Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,638)

Search Parameters:
Keywords = ACS5075

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 30231 KiB  
Article
Modelling and Simulation of a 3MW, Seventeen-Phase Permanent Magnet AC Motor with AI-Based Drive Control for Submarines Under Deep-Sea Conditions
by Arun Singh and Anita Khosla
Energies 2025, 18(15), 4137; https://doi.org/10.3390/en18154137 (registering DOI) - 4 Aug 2025
Abstract
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, [...] Read more.
The growing need for high-efficiency and reliable propulsion systems in naval applications, particularly within the evolving landscape of submarine warfare, has led to an increased interest in multiphase Permanent Magnet AC motors. This study presents a modelling and simulation approach for a 3MW, seventeen-phase Permanent Magnet AC motor designed for submarine propulsion, integrating an AI-based drive control system. Despite the advantages of multiphase motors, such as higher power density and enhanced fault tolerance, significant challenges remain in achieving precise torque and variable speed, especially for externally mounted motors operating under deep-sea conditions. Existing control strategies often struggle with the inherent nonlinearities, unmodelled dynamics, and extreme environmental variations (e.g., pressure, temperature affecting oil viscosity and motor parameters) characteristic of such demanding deep-sea applications, leading to suboptimal performance and compromised reliability. Addressing this gap, this research investigates advanced control methodologies to enhance the performance of such motors. A MATLAB/Simulink framework was developed to model the motor, whose drive system leverages an AI-optimised dual fuzzy-PID controller refined using the Harmony Search Algorithm. Additionally, a combination of Indirect Field-Oriented Control (IFOC) and Space Vector PWM strategies are implemented to optimise inverter switching sequences for precise output modulation. Simulation results demonstrate significant improvements in torque response and control accuracy, validating the efficacy of the proposed system. The results highlight the role of AI-based propulsion systems in revolutionising submarine manoeuvrability and energy efficiency. In particular, during a test case involving a speed transition from 75 RPM to 900 RPM, the proposed AI-based controller achieves a near-zero overshoot compared to an initial control scheme that exhibits 75.89% overshoot. Full article
Show Figures

Figure 1

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

19 pages, 9300 KiB  
Article
Decoupling Control for the HVAC Port of Power Electronic Transformer
by Wusong Wen, Tianwen Zhan, Yingchao Zhang and Jintong Nie
Energies 2025, 18(15), 4131; https://doi.org/10.3390/en18154131 (registering DOI) - 4 Aug 2025
Abstract
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to [...] Read more.
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to simultaneously realize the functions of active power control, reactive power compensation, and active power filtering. In the outer power control loop, according to the distribution rule of decoupled average active power components in three phases, stability control for the sum of cluster average active power flows is realized by injecting positive-sequence active current, so as to control the average cluster voltage (i.e., the average of all the DC-link capacitor voltages), and by injecting negative-sequence current, the cluster average active power flows can be controlled individually to balance the three cluster voltages (i.e., the average of the DC-link capacitor voltages in each cluster). The negative-sequence reactive power component is considered to realize the reactive power compensation. In the inner current control loop, the fundamental and high-order harmonic components are uniformly controlled in the positive-sequence dq frame using the PI + VPIs (vector proportional integral) controller, and the harmonic filtering function is realized while the fundamental positive-sequence current is adjusted. Experiments performed on the 380 V/50 kVA laboratory HVAC-PET verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

20 pages, 753 KiB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 (registering DOI) - 4 Aug 2025
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

18 pages, 1807 KiB  
Article
Influence of Pyrolysis Temperature on the Properties and Electrochemical Performance of Cedar Wood-Derived Biochar for Supercapacitor Electrodes
by Layal Abdallah, Chantal Gondran, Virginie Monnier, Christian Vollaire and Naoufel Haddour
Bioengineering 2025, 12(8), 841; https://doi.org/10.3390/bioengineering12080841 (registering DOI) - 4 Aug 2025
Abstract
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 [...] Read more.
This study examines the effect of temperature during pyrolysis on the capacity of cedar wood-derived biochar to be employed as a sustainable electrode material for supercapacitors. Cedar wood-derived biochars were produced at different temperatures of 800 °C, 900 °C, 1000 °C and 1100 °C and fully characterized in terms of their structural, physicochemical and electrochemical properties, including specific surface area, hydrophobicity, electrical conductivity, and surface functional groups. The results indicated that the cedar wood biochar obtained through pyrolysis at 900 °C (BC900) provided optimal electrical conductivity, hydrophobicity, and porosity characteristics relative to the other cedar wood biochars produced by pyrolysis at 800 °C to 1100 °C. Specifically, when compared to commercial activated carbon (AC), BC900 provided half the specific capacitance at a current density of 1 A g−1 and indicated that there is more potential for improvement with further activation and doping. The influence of the binder (either polyvinylidene fluoride (PVDF) or chitosan) in combination with conductive carbon black (CB) was also examined. Electrodes fabricated with PVDF binder showed higher specific capacitance, while biochar electrodes made from CB and chitosan (BC900/CB/chitosan) showed better electrical conductivity, wettability, and good electrochemical stability with >95% capacity retention even after 10,000 cycles. Full article
Show Figures

