Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,305)

Search Parameters:
Keywords = 3D printing filament

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 25531 KB  
Article
Effect of Processing Parameters on the Mechanical Behavior of 3D-Printed Basalt Moon Dust Reinforced Polylactic Acid Composites
by Lucian Alexander-Roy, Meelad Ranaiefar, Mrityunjay Singh and Michael Halbig
Polymers 2025, 17(19), 2685; https://doi.org/10.3390/polym17192685 - 4 Oct 2025
Abstract
Advanced composite materials and manufacturing technologies are critical to sustain human presence in space. Mechanical testing and analysis are needed to elucidate the effect of processing parameters on composites’ material properties. In this study, test specimens are 3D printed via a fused-filament fabrication [...] Read more.
Advanced composite materials and manufacturing technologies are critical to sustain human presence in space. Mechanical testing and analysis are needed to elucidate the effect of processing parameters on composites’ material properties. In this study, test specimens are 3D printed via a fused-filament fabrication (FFF) approach from a basalt moon dust-polylactic acid (BMD-PLA) composite filament and from pure PLA filament. Compression and tensile testing were conducted to determine the yield strength, ultimate strength, and Young’s modulus of specimens fabricated under several processing conditions. The maximum compressive yield strength for the BMD-reinforced samples is 27.68 MPa with print parameters of 100% infill, one shell, and 90° print orientation. The maximum compressive yield strength for the PLA samples is 63.05 MPa with print parameters of 100% infill, three shells, and 0° print orientation. The composite samples exhibit an increase in strength when layer lines are aligned with loading axis, whereas the PLA samples decreased in strength. This indicates a fundamental difference in how the composite behaves in comparison to the pure matrix material. In tension, test specimens have unpredictable failure modes and often broke outside the gauge length. A portion of the tension test data is included to help guide future work. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 12618 KB  
Article
Characterization of 3D-Printed Glass Fiber-Filled and Calcium Carbonate-Filled Polypropylene Components for Surgical Planning
by Núria Adell-Gómez, Irene Buj-Corral, Miquel Domingo-Espin, Jordi Llumà, J. Antonio Travieso-Rodríguez, Josep Rubio-Palau, César García-Fontecha, Alejandro Domínguez-Fernández and Arnau Valls-Esteve
Polymers 2025, 17(19), 2684; https://doi.org/10.3390/polym17192684 - 4 Oct 2025
Abstract
The purpose of this study is to characterize two different 3D-printed materials, glass fiber-filled polypropylene (GF-PP) and calcium carbonate-filled polypropylene (CaCO3-PP), which make it possible to obtain surgical bone models at a reasonable cost. The methodology involved selecting two filaments, among [...] Read more.
The purpose of this study is to characterize two different 3D-printed materials, glass fiber-filled polypropylene (GF-PP) and calcium carbonