Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = 5G-VANET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2345 KiB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
33 pages, 917 KiB  
Systematic Review
Publish/Subscribe-Middleware-Based Intelligent Transportation Systems: Applications and Challenges
by Basem Almadani, Ekhlas Hashem, Raneem R. Attar, Farouq Aliyu and Esam Al-Nahari
Appl. Sci. 2025, 15(12), 6449; https://doi.org/10.3390/app15126449 - 8 Jun 2025
Viewed by 588
Abstract
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, [...] Read more.
Countries are embracing intelligent transportation systems (ITSs), the application of information and communication technologies to transportation, to address growing challenges in urban mobility, congestion, safety, and sustainability. Architecture Reference for Cooperative and Intelligent Transportation (ARC-IT) is a notable ITS framework comprising Enterprise, Functional, Physical, and Communications Views (or layers). This review focuses on the Communications View, examining how publish/subscribe middleware enhances ITS through the communication layer. It identified application areas across ITS infrastructure, transportation modes, and communication technologies, and highlights key challenges. In the infrastructure domain, publish/subscribe middleware enhances responsiveness and real-time processing in systems such as traffic surveillance, VANETs, and road sensor networks, especially when replacing legacy infrastructure is cost-prohibitive. Moreover, the middleware supports scalable, low-latency communication in land, air, and marine modes, enabling public transport coordination, cooperative driving, and UAV integration. At the communications layer, publish/subscribe systems facilitate interoperable, delay-tolerant data dissemination over heterogeneous platforms, including 4G/5G, ICN, and peer-to-peer networks. However, integrating publish/subscribe middleware in ITS has several challenges, including privacy risks, real-time data constraints, fault tolerance, bandwidth limitations, and security vulnerabilities. This paper provides a domain-informed foundation for researchers and practitioners developing resilient, scalable, and interoperable communication systems in next-generation ITSs. Full article
Show Figures

Figure 1

34 pages, 2273 KiB  
Article
SimulatorOrchestrator: A 6G-Ready Simulator for the Cell-Free/Osmotic Infrastructure
by Rohin Gillgallon, Reham Almutairi, Giacomo Bergami and Graham Morgan
Sensors 2025, 25(5), 1591; https://doi.org/10.3390/s25051591 - 5 Mar 2025
Viewed by 1023
Abstract
To the best of our knowledge, we offer the first IoT-Osmotic simulator supporting 6G and Cloud infrastructures, leveraging the similarities in Software-Defined Wide Area Network (SD-WAN) architectures when used in Osmotic architectures and User-Centric Cell-Free mMIMO (massive multiple-input multiple-output) architectures. Our simulator acts [...] Read more.
To the best of our knowledge, we offer the first IoT-Osmotic simulator supporting 6G and Cloud infrastructures, leveraging the similarities in Software-Defined Wide Area Network (SD-WAN) architectures when used in Osmotic architectures and User-Centric Cell-Free mMIMO (massive multiple-input multiple-output) architectures. Our simulator acts as a simulator orchestrator, supporting the interaction with a patient digital twin generating patient healthcare data (vital signs and emergency alerts) and a VANET simulator (SUMO), both leading to IoT data streams towards the cloud through pre-initiated MQTT protocols. This contextualises our approach within the healthcare domain while showcasing the possibility of orchestrating different simulators at the same time. The combined provision of these two aspects, joined with the addition of a ring network connecting all the first-mile edge nodes (i.e., access points), enables the definition of new packet routing algorithms, streamlining previous solutions from SD-WAN architectures, thus showing the benefit of 6G architectures in achieving better network load balancing, as well as showcasing the limitations of previous approaches. The simulated 6G architecture, combined with the optimal routing algorithm and MEL (Microelements software components) allocation policy, was able to reduce the time required to route all communications from IoT devices to the cloud by up to 50.4% compared to analogous routing algorithms used within 5G architectures. Full article
(This article belongs to the Special Issue e-Health Systems and Technologies)
Show Figures