Figure 1

16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

15 pages, 8600 KiB  
Article
A Small-Molecule Compound Targeting Canine Mammary Cancer Regulates CXCL10 and MECOM Transcripts via Histone Modifications in CMT-N7
by Rongrong Wang, Chuyang Zhu, Xiaoyue Yuan, Cuipeng Zhu, Saber Y. Adam, Haoyu Liu, Demin Cai and Jiaguo Liu
Animals 2025, 15(15), 2274; https://doi.org/10.3390/ani15152274 - 4 Aug 2025
Abstract
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with [...] Read more.
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with a relative incidence rate of 46.71% for CMT in China over the past five years, severely threatening the life and health of dogs. Therefore, the search for novel drugs targeting canine mammary cancer is of great significance. This study aims to investigate how the RORγ inhibitors W6134 and XY018 affect the expression of inflammatory genes through histone modifications in CMT-N7 cells. These results show that W6134 and XY018 can upregulate signaling pathways related to inflammation and apoptosis and influence the expression of associated genes. The close link between RORγ and inflammation-related genes further confirms that RORγ may serve as a therapeutic target for canine cancer. Additionally, ChIP-qPCR was used to detect the enrichment of histone markers such as P300, H3K27ac, H3K4me1, H3K9la, and H3K9bhb at the target loci of CXCL10 and MECOM genes. Collectively, our findings provide molecular evidence for the protective role of RORγ in canine mammary cancer, potentially by regulating inflammatory pathways via histone modifications, offering new insights for improving the cure rate and survival of affected dogs. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Metabolism of Companion Animals)
Show Figures

Figure 1

14 pages, 1282 KiB  
Systematic Review
Actinic Cheilitis: A Systematic Review and Meta-Analysis of Interventions, Treatment Outcomes, and Adverse Events
by Matthäus Al-Fartwsi, Anne Petzold, Theresa Steeb, Lina Amin Djawher, Anja Wessely, Anett Leppert, Carola Berking and Markus V. Heppt
Biomedicines 2025, 13(8), 1896; https://doi.org/10.3390/biomedicines13081896 - 4 Aug 2025
Abstract
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. [...] Read more.
Introduction: Actinic cheilitis (AC) is a common precancerous condition affecting the lips, primarily caused by prolonged ultraviolet radiation exposure. Various treatment options are available. However, the optimal treatment approach remains a subject of debate. Objective: To summarize and compare practice-relevant interventions for AC. Materials and Methods: A pre-defined protocol was registered in PROSPERO (CRD42021225182). Systematic searches in Medline, Embase, and Central, along with manual trial register searches, identified studies reporting participant clearance rates (PCR) or recurrence rates (PRR). Quality assessment for randomized controlled trials (RCTs) was conducted using the Cochrane Risk of Bias tool 2. Uncontrolled studies were evaluated using the tool developed by the National Heart, Lung, and Blood Institute. The generalized linear mixed model was used to pool proportions for uncontrolled studies. A pairwise meta-analysis for RCTs was applied, using the odds ratio (OR) as the effect estimate and the GRADE approach to evaluate the quality of the evidence. Adverse events were analyzed qualitatively. Results: A comprehensive inclusion of 36 studies facilitated an evaluation of 614 participants for PCR, and 430 patients for PRR. Diclofenac showed the lowest PCR (0.53, 95% confidence interval (CI) [0.41; 0.66]), while CO2 laser showed the highest PCR (0.97, 95% CI [0.90; 0.99]). For PRR, Er:YAG laser showed the highest rates (0.14, 95% CI [0.08; 0.21]), and imiquimod the lowest (0.00, 95% CI [0.00; 0.06]). In a pairwise meta-analysis, the OR indicated a lower recurrence rate for Er:YAG ablative fractional laser (AFL)-primed methyl-aminolevulinate photodynamic therapy (MAL-PDT) (Er:YAG AFL-PDT) compared to methyl-aminolevulinate photodynamic therapy (MAL-PDT) alone (OR = 0.22, 95% CI [0.06; 0.82]). The CO2 laser showed fewer local side effects than the Er:YAG laser, while PDTs caused more skin reactions. Due to qualitative data, comparability was limited, highlighting the need for individualized treatment. Conclusions: This study provides a complete and up-to-date evidence synthesis of practice-relevant interventions for AC, identifying the CO2 laser as the most effective treatment and regarding PCR and imiquimod as most effective concerning PRR. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
Show Figures

