Characterization and Transducing Tool. Chemosensors 2020, 8, 127. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, B.; Gu, X.; Liu, H.; Feng, L. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 2020, 395, 125170. [Google Scholar] [CrossRef]
- Wang, J.; Teng, X.; Niu, Y.; Guo, L.; Kong, J.; He, X.; Chen, Z. In situ autologous growth of self-supporting NiFe-based nanosheets on nickel foam as an efficient electrocatalyst for the oxygen evolution reaction. RSC Adv. 2019, 9, 21679–21684. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Y.; Chen, X.; Li, Y.; Su, Z.; Zhao, C. Vertical Growth of Porous Perovskite Nanoarrays on Nickel Foam for Efficient Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2020, 8, 4863–4870. [Google Scholar] [CrossRef]
- Gao, J.; Xu, C.-Q.; Hung, S.-F.; Liu, W.; Cai, W.; Zeng, Z.; Jia, C.; Chen, H.M.; Xiao, H.; Li, J.; et al. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Kirk, D.W. Platinum Stability at the Cathode of an Anion Exchange Membrane Fuel Cell. Electrocatalysis 2020, 11, 292–300. [Google Scholar] [CrossRef]
- López-Fernández, E.; Gómez-Sacedón, C.; Gil-Rostra, J.; Espinós, J.P.; González-Elipe, A.R.; Yubero, F.; de Lucas-Consuegra, A. Ionomer-Free Nickel-Iron bimetallic electrodes for efficient anion exchange membrane water electrolysis. Chem. Eng. J. 2022, 433, 133774. [Google Scholar] [CrossRef]
- Roschger, M.; Wolf, S.; Billiani, A.; Mayer, K.; Hren, M.; Gorgieva, S.; Genorio, B.; Hacker, V. Study on Commercially Available Membranes for Alkaline Direct Ethanol Fuel Cells. ACS Omega 2023, 8, 20845–20857. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sajjad, S.D.; Gao, Y.; Yang, H.; Kaczur, J.J.; Masel, R.I. The effect of membrane on an alkaline water electrolyzer. Int. J. Hydrogen Energy 2017, 42, 29661–29665. [Google Scholar] [CrossRef]
- Moureaux, F.; Stevens, P.; Toussaint, G.; Chatenet, M. Timely-activated 316L stainless steel: A low cost, durable and active electrode for oxygen evolution reaction in concentrated alkaline environments. Appl. Catal. B Environ. 2019, 258, 117963. [Google Scholar] [CrossRef]
- Campagna Zignani, S.; Faro, M.L.; Carbone, A.; Italiano, C.; Trocino, S.; Monforte, G.; Aricò, A.S. Performance and stability of a critical raw materials-free anion exchange membrane electrolysis cell. Electrochim. Acta 2022, 413, 140078. [Google Scholar] [CrossRef]
- Zhang, P.; Shen, B.; Pu, H. Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds. Polymer 2022, 245, 124698. [Google Scholar] [CrossRef]
- Tang, Q.; Li, F.; Chen, H.; Yin, X.; Tang, Y.; Zeng, Q. Synthesis of (Enantioenriched) Dibenzyl Thioethers and Disulfides via SN2 Nucleophilic Substitution of Quaternary Ammonium Salts. Asian J. Org. Chem. 2021, 10, 1687–1690. [Google Scholar] [CrossRef]
- Sang, J.; Yang, L.; Wang, F.; Wang, Z.; Zhu, H. SEBS-Based Anion Exchange Membrane Grafted with N-Spirocyclic Quaternary Ammonium Cations for Fuel Cells. ACS Appl. Energy Mater. 2022, 5, 12347–12358. [Google Scholar] [CrossRef]
- Peltier, C.R.; You, W.; Fackovic Volcanjk, D.; Li, Q.; Macbeth, A.J.; Abruña, H.D.; Coates, G.W. Quaternary Ammonium-Functionalized Polyethylene-Based Anion Exchange Membranes: Balancing Performance and Stability. ACS Energy Lett. 2023, 8, 2365–2372. [Google Scholar] [CrossRef]
- Kleijwegt, R.J.T.; Winkenwerder, W.; Baan, W.; van der Schaaf, J. Degradation kinetics and solvent effects of various long-chain quaternary ammonium salts. Int. J. Chem. Kinet. 2022, 54, 16–27. [Google Scholar] [CrossRef]
- Hall, D.S.; Bock, C.; MacDougall, B.R. The Electrochemistry of Metallic Nickel: Oxides, Hydroxides, Hydrides and Alkaline Hydrogen Evolution. J. Electrochem. Soc. 2013, 160, F235. [Google Scholar] [CrossRef] [Green Version]
- Safaei, Z.; Shiroudi, A.; Zahedi, E.; Sillanpää, M. Atmospheric oxidation reactions of imidazole initiated by hydroxyl radicals: Kinetics and mechanism of reactions and atmospheric implications. Phys. Chem. Chem. Phys. 2019, 21, 8445–8456. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Yun, D.; Lee, J.-S.; Park, C.H.; Kim, T.-H. Development of Highly Alkaline Stable OH−-Conductors Based on Imidazolium Cations with Various Substituents for Anion Exchange Membrane-Based Alkaline Fuel Cells. J. Phys. Chem. C 2019, 123, 13508–13518. [Google Scholar] [CrossRef]
- Olsson, J.S.; Pham, T.H.; Jannasch, P. Functionalizing Polystyrene with N-Alicyclic Piperidine-Based Cations via Friedel–Crafts Alkylation for Highly Alkali-Stable Anion-Exchange Membranes. Macromolecules 2020, 53, 4722–4732. [Google Scholar] [CrossRef] [PubMed]
- Holdcroft, S.; Fan, J. Sterically-encumbered ionenes as hydroxide ion-conducting polymer membranes. Curr. Opin. Electrochem. 2019, 18, 99–105. [Google Scholar] [CrossRef]
- Noor Azam, A.M.; Ragunathan, T.; Zulkefli, N.N.; Masdar, M.S.; Majlan, E.H.; Mohamad Yunus, R.; Shamsul, N.S.; Husaini, T.; Shaffee, S.N. Investigation of Performance of Anion Exchange Membrane (AEM) Electrolysis with Different Operating Conditions. Polymers 2023, 15, 1301. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.J.; Yang, S.H.; Park, M.G.; Jeong, J.; Cha, M.S.; Shin, S.-H.; Lee, K.H.; Bai, Z.; Chen, Z.; Lee, J.Y.; et al. Efficient and Durable Anion Exchange Membrane Water Electrolysis for a Commercially Available Electrolyzer Stack using Alkaline Electrolyte. ACS Energy Lett. 2022, 7, 2576–2583. [Google Scholar] [CrossRef]
- Hwang, M.; Sun, R.; Willis, C.; Elabd, Y.A. Solid-State Alkaline Fuel Cell Performance of Pentablock Terpolymer with Methylpyrrolidinium Cations as Anion Exchange Membrane and Ionomer. Fuel Cells 2020, 20, 624–633. [Google Scholar] [CrossRef]
- Son, T.Y.; Kim, T.-H.; Nam, S.Y. Crosslinked Pore-Filling Anion Exchange Membrane Using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System. Polymers 2020, 12, 2758. [Google Scholar] [CrossRef]
- Son, T.Y.; Ko, T.H.; Vijayakumar, V.; Kim, K.; Nam, S.Y. Anion exchange composite membranes composed of poly(phenylene oxide) containing quaternary ammonium and polyethylene support for alkaline anion exchange membrane fuel cell applications. Solid State Ion. 2020, 344, 115153. [Google Scholar] [CrossRef]
- Vecchio, C.L.; Lyu, X.; Gatto, I.; Zulevi, B.; Serov, A.; Baglio, V.; Vecchio, C.L.; Gatto, I.; Baglio, V. Performance investigation of alkaline direct methanol fuel cell with commercial PGM-free cathodic materials. J. Power Sources 2023, 561, 232732. [Google Scholar] [CrossRef]
- Sebastián, D.; Lemes, G.; Luque-Centeno, J.M.; Martínez-Huerta, M.V.; Pardo, J.I.; Lázaro, M.J. Optimization of the Catalytic Layer for Alkaline Fuel Cells Based on Fumatech Membranes and Ionomer. Catalysts 2020, 10, 1353. [Google Scholar] [CrossRef]
- Linge, J.M.; Erikson, H.; Mooste, M.; Piirsoo, H.-M.; Kaljuvee, T.; Kikas, A.; Aruväli, J.; Kisand, V.; Tamm, A.; Kannan, A.M.; et al. Ag nanoparticles on mesoporous carbon support as cathode catalyst for anion exchange membrane fuel cell. Int. J. Hydrogen Energy 2023, 48, 11058–11070. [Google Scholar] [CrossRef]
- Novalin, T.; Pan, D.; Lindbergh, G.; Lagergren, C.; Jannasch, P.; Lindström, R.W. Electrochemical performance of poly(arylene piperidinium) membranes and ionomers in anion exchange membrane fuel cells. J. Power Sources 2021, 507, 230287. [Google Scholar] [CrossRef]
- Reshetenko, T.; Odgaard, M.; Schlueter, D.; Serov, A. Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and AC methods. J. Power Sources 2018, 375, 185–190. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, Y.S. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: Synthesis, properties, and performance—A topical review. J. Mater. Chem. A 2018, 6, 15456–15477. [Google Scholar] [CrossRef]
- Salma, U.; Nagao, Y. Alkaline stability of ether bond free fluorene-based anion exchange polymer containing cycloaliphatic quaternary ammonium groups. Polym. Degrad. Stab. 2020, 179, 109299. [Google Scholar] [CrossRef]
- Zhang, F.; Li, T.; Chen, W.; Yan, X.; Wu, X.; Jiang, X.; Zhang, Y.; Wang, X.; He, G. High-Performance Anion Exchange Membranes with Para-Type Cations on Electron-Withdrawing C=O Links Free Backbone. Macromolecules 2020, 53, 10988–10997. [Google Scholar] [CrossRef]
- Wei, C.; Yu, W.; Wu, L.; Ge, X.; Xu, T. Physically and Chemically Stable Anion Exchange Membranes with Hydrogen-Bond Induced Ion Conducting Channels. Polymers 2022, 14, 4920. [Google Scholar] [CrossRef]
- Arges, C.G.; Wang, L.; Jung, M.-s.; Ramani, V. Mechanically Stable Poly(arylene ether) Anion Exchange Membranes Prepared from Commercially Available Polymers for Alkaline Electrochemical Devices. J. Electrochem. Soc. 2015, 162, F686. [Google Scholar] [CrossRef] [Green Version]
- Basso Peressut, A.; Montagna, J.; Moretti, P.; Arrigoni, A.; Latorrata, S.; Bertarelli, C.; Dotelli, G. Development and characterization of crosslinked PPO-based anion exchange membranes for AEM fuel cells. Solid State Ion. 2023, 394, 116212. [Google Scholar] [CrossRef]
- Sung, S.; Mayadevi, T.S.; Min, K.; Lee, J.; Chae, J.E.; Kim, T.-H. Crosslinked PPO-based anion exchange membranes: The effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length. J. Membr. Sci. 2021, 619, 118774. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, J.; Ding, A.; Nie, Y.; Li, Z.; Shen, C.; Gao, S. Synthesis and properties of novel crosslinking anion exchange membranes based on quaternary poly(fluorene-piperidine). Colloid Interface Sci. Commun. 2022, 46, 100584. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, B.; Wu, H.; Cao, L.; He, X.; Jiang, Z. Imidazolium-functionalized carbon nanotubes crosslinked with imidazole poly(ether ether ketone) for fabricating anion exchange membranes with high hydroxide conductivity and dimension stability. Electrochim. Acta 2019, 318, 572–580. [Google Scholar] [CrossRef]