Figure 1

33 pages, 629 KiB  
Article
Enhancing Smart City Connectivity: A Multi-Metric CNN-LSTM Beamforming Based Approach to Optimize Dynamic Source Routing in 6G Networks for MANETs and VANETs
by Vincenzo Inzillo, David Garompolo and Carlo Giglio
Smart Cities 2024, 7(5), 3022-3054; https://doi.org/10.3390/smartcities7050118 - 17 Oct 2024
Cited by 6 | Viewed by 2305
Abstract
The advent of Sixth Generation (6G) wireless technologies introduces challenges and opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-Metric Scoring Dynamic Source Routing (MMS-DSR), a novel [...] Read more.
The advent of Sixth Generation (6G) wireless technologies introduces challenges and opportunities for Mobile Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), necessitating a reevaluation of traditional routing protocols. This paper introduces the Multi-Metric Scoring Dynamic Source Routing (MMS-DSR), a novel enhancement of the Dynamic Source Routing (DSR) protocol, designed to meet the demands of 6G-enabled MANETs and the dynamic environments of VANETs. MMS-DSR integrates advanced technologies and methodologies to enhance routing performance in dynamic scenarios. Key among these is the use of a CNN-LSTM-based beamforming algorithm, which optimizes beamforming vectors dynamically, exploiting spatial-temporal variations characteristic of 6G channels. This enables MMS-DSR to adapt beam directions in real time based on evolving network conditions, improving link reliability and throughput. Furthermore, MMS-DSR incorporates a multi-metric scoring mechanism that evaluates routes based on multiple QoS parameters, including latency, bandwidth, and reliability, enhanced by the capabilities of Massive MIMO and the IEEE 802.11ax standard. This ensures route selection is context-aware and adaptive to changing dynamics, making it effective in urban settings where vehicular and mobile nodes coexist. Additionally, the protocol uses machine learning techniques to predict future route performance, enabling proactive adjustments in routing decisions. The integration of dynamic beamforming and machine learning allows MMS-DSR to effectively handle the high mobility and variability of 6G networks, offering a robust solution for future wireless communications, particularly in smart cities. Full article
Show Figures

Figure 1

12 pages, 1157 KiB  
Article
Multi-Layered Unsupervised Learning Driven by Signal-to-Noise Ratio-Based Relaying for Vehicular Ad Hoc Network-Supported Intelligent Transport System in eHealth Monitoring
by Ali Nauman, Adeel Iqbal, Tahir Khurshaid and Sung Won Kim
Sensors 2024, 24(20), 6548; https://doi.org/10.3390/s24206548 - 11 Oct 2024
Cited by 1 | Viewed by 1710
Abstract
Every year, about 1.19 million people are killed in traffic accidents; hence, the United Nations has a goal of halving the number of road traffic deaths and injuries by 2030. In line with this objective, technological innovations in telecommunication, particularly brought about by [...] Read more.
Every year, about 1.19 million people are killed in traffic accidents; hence, the United Nations has a goal of halving the number of road traffic deaths and injuries by 2030. In line with this objective, technological innovations in telecommunication, particularly brought about by the rise of 5G networks, have contributed to the development of modern Vehicle-to-Everything (V2X) systems for communication. A New Radio V2X (NR-V2X) was introduced in the latest Third Generation Partnership Project (3GPP) releases which allows user devices to exchange information without relying on roadside infrastructures. This, together with Massive Machine Type Communication (mMTC) and Ultra-Reliable Low Latency Communication (URLLC), has led to the significantly increased reliability, coverage, and efficiency of vehicular communication networks. The use of artificial intelligence (AI), especially K-means clustering, has been very promising in terms of supporting efficient data exchange in vehicular ad hoc networks (VANETs). K-means is an unsupervised machine learning (ML) technique that groups vehicles located near each other geographically so that they can communicate with one another directly within these clusters while also allowing for inter-cluster communication via cluster heads. This paper proposes a multi-layered VANET-enabled Intelligent Transportation System (ITS) framework powered by unsupervised learning to optimize communication efficiency, scalability, and reliability. By leveraging AI in VANET solutions, the proposed framework aims to address road safety challenges and contribute to global efforts to meet the United Nations’ 2030 target. Additionally, this framework’s robust communication and data processing capabilities can be extended to eHealth monitoring systems, enabling real-time health data transmission and processing for continuous patient monitoring and timely medical interventions. This paper’s contributions include exploring AI-driven approaches for enhanced data interaction, improved safety in VANET-based ITS environments, and potential applications in eHealth monitoring. Full article
(This article belongs to the Special Issue Intelligent Sensors and Control for Vehicle Automation)
Show Figures