Figure 1

26 pages, 4116 KiB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

16 pages, 1928 KiB  
Review
Intensive Lipid-Lowering Therapy Following Acute Coronary Syndrome: The Earlier the Better
by Akshyaya Pradhan, Prachi Sharma, Sudesh Prajapathi, Maurizio Aracri, Ferdinando Iellamo and Marco Alfonso Perrone
J. Cardiovasc. Dev. Dis. 2025, 12(8), 300; https://doi.org/10.3390/jcdd12080300 - 4 Aug 2025
Abstract
Elevated levels of atherogenic lipoproteins are known to be associated with an increased risk of incident and recurrent cardiovascular events. Knowing that the immediate post-acute coronary syndrome (ACS) period is associated with the maximum risk of recurrent events, the gradual escalation of therapy [...] Read more.
Elevated levels of atherogenic lipoproteins are known to be associated with an increased risk of incident and recurrent cardiovascular events. Knowing that the immediate post-acute coronary syndrome (ACS) period is associated with the maximum risk of recurrent events, the gradual escalation of therapy allows the patient to remain above the targets during the most vulnerable period. In addition, the percentage of lipid-lowering levels for each class of drugs is predictable and has a ceiling. Hence, it is prudent to immediately start with a combination of lipid-lowering drugs following ACS according to the baseline lipid levels. Multiple studies with injectable lipid-lowering agents (PCSK9 inhibitors) such as EVOPACS, PACMAN MI, and HUYGENS MI have shown the feasibility of achieving LDL-C goals by day 28 and beneficial plaque modification in non-infarct-related coronary arteries. Recently, a study from India demonstrated that an upfront triple combination of oral lipid-lowering agents was able to achieve LDL-C goals in a majority of patients in the early post-ACS period. This notion is also supported by a few recent lipid-lowering guidelines advocating for an upfront dual combination of a high-intensity statin and ezetimibe following ACS. Henceforth, the goal should not only be the achievement of lipid targets but also their early achievement. However, the impact of this strategy on long-term cardiovascular outcomes is yet to be ascertained. Full article
(This article belongs to the Special Issue Effect of Lipids and Lipoproteins on Atherosclerosis)
Show Figures

Figure 1

27 pages, 2226 KiB  
Review
Uncovering Plaque Erosion: A Distinct Pathway in Acute Coronary Syndromes and a Gateway to Personalized Therapy
by Angela Buonpane, Alberto Ranieri De Caterina, Giancarlo Trimarchi, Fausto Pizzino, Marco Ciardetti, Michele Alessandro Coceani, Augusto Esposito, Luigi Emilio Pastormerlo, Angelo Monteleone, Alberto Clemente, Umberto Paradossi, Sergio Berti, Antonio Maria Leone, Carlo Trani, Giovanna Liuzzo, Francesco Burzotta and Filippo Crea
J. Clin. Med. 2025, 14(15), 5456; https://doi.org/10.3390/jcm14155456 (registering DOI) - 3 Aug 2025
Abstract
Plaque erosion (PE) is now recognized as a common and clinically significant cause of acute coronary syndromes (ACSs), accounting for up to 40% of cases. Unlike plaque rupture (PR), PE involves superficial endothelial loss over an intact fibrous cap and occurs in a [...] Read more.
Plaque erosion (PE) is now recognized as a common and clinically significant cause of acute coronary syndromes (ACSs), accounting for up to 40% of cases. Unlike plaque rupture (PR), PE involves superficial endothelial loss over an intact fibrous cap and occurs in a low-inflammatory setting, typically affecting younger patients, women, and smokers with fewer traditional risk factors. The growing recognition of PE has been driven by high-resolution intracoronary imaging, particularly optical coherence tomography (OCT), which enables in vivo differentiation from PR. Identifying PE with OCT has opened the door to personalized treatment strategies, as explored in recent trials evaluating the safety of deferring stent implantation in selected cases in favor of intensive medical therapy. Given its unexpectedly high prevalence, PE is now recognized as a common pathophysiological mechanism in ACS, rather than a rare exception. This growing awareness underscores the importance of its accurate identification through OCT in clinical practice. Early recognition and a deeper understanding of PE are essential steps toward the implementation of precision medicine, allowing clinicians to move beyond “one-size-fits-all” models toward “mechanism-based” therapeutic strategies. This narrative review aims to offer an integrated overview of PE, tracing its epidemiology, elucidating the molecular and pathophysiological mechanisms involved, outlining its clinical presentations, and placing particular emphasis on diagnostic strategies with OCT, while also discussing emerging therapeutic approaches and future directions for personalized cardiovascular care. Full article
Show Figures