- Jang, S.-C.; Tsen, W.-C.; Chuang, F.-S.; Gong, C. Simultaneously enhanced hydroxide conductivity and mechanical properties of quaternized chitosan/functionalized carbon nanotubes composite anion exchange membranes. Int. J. Hydrogen Energy 2019, 44, 18134–18144. [Google Scholar] [CrossRef]
- Lo, C.-F.; Wu, J.-F.; Li, H.-Y.; Hung, W.-S.; Shih, C.-M.; Hu, C.-C.; Liu, Y.-L.; Lue, S.J. Novel polyvinyl alcohol nanocomposites containing carbon nano-tubes with Fe3O4 pendants for alkaline fuel cell applications. J. Membr. Sci. 2013, 444, 41–49. [Google Scholar] [CrossRef]
- Lim, T.; Kim, S.-K. Non-precious hydrogen evolution reaction catalysts: Stepping forward to practical polymer electrolyte membrane-based zero-gap water electrolyzers. Chem. Eng. J. 2022, 433, 133681. [Google Scholar] [CrossRef]
- Hossen, M.M.; Hasan, M.S.; Sardar, M.R.I.; Haider, J.B.; Mottakin; Tammeveski, K.; Atanassov, P. State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Appl. Catal. B Environ. 2023, 325, 121733. [Google Scholar] [CrossRef]
Membranes | Chemical Group | Type of Backbones | Functional Group for OH− Transfer | Membrane Properties 1 |
---|---|---|---|---|
Fumatech: FAA series [47] | Polyaromatic polymer with ether bonds | Quaternary ammonium | Ionic conductivity: 40 mS cm−1 (OH−) ASR: 0.3–0.5 Ω cm2 (Cl−) IEC: 1.85 meq/g (OH−) Thickness: Depends on the product chosen Tensile strength: 25–40 MPa Elongation at break: 20–40% | |
Dioxide Materials: Sustainion® X37-50 [48] | Poly(4-vinylbenzyl chloride-co-styrene) | Imidazole | Ionic conductivity: 80 mS cm−1 (OH−) ASR: 0.045 Ω cm2 (Cl−) IEC: meq/g (OH−) Thickness: 50 µm Tensile strength: Cracks when dry Elongation at break: Cracks when dry | |
Tokuyama: A201 and A901 [49] | Undisclosed due to a signed non-disclosure agreement | Undisclosed due to a signed non-disclosure agreement | Undisclosed due to a signed non-disclosure agreement | Ionic conductivity: 42 mS cm−1 (OH−) ASR: - IEC: 1.8 meq/g Thickness: 28 µm Tensile strength: 96 MPa Elongation at break: 62% [49] |
Aemion™ series [50] | Methylated polybenzimidazoles | Imidazole | Ionic conductivity: >80 mS cm−1 ASR: 0.13 Ω cm2 IEC: 2.1–2.5 meq/g Thickness: Depends on the product chosen Tensile strength: 60 MPa Elongation at break: 80–110% | |
XION™ Composite-72-10CL [51] | Poly(norbornene) | Pendant quaternary ammonium | Ionic conductivity: - ASR: - IEC: 3.4–3.6 meq/g Thickness: 10 µm Tensile strength: - Elongation at break: - | |
PiperION™ (Versogen) [52] | Poly(aryl piperidinium) | Piperidine | Ionic conductivity: 150 mS cm−1 (OH−) ASR: - IEC: 2.35 meq/g (OH−) Thickness: Depends on the product chosen Tensile strength: >30 MPa Elongation at break: >30% | |
aQAPS-S8 [53] | Polysulfone | Quaternary ammonium | Ionic conductivity: >40 mS cm−1 (OH−) ASR: - IEC: 1.04 meq/g (OH−) Thickness: 50 µm Tensile strength: - Elongation at break: - | |