Figure 1

20 pages, 2709 KiB  
Article
A New Framework for Enhancing VANETs through Layer 2 DLT Architectures with Multiparty Threshold Key Management and PETs
by Haitham Y. Adarbah, Mehmet Sabir Kiraz, Suleyman Kardas, Ali H. Al-Bayatti and Hilal M. Y. Al-Bayatti
Future Internet 2024, 16(9), 328; https://doi.org/10.3390/fi16090328 - 9 Sep 2024
Viewed by 1802
Abstract
This work proposes a new architectural approach to enhance the security, privacy, and scalability of VANETs through threshold key management and Privacy Enhancing Technologies (PETs), such as homomorphic encryption and secure multiparty computation, integrated with Decentralized Ledger Technologies (DLTs). These advanced mechanisms are [...] Read more.
This work proposes a new architectural approach to enhance the security, privacy, and scalability of VANETs through threshold key management and Privacy Enhancing Technologies (PETs), such as homomorphic encryption and secure multiparty computation, integrated with Decentralized Ledger Technologies (DLTs). These advanced mechanisms are employed to eliminate centralization and protect the privacy of transferred and processed information in VANETs, thereby addressing privacy concerns. We begin by discussing the weaknesses of existing VANET architectures concerning trust, privacy, and scalability and then introduce a new architectural framework that shifts from centralized to decentralized approaches. This transition applies a decentralized ledger mechanism to ensure correctness, reliability, accuracy, and security against various known attacks. The use of Layer 2 DLTs in our framework enhances key management, trust distribution, and data privacy, offering cost and speed advantages over Layer 1 DLTs, thereby enabling secure vehicle-to-everything (V2X) communication. The proposed framework is superior to other frameworks as it improves decentralized trust management, adopts more efficient PETs, and leverages Layer 2 DLT for scalability. The integration of multiparty threshold key management and homomorphic encryption also enhances data confidentiality and integrity, thus securing against various existing cryptographic attacks. Finally, we discuss potential future developments to improve the security and reliability of VANETs in the next generation of networks, including 5G networks. Full article
(This article belongs to the Section Cybersecurity)
Show Figures

Figure 1

26 pages, 3806 KiB  
Article
Proposed Supercluster-Based UMBBFS Routing Protocol for Emergency Message Dissemination in Edge-RSU for 5G VANET
by Maath A. Albeyar, Ikram Smaoui, Hassene Mnif and Sameer Alani
Computers 2024, 13(8), 208; https://doi.org/10.3390/computers13080208 - 19 Aug 2024
Cited by 3 | Viewed by 1222
Abstract
Vehicular ad hoc networks (VANETs) can bolster road safety through the proactive dissemination of emergency messages (EMs) among vehicles, effectively reducing the occurrence of traffic-related accidents. It is difficult to transmit EMs quickly and reliably due to the high-speed mobility of VANET and [...] Read more.
Vehicular ad hoc networks (VANETs) can bolster road safety through the proactive dissemination of emergency messages (EMs) among vehicles, effectively reducing the occurrence of traffic-related accidents. It is difficult to transmit EMs quickly and reliably due to the high-speed mobility of VANET and the attenuation of the wireless signal. However, poor network design and high vehicle mobility are the two most difficult problems that affect VANET’s network performance. The real-time traffic situation and network dependability will also be significantly impacted by route selection and message delivery. Many of the current works have undergone studies focused on forwarder selection and message transmission to address these problems. However, these earlier approaches, while effective in forwarder selection and routing, have overlooked the critical aspects of communication overhead and excessive energy consumption, resulting in transmission delays. To address the prevailing challenges, the proposed solutions use edge computing to process and analyze data locally from surrounding cars and infrastructure. EDGE-RSUs are positioned by the side of the road. In intelligent transportation systems, this lowers latency and enhances real-time decision-making by employing proficient forwarder selection techniques and optimizing the dissemination of EMs. In the context of 5G-enabled VANET, this paper introduces a novel routing protocol, namely, the supercluster-based urban multi-hop broadcast and best forwarder selection protocol (UMB-BFS). The improved twin delay deep deterministic policy gradient (IT3DPG) method is used to select the target region for emergency message distribution after route selection. Clustering is conducted using modified density peak clustering (MDPC). Improved firefly optimization (IFO) is used for optimal path selection. In this way, all emergency messages are quickly disseminated to multiple directions and also manage the traffic in VANET. Finally, we plotted graphs for the following metrics: throughput (3.9 kbps), end-to-end delay (70), coverage (90%), packet delivery ratio (98%), packet received (12.75 k), and transmission delay (57 ms). Our approach’s performance is examined using numerical analysis, demonstrating that it performs better than the current methodologies across all measures. Full article
Show Figures