Figure 1

17 pages, 1097 KiB  
Article
Mapping Perfusion and Predicting Success: Infrared Thermography-Guided Perforator Flaps for Lower Limb Defects
by Abdalah Abu-Baker, Andrada-Elena Ţigăran, Teodora Timofan, Daniela-Elena Ion, Daniela-Elena Gheoca-Mutu, Adelaida Avino, Cristina-Nicoleta Marina, Adrian Daniel Tulin, Laura Raducu and Radu-Cristian Jecan
Medicina 2025, 61(8), 1410; https://doi.org/10.3390/medicina61081410 - 3 Aug 2025
Abstract
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography [...] Read more.
Background and Objectives: Lower limb defects often present significant reconstructive challenges due to limited soft tissue availability and exposure of critical structures. Perforator-based flaps offer reliable solutions, with minimal donor site morbidity. This study aimed to evaluate the efficacy of infrared thermography (IRT) in preoperative planning and postoperative monitoring of perforator-based flaps, assessing its accuracy in identifying perforators, predicting complications, and optimizing outcomes. Materials and Methods: A prospective observational study was conducted on 76 patients undergoing lower limb reconstruction with fascio-cutaneous perforator flaps between 2022 and 2024. Perforator mapping was performed concurrently with IRT and Doppler ultrasonography (D-US), with intraoperative confirmation. Flap design variables and systemic parameters were recorded. Postoperative monitoring employed thermal imaging on days 1 and 7. Outcomes were correlated with thermal, anatomical, and systemic factors using statistical analyses, including t-tests and Pearson correlation. Results: IRT showed high sensitivity (97.4%) and positive predictive value (96.8%) for perforator detection. A total of nine minor complications occurred, predominantly in patients with diabetes mellitus and/or elevated glycemia (p = 0.05). Larger flap-to-defect ratios (A/C and B/C) correlated with increased complications in propeller flaps, while smaller ratios posed risks for V-Y and Keystone flaps. Thermal analysis indicated significantly lower flap temperatures and greater temperature gradients in flaps with complications by postoperative day 7 (p < 0.05). CRP levels correlated with glycemia and white blood cell counts, highlighting systemic inflammation’s impact on outcomes. Conclusions: IRT proves to be a reliable, non-invasive method for perforator localization and flap monitoring, enhancing surgical planning and early complication detection. Combined with D-US, it improves perforator selection and perfusion assessment. Thermographic parameters, systemic factors, and flap design metrics collectively predict flap viability. Integration of IRT into surgical workflows offers a cost-effective tool for optimizing reconstructive outcomes in lower limb surgery. Full article
Show Figures

Figure 1

19 pages, 4401 KiB  
Article
Influence of Sex and 1,25α Dihydroxyvitamin D3 on SARS-CoV-2 Infection and Viral Entry
by Nicole Vercellino, Alessandro Ferrari, José Camilla Sammartino, Mattia Bellan, Elizabeth Iskandar, Daniele Lilleri and Rosalba Minisini
Pathogens 2025, 14(8), 765; https://doi.org/10.3390/pathogens14080765 (registering DOI) - 2 Aug 2025
Viewed by 49
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the etiologic agent that causes the coronavirus disease (COVID-19) identified in Wuhan, in 2019. Men are more prone to developing severe manifestations than women, suggesting a possible crucial role of sex hormones. 17,β-Estradiol (E2) and 1,25 α dihydroxyvitamin D3 (calcitriol) act upon gene pathways as immunomodulators in several infectious respiratory diseases. In this study, we aimed to evaluate the influence of E2 and calcitriol on the VSV-based pseudovirus SARS-CoV-2 and SARS-CoV-2 infection in vitro. We infected Vero E6 cells with the recombinant VSV-based pseudovirus SARS-CoV-2 and the SARS-CoV-2 viruses according to the pre-treatment and pre–post-treatment models. The Angiotensin-Converting Enzyme 2 (ACE2) and Vitamin D Receptor (VDR) gene expression did not change under different treatments. The VSV-based pseudovirus SARS-CoV-2 infection showed a significant decrease in the focus-forming unit count in the presence of E2 and calcitriol (either alone or in combination) in the pre-treatment model, while in the pre–post-treatment model, the infection was inhibited only in the presence of E2. Th SARS-CoV-2 infection highlighted a decrease in viral titres in the presence of E2 and calcitriol only in the pre–post-treatment model. 17,β-Estradiol and calcitriol can exert an inhibitory effect on SARS-CoV-2 infections, demonstrating their protective role against viral infections. Full article
(This article belongs to the Special Issue Antiviral Strategies Against Human Respiratory Viruses)
Show Figures