Orion TM1 [54] | Poly(terphenylene) | Pendant quaternary ammonium | Ionic conductivity: >54 mS cm−1 (OH−) ASR: - IEC: 2.19 meq/g (OH−) Thickness: 24 µm Tensile strength: 30 MPa Elongation at break: 35% |
Membranes | Anode (Catalyst Loading: mg cm−2) | Cathode (Catalyst Loading: mg cm−2) | Temperature (°C) | Molarity of KOH (M) | Performance | Durability | References |
---|---|---|---|---|---|---|---|
Fumasep FAA-3-50 | Stainless steel | Pt/C (0.5) | 60 | 1 | 1.40 A cm −2 at 2.0 V | - | [78] |
NiFe2O4 | Pt/C (0.5) | 60 | 1 | 1.5 A cm−2 at 1.8 V; 2.0 A cm−2 at 2 V | ∼3 mA h−1 @ 2 V for 120 h | [79] | |
IrO2 | Pt/C (0.5) | 60 | 1 | 2 A cm−2 at 2.2 V | - | [79] | |
NiO | Pt/C (0.5) | 60 | 1 | 1.68 A cm−2 at 2.2 V | - | [79] | |
IrO2 (3) | Pt/C (0.5) | 60 | 1 | 0.6 A cm−2 at 1.8 V; 1.2 A cm−2 at 2.0 V | 1 mA cm−2 h−1 @ 1.8 V for 120 h | [80] | |
IrO2 (3) | Pt/C (0.5) | 70 | 1 | 0.9 A cm−2 at 1.8 V; 1.7 A cm−2 at 2.0 V | - | [80] | |
IrO2 (3) | Pt/C (0.5) | 80 | 1 | 1.05 A cm−2 at 1.8 V; 1.2 A cm−2 at 2.0 V | - | [80] | |
IrO2 (2) | Pt/C (2) | 60 | 1 | 1.0 A cm−2 at 2.15 V | ∼3 mV h−1 @ 500 mA cm−2 for 8 h. | [95] | |
NiMn2O4 | Pt/C (0.5) | 80 | 1 | 0.53 A cm−2 at 2.0 V | 120 μVh−1 @ 400 mA cm−2 for 1000 h (At 50 °C) | [81] | |
Pt/C (1) | Pt/C (1) | 60 | 0.1 | 0.03 A cm−2 at 2.0 V | ∼50 μA cm−2 h−1 @ 2 V for 100 h. | [96] | |
Ni foam | Ni foam | 60 | 2 | 2 A cm−2 at 2.65 V | - | [82] | |
Fumatech FAA3-PK-75 | IrO2 | Pt/C | 60 | 1 | 1 A cm−2 at 1.8 V | - | [97] |
Sustainion® X37-50 | Stainless steel | Pt/C (0.5) | 60 | 1 | 2.74 A cm−2 at 2.0 V | - | [78] |
Commercial IrO2/CP | Ni@Ni(OH)2/Ti | 50 | 1 | 1.0 A cm−2 at 2 V | - | [83] | |
NiFe | Ni | 40 | 1 | 0.3 A cm−2 at 2 V | 1 mV h−1 @ 400 mA cm−2 for 7 d | [84] | |
IrO2 (2) | Pt/C (2) | 60 | 1 | 1.8 A cm−2 at 2.0 V | ∼5 mV h−1 @ 1000 mA cm−2 for 100 h | [85] | |
NiFe2O4 (1.8) | Raney nickel (2.7) | 60 | 1 | 0.744 A cm−2 at 1.8 V | 0.7 μV h−1 @ 1000 mA cm−2 for 10,100 h | [86] | |
IrO2/CP | Pt/C/CP (40 wt%, EP40) | 50 | 1 | 0.96 A cm−2 at 1.9 V | - | [87] | |
CuCoO | NiCoO-NiCo/C | 60 | 1 | 0.504 A cm−2 at 1.8 V | 2.0 mV h−1 440 mA cm−2 for 150 h | [88] | |
Sustainion® Grade T | NiFe2O4 (1.8) | Raney nickel (2.7) | 60 | 1 | 0.834 A cm−2 at 1.8 V | 0.7 μV h−1 @ 1000 mA cm−2 for 12,180 h | [86] |
A201 (Tokuyama) | IrO2 (Premion®, Alfa Aesar) | Pt/C (Pt 46.5 wt%, Tanaka K. K.) | 50 | 1 | 1.07 A cm−2 at 1.8 V | 0.02 A cm−2 per voltage cycle at 1.8 V for 1000 cycles | [89] |
A901 (Tokuyama) | IrO2 (4.0) | Pt/C (4.0) | 70 | 1 | 0.5 A cm−2 at 1.72 V | 2.39 mV h−1 @ 500 mA cm−2 for 100 h | [90] |
Aemion™ | Commercial nickel felt (75% porous, BEKAERT) | Commercial nickel felt (75% porous, BEKAERT) | 60 | 1 | 0.5 A cm−2 at 2.3 V | 2 mV h−1 @ 200 mA cm−2 for 100 h | [91] |
IrO2 (1.5) | Pt/C (0.1) | 70 | 1 | 1.0 A cm−2 at 1.75 V | ∼5 mV h−1 @ 10 mA cm−2 for 20 h | [92] | |
NiS2/Ni3S4 (5) | Pt/C (0.8) | 60 | 1 | 1.5 A cm−2 at 2 V | 0.12 mV h−1 @ 1000 mA cm−2 for 500 h | [93] | |
XION™ Composite-72-10CL | IrOx | PtNi | 60 | 0.3 | 2.48 A cm−2 at 2 V | 5 mV h−1 @ 1000 mA cm−2 for 50 h | [51] |
PiperION™ (Versogen) | Ni foam (Bekaert) | Pt/C (0.5) | 60 | 1 | 0.62 A cm−2 at 2 V | - | [93] |
Membranes | Energy Efficiency (Using IrO2 and Pt/C) | Cost of Membrane (at the Time of Writing) 1 | References |