Figure 1

34 pages, 14611 KiB  
Article
Microservice-Based Vehicular Network for Seamless and Ultra-Reliable Communications of Connected Vehicles
by Mira M. Zarie, Abdelhamied A. Ateya, Mohammed S. Sayed, Mohammed ElAffendi and Mohammad Mahmoud Abdellatif
Future Internet 2024, 16(7), 257; https://doi.org/10.3390/fi16070257 - 19 Jul 2024
Cited by 1 | Viewed by 1811
Abstract
The fifth-generation (5G) cellular infrastructure is expected to bring about the widespread use of connected vehicles. This technological progress marks the beginning of a new era in vehicular networks, which includes a range of different types and services of self-driving cars and the [...] Read more.
The fifth-generation (5G) cellular infrastructure is expected to bring about the widespread use of connected vehicles. This technological progress marks the beginning of a new era in vehicular networks, which includes a range of different types and services of self-driving cars and the smooth sharing of information between vehicles. Connected vehicles have also been announced as a main use case of the sixth-generation (6G) cellular, with ultimate requirements beyond the 5G (B5G) and 6G eras. These networks require full coverage, extremely high reliability and availability, very low latency, and significant system adaptability. The significant specifications set for vehicular networks pose considerable design and development challenges. The goals of establishing a latency of 1 millisecond, effectively handling large amounts of data traffic, and facilitating high-speed mobility are of utmost importance. To address these difficulties and meet the demands of upcoming networks, e.g., 6G, it is necessary to improve the performance of vehicle networks by incorporating innovative technology into existing network structures. This work presents significant enhancements to vehicular networks to fulfill the demanding specifications by utilizing state-of-the-art technologies, including distributed edge computing, e.g., mobile edge computing (MEC) and fog computing, software-defined networking (SDN), and microservice. The work provides a novel vehicular network structure based on micro-services architecture that meets the requirements of 6G networks. The required offloading scheme is introduced, and a handover algorithm is presented to provide seamless communication over the network. Moreover, a migration scheme for migrating data between edge servers was developed. The work was evaluated in terms of latency, availability, and reliability. The results outperformed existing traditional approaches, demonstrating the potential of our approach to meet the demanding requirements of next-generation vehicular networks. Full article
(This article belongs to the Special Issue Moving towards 6G Wireless Technologies)
Show Figures

Figure 1

12 pages, 6773 KiB  
Article
Dual-Slope Path Loss Model for Integrating Vehicular Sensing Applications in Urban and Suburban Environments
by Herman Fernández, Lorenzo Rubio, Vicent M. Rodrigo Peñarrocha and Juan Reig
Sensors 2024, 24(13), 4334; https://doi.org/10.3390/s24134334 - 4 Jul 2024
Cited by 5 | Viewed by 1790
Abstract
The development of intelligent transportation systems (ITS), vehicular ad hoc networks (VANETs), and autonomous driving (AD) has progressed rapidly in recent years, driven by artificial intelligence (AI), the internet of things (IoT), and their integration with dedicated short-range communications (DSRC) systems and fifth-generation [...] Read more.
The development of intelligent transportation systems (ITS), vehicular ad hoc networks (VANETs), and autonomous driving (AD) has progressed rapidly in recent years, driven by artificial intelligence (AI), the internet of things (IoT), and their integration with dedicated short-range communications (DSRC) systems and fifth-generation (5G) networks. This has led to improved mobility conditions in different road propagation environments: urban, suburban, rural, and highway. The use of these communication technologies has enabled drivers and pedestrians to be more aware of the need to improve their behavior and decision making in adverse traffic conditions by sharing information from cameras, radars, and sensors widely deployed in vehicles and road infrastructure. However, wireless data transmission in VANETs is affected by the specific conditions of the propagation environment, weather, terrain, traffic density, and frequency bands used. In this paper, we characterize the path loss based on the extensive measurement campaign carrier out in vehicular environments at 700 MHz and 5.9 GHz under realistic road traffic conditions. From a linear dual-slope path loss propagation model, the results of the path loss exponents and the standard deviations of the shadowing are reported. This study focused on three different environments, i.e., urban with high traffic density (U-HD), urban with moderate/low traffic density (U-LD), and suburban (SU). The results presented here can be easily incorporated into VANET simulators to develop, evaluate, and validate new protocols and system architecture configurations under more realistic propagation conditions. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility)
Show Figures

Figure 1

34 pages, 8743 KiB  
Article
ANN-Based Intelligent Secure Routing Protocol in Vehicular Ad Hoc Networks (VANETs) Using Enhanced AODV
by Mahmood ul Hassan, Amin A. Al-Awady, Abid Ali, Sifatullah, Muhammad Akram, Muhammad Munwar Iqbal, Jahangir Khan and Yahya Ali Abdelrahman Ali
Sensors 2024, 24(3), 818; https://doi.org/10.3390/s24030818 - 26 Jan 2024
Cited by 25 | Viewed by 4437
Abstract
A vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastructure incorporating centralized and decentralized control mechanisms, orchestrating seamless data exchange among vehicles. This intricate communication system relies on the advanced capabilities of 5G connectivity, employing specialized topological arrangements to enhance data [...] Read more.
A vehicular ad hoc network (VANET) is a sophisticated wireless communication infrastructure incorporating centralized and decentralized control mechanisms, orchestrating seamless data exchange among vehicles. This intricate communication system relies on the advanced capabilities of 5G connectivity, employing specialized topological arrangements to enhance data packet transmission. These vehicles communicate amongst themselves and establish connections with roadside units (RSUs). In the dynamic landscape of vehicular communication, disruptions, especially in scenarios involving high-speed vehicles, pose challenges. A notable concern is the emergence of black hole attacks, where a vehicle acts maliciously, obstructing the forwarding of data packets to subsequent vehicles, thereby compromising the secure dissemination of content within the VANET. We present an intelligent cluster-based routing protocol to mitigate these challenges in VANET routing. The system operates through two pivotal phases: first, utilizing an artificial neural network (ANN) model to detect malicious nodes, and second, establishing clusters via enhanced clustering algorithms with appointed cluster heads (CH) for each cluster. Subsequently, an optimal path for data transmission is predicted, aiming to minimize packet transmission delays. Our approach integrates a modified ad hoc on-demand distance vector (AODV) protocol for on-demand route discovery and optimal path selection, enhancing request and reply (RREQ and RREP) protocols. Evaluation of routing performance involves the BHT dataset, leveraging the ANN classifier to compute accuracy, precision, recall, F1 score, and loss. The NS-2.33 simulator facilitates the assessment of end-to-end delay, network throughput, and hop count during the path prediction phase. Remarkably, our methodology achieves 98.97% accuracy in detecting black hole attacks through the ANN classification model, outperforming existing techniques across various network routing parameters. Full article
Show Figures

Figure 1

17 pages, 1270 KiB  
Article
A Novel Secure Routing Design Based on Physical Layer Security in Millimeter-Wave VANET
by Mengqiu Chai, Shengjie Zhao and Yuan Liu
Electronics 2023, 12(22), 4704; https://doi.org/10.3390/electronics12224704 - 19 Nov 2023
Cited by 1 | Viewed by 1390
Abstract
With the continuous development of millimeter-wave communication technology, new requirements such as ultra-reliability and higher data rates pose new challenges to the security issues of traditional cryptographic encryption in vehicular ad hoc networks (VANET). Physical layer security uses the characteristics of different wireless [...] Read more.
With the continuous development of millimeter-wave communication technology, new requirements such as ultra-reliability and higher data rates pose new challenges to the security issues of traditional cryptographic encryption in vehicular ad hoc networks (VANET). Physical layer security uses the characteristics of different wireless channels to protect the information security. In this paper, we propose a novel VANET routing mechanism that utilizes physical layer security to improve the secrecy performance, which is compatible with the millimeter-wave vehicular network. Specifically, we design a new secure routing selection factor, the utility function, that takes into account the effects of both secrecy rate and single-hop transmission distance to achieve the hop selection. In addition, we propose a novel routing mechanism and design a waiting mechanism based on the utility function. Compared with the traditional routing algorithms, the greedy perimeter stateless routing (GPSR) and Dijkstra simulation results illustrate that our design achieves superior performance in secrecy performance and dynamic adaptability. Full article
Show Figures

Figure 1

16 pages, 3261 KiB  
Article
An Efficient and Secure Certificateless Aggregate Signature Scheme for Vehicular Ad hoc Networks
by Asad Iqbal, Muhammad Zubair, Muhammad Asghar Khan, Insaf Ullah, Ghani Ur-Rehman, Alexey V. Shvetsov and Fazal Noor
Future Internet 2023, 15(8), 266; https://doi.org/10.3390/fi15080266 - 10 Aug 2023
Cited by 15 | Viewed by 2293
Abstract
Vehicular ad hoc networks (VANETs) have become an essential part of the intelligent transportation system because they provide secure communication among vehicles, enhance vehicle safety, and improve the driving experience. However, due to the openness and vulnerability of wireless networks, the participating vehicles [...] Read more.
Vehicular ad hoc networks (VANETs) have become an essential part of the intelligent transportation system because they provide secure communication among vehicles, enhance vehicle safety, and improve the driving experience. However, due to the openness and vulnerability of wireless networks, the participating vehicles in a VANET system are prone to a variety of cyberattacks. To secure the privacy of vehicles and assure the authenticity, integrity, and nonrepudiation of messages, numerous signature schemes have been employed in the literature on VANETs. The majority of these solutions, however, are either not fully secured or entail high computational costs. To address the above issues and to enable secure communication between the vehicle and the roadside unit (RSU), we propose a certificateless aggregate signature (CLAS) scheme based on hyperelliptic curve cryptography (HECC). This scheme enables participating vehicles to share their identities with trusted authorities via an open wireless channel without revealing their identities to unauthorized participants. Another advantage of this approach is its capacity to release the partial private key to participating devices via an open wireless channel while keeping its identity secret from any other third parties. A provable security analysis through the random oracle model (ROM), which relies on the hyperelliptic curve discrete logarithm problem, is performed, and we have proven that the proposed scheme is unforgeable against Type 1 (FGR1) and Type 2 (FGR2) forgers. The proposed scheme is compared with relevant schemes in terms of computational cost and communication overhead, and the results demonstrate that the proposed scheme is more efficient than the existing schemes in maintaining high-security levels. Full article
Show Figures

Figure 1

29 pages, 13208 KiB  
Article
A Novel Energy-Efficient Reservation System for Edge Computing in 6G Vehicular Ad Hoc Network
by Farhan Javed, Zuhaib Ashfaq Khan, Shahzad Rizwan, Sonia Shahzadi, Nauman Riaz Chaudhry and Muddesar Iqbal
Sensors 2023, 23(13), 5817; https://doi.org/10.3390/s23135817 - 22 Jun 2023
Cited by 9 | Viewed by 2854
Abstract
The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic [...] Read more.
The roadside unit (RSU) is one of the fundamental components in a vehicular ad hoc network (VANET), where a vehicle communicates in infrastructure mode. The RSU has multiple functions, including the sharing of emergency messages and the updating of vehicles about the traffic situation. Deploying and managing a static RSU (sRSU) requires considerable capital and operating expenditures (CAPEX and OPEX), leading to RSUs that are sparsely distributed, continuous handovers amongst RSUs, and, more importantly, frequent RSU interruptions. At present, researchers remain focused on multiple parameters in the sRSU to improve the vehicle-to-infrastructure (V2I) communication; however, in this research, the mobile RSU (mRSU), an emerging concept for sixth-generation (6G) edge computing vehicular ad hoc networks (VANETs), is proposed to improve the connectivity and efficiency of communication among V2I. In addition to this, the mRSU can serve as a computing resource for edge computing applications. This paper proposes a novel energy-efficient reservation technique for edge computing in 6G VANETs that provides an energy-efficient, reservation-based, cost-effective solution by introducing the concept of the mRSU. The simulation outcomes demonstrate that the mRSU exhibits superior performance compared to the sRSU in multiple aspects. The mRSU surpasses the sRSU with a packet delivery ratio improvement of 7.7%, a throughput increase of 5.1%, a reduction in end-to-end delay by 4.4%, and a decrease in hop count by 8.7%. The results are generated across diverse propagation models, employing realistic urban scenarios with varying packet sizes and numbers of vehicles. However, it is important to note that the enhanced performance parameters and improved connectivity with more nodes lead to a significant increase in energy consumption by 2%. Full article
(This article belongs to the Special Issue Edge Computing and Networked Sensing in 6G Network)
Show Figures

Figure 1

19 pages, 6121 KiB  
Article
Threshold Cryptography-Based Secure Vehicle-to-Everything (V2X) Communication in 5G-Enabled Intelligent Transportation Systems
by Nuwan Weerasinghe, Muhammad Arslan Usman, Chaminda Hewage, Eckhard Pfluegel and Christos Politis
Future Internet 2023, 15(5), 157; https://doi.org/10.3390/fi15050157 - 23 Apr 2023
Cited by 6 | Viewed by 3462
Abstract
Implementing 5G-enabled Vehicle-to-Everything (V2X) intelligent transportation systems presents a promising opportunity to enhance road safety and traffic flow while facilitating the integration of artificial intelligence (AI) based solutions. Yet, security and privacy concerns pose significant challenges that must be addressed. Therefore, researchers have [...] Read more.
Implementing 5G-enabled Vehicle-to-Everything (V2X) intelligent transportation systems presents a promising opportunity to enhance road safety and traffic flow while facilitating the integration of artificial intelligence (AI) based solutions. Yet, security and privacy concerns pose significant challenges that must be addressed. Therefore, researchers have focused on improving the security and integrity of vehicle data sharing, with a particular emphasis on V2X application layer security and privacy requirements. This is crucial given that V2X networks can consist of vehicles manufactured by different companies and registered in various jurisdictions, which may only be within communication range for a few seconds. Thus, it is necessary to establish a trusting relationship between vehicles quickly. The article proposes a threshold cryptography-based key exchange protocol that meets the key requirements for V2X data sharing and privacy, including the rapid establishment of trust, the maintenance of vehicle anonymity, and the provision of secure messages. To evaluate the feasibility and performance of the proposed protocol, a tailored testbed that leverages the NS-3 network simulator, a commercial 5G network, and public cloud infrastructure is used. Overall, the proposed protocol provides a potential solution for addressing security and privacy concerns in V2X networks, which is essential for successfully implementing and adopting this technology. Full article
(This article belongs to the Special Issue Security for Vehicular Ad Hoc Networks)
Show Figures

Figure 1

18 pages, 1449 KiB  
Article
Dynamic Beacon Distribution Mechanism for Internet of Vehicles: An Analytical Study
by Lakhdar Kamel Ouladdjedid and Bouziane Brik
Electronics 2023, 12(4), 818; https://doi.org/10.3390/electronics12040818 - 6 Feb 2023
Cited by 3 | Viewed by 2052
Abstract
In the last decade, with the arrival of the 5G communication technology and the increasing numbers of vehicles being connected to the internet, conventional vehicle ad-hoc networks (VANETs) are evolving towards the internet of vehicles (IoV), which makes the co-existence of IEEE 802.11p [...] Read more.
In the last decade, with the arrival of the 5G communication technology and the increasing numbers of vehicles being connected to the internet, conventional vehicle ad-hoc networks (VANETs) are evolving towards the internet of vehicles (IoV), which makes the co-existence of IEEE 802.11p and 5G-based technologies very important for the design of a heterogeneous IoV system that takes advantage of both. The IEEE 802.11p standard is still the best candidate to support direct communications for safety critical services. In fact, both the ETSI ITS-G5 and the IEEE 1609 standard families adopt the IEEE 802.11p standard as a medium access control (MAC) mechanism, and they require vehicles to exchange periodic awareness messages to avoid dangerous situations. When the density of vehicles increases, the MAC layer will suffer from radio channel congestion problems, and this may affect the various VANET applications, especially safety applications. Therefore, the decentralized congestion control (DCC) mechanism has been specified by ETSI to mitigate the channel congestion; this was achieved by adapting the transmission parameters, such as the transmit power and data-rate. However, many research studies have demonstrated limitations and a low performance of DCC, especially when the channel load is extremely high. To deal with this, in this paper, we investigate a new promising technique, called the transmission timing control (TTC), to control the channel load for periodic cooperative awareness. It consists of spreading the transmissions over time in order to avoid contention on the transmission channel. The objective of the paper is to propose an analytical study to calculate the probability of successful transmission using TTC. The demonstrated results show the efficiency of our timing control-enabled scheme to deal with the channel load on top of different conditions. Full article
(This article belongs to the Special Issue V2X Communications and Applications for NET-2030)
Show Figures

Figure 1

Back to TopTop