Graphical abstract

20 pages, 1134 KiB  
Article
Application of Animal- and Plant-Derived Coagulant in Artisanal Italian Caciotta Cheesemaking: Comparison of Sensory, Biochemical, and Rheological Parameters
by Giovanna Lomolino, Stefania Zannoni, Mara Vegro and Alberto De Iseppi
Dairy 2025, 6(4), 43; https://doi.org/10.3390/dairy6040043 (registering DOI) - 1 Aug 2025
Viewed by 67
Abstract
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract [...] Read more.
Consumer interest in vegetarian, ethical, and clean-label foods is reviving the use of plant-derived milk coagulants. Cardosins from Cynara cardunculus (“thistle”) are aspartic proteases with strong clotting activity, yet their technological impact in cheese remains under-explored. This study compared a commercial thistle extract (PC) with traditional bovine rennet rich in chymosin (AC) during manufacture and 60-day ripening of Caciotta cheese. Classical compositional assays (ripening index, texture profile, color, solubility) were integrated with scanning electron microscopy, three-dimensional surface reconstruction, and descriptive sensory analysis. AC cheeses displayed slower but sustained proteolysis, yielding a higher and more linear ripening index, softer body, greater solubility, and brighter, more yellow appearance. Imaging revealed a continuous protein matrix with uniformly distributed, larger pores, consistent with a dairy-like sensory profile dominated by milky and umami notes. Conversely, PC cheeses underwent rapid early proteolysis that plateaued, producing firmer, chewier curds with lower solubility and darker color. Micrographs showed a fragmented matrix with smaller, heterogeneous pores; sensory evaluation highlighted vegetal, bitter, and astringent attributes. The data demonstrate that thistle coagulant can successfully replace animal rennet but generates cheeses with distinct structural and sensory fingerprints. The optimization of process parameters is therefore required when targeting specific product styles. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

24 pages, 13038 KiB  
Article
Simulation and Analysis of Electric Thermal Coupling for Corrosion Damage of Metro Traction Motor Bearings
by Haisheng Yang, Zhanwang Shi, Xuelan Wang, Jiahang Zhang, Run Zhang and Hengdi Wang
Machines 2025, 13(8), 680; https://doi.org/10.3390/machines13080680 (registering DOI) - 1 Aug 2025
Viewed by 123
Abstract
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown [...] Read more.
With the electrification of generator sets, electric locomotives, new energy vehicles, and other industries, AC motors subject bearings to an electric field environment, leading to galvanic corrosion due to the use of variable frequency power supply drives. The phenomenon of bearing discharge breakdown in subway traction motors is a critical issue in understanding the relationship between shaft current strength and the extent of bearing damage. This paper analyzes the mechanism of impulse discharge that leads to galvanic corrosion damage in bearings at a microscopic level and conducts electric thermal coupling simulations of the traction motor bearing discharge breakdown process. It examines the temperature rise associated with lubricant film discharge breakdown during the dynamic operation of the bearing and investigates how breakdown channel parameters and operational conditions affect the temperature rise in the micro-region of bearing lubrication. Ultimately, the results of the electric thermal coupling simulation are validated through experimental tests. This study revealed that in an electric field environment, the load-bearing area of the outer ring experiences significantly more severe corrosion damage than the inner ring, whereas non-bearing areas remain unaffected by electrolytic corrosion. When the inner ring reaches a speed of 4500_rpm, the maximum widths of electrolytic corrosion pits for the outer and inner rings are measured at 89 um and 51 um, respectively. Additionally, the highest recorded temperatures for the breakdown channels in the outer and inner rings are 932 °C and 802 °C, respectively. Furthermore, as the inner ring speed increases, both the width of the electrolytic corrosion pits and the temperature of the breakdown channels rise. Specifically, at inner ring speeds of 2500_rpm, 3500_rpm, and 4500_rpm, the widths of the electrolytic pits in the outer ring raceway load zone were measured at 34 um, 56 um, and 89 um, respectively. The highest temperatures of the lubrication film breakdown channels were recorded as 612 °C, 788 °C, and 932 °C, respectively. This study provides a theoretical basis and data support for the protective and maintenance practices of traction motor bearings. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

Back to TopTop