---|---|---|---|
Fumasep FAA-3-50 | 73.7% | 22 USD (Size: 10 cm × 10 cm) | [80] |
Sustainion X37-50 | 74.4% | 73 USD (Size: 10 cm × 10 cm) | [85] |
Aemion™ | 83.6% | Undisclosed due to a signed non-disclosure agreement. Commercial Polybenzimidazole—656 USD (Size: 25 × 25 mm) | [92] |
Membranes | Anode (Catalyst Loading: mg cm−2) | Cathode (Catalyst Loading: mg cm−2) | Condition | Max Power Density (mW cm−2) | Durability | References |
---|---|---|---|---|---|---|
FAA-3-50 | Pt/C (0.4) | Pt/C (0.4) | 1/1 mol/mol H2/O2 at 30 °C, 100% RH, and ambient pressure. | 23.4 | 7.0 mV h−1 @ 27.3 mA cm−2 for 41 h | [121] |
Pt/C (0.4) | Pt/C (0.4) | H2/O2 feed flow rate of 0.2/0.4 cc min−1 at 60 °C and 100% RH. | 114 | - | [123] | |
Pt/C (1.5) | Pt/C (1) | Fully humidified H2 and O2 were fed to the anode and cathode compartment with a flow rate set at 1.5 and 2 times the stoichiometric value at each imposed current intensity, at 60 °C and atmospheric pressure. | 148 | - | [124] | |
Pt/C (1) | Pt/C (1) | H2/O2 feed flow rate of 0.3/0.3 cc min−1 at 60 °C and 100% RH | 212 | - | [122] | |
Pt/C (0.5) | Pt/C (0.5) | Fully humidified H2/O2 at flow rates corresponding to 1.3 and 1.5, the stoichiometric value, respectively, at 50 °C with 150 kPa backpressure | 45 | [125] | ||
Aemion+ AF2-HLE8-10-X | Pt/C (2) | Pt–Ru/C (0.8) | H2/O2 feed flow rate of 1/1 L min−1 at 65 °C and 65% RH with 200 kPa backpressure | 347 | - | [126] |
Aemion™ AF1-HNN8-25-X | TKK TEC10V40E (0.17 Pt) | TKK TEC10V40E (0.17 Pt) | H2 and O2 with flow rates of 50 mL/min and 100 mL/min, respectively, at 60 °C and 90% RH. | 410 | - | [127] |
aQAPS-S8 | Pt/C (0.8) | Pt/C (0.8) | 50 °C with humidified H2 and O2 fed at flow rates of 1.0 and 0.5 SLPM and dew points of 50 °C and 55 °C, respectively. | 207 ± 9 | - | [53] |
Pt/C (0.8) | Commercial Ag | 50 °C with humidified H2 and O2 fed at flow rates of 1.0 and 0.5 SLPM and dew points of 50 °C and 55 °C, respectively. | 105 ± 8 | - | [53] | |
Pt/C (0.8) | Ag/C | 50 °C with humidified H2 and O2 fed at flow rates of 1.0 and 0.5 SLPM and dew points of 50 °C and 55 °C, respectively. | 200 ± 6 | - | [53] | |
A201 | Pt/C (0.2) | Pt/C (0.2) | H2/O2 fed at flow rates of 250/200 SCCM, at 60 °C and 50% RH | 330 | - | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, W.K.; Wong, W.Y.; Rosli, N.A.H.; Loh, K.S. Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement. Separations 2023, 10, 424. https://doi.org/10.3390/separations10080424
Ng WK, Wong WY, Rosli NAH, Loh KS. Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement. Separations. 2023; 10(8):424. https://doi.org/10.3390/separations10080424
Chicago/Turabian StyleNg, Wei Keat, Wai Yin Wong, Nur Adiera Hanna Rosli, and Kee Shyuan Loh. 2023. "Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement" Separations 10, no. 8: 424. https://doi.org/10.3390/separations10080424
APA StyleNg, W. K., Wong, W. Y., Rosli, N. A. H., & Loh, K. S. (2023). Commercial Anion Exchange Membranes (AEMs) for Fuel Cell and Water Electrolyzer Applications: Performance, Durability, and Materials Advancement. Separations, 10(8), 424. https://doi.org/10.3390/separations10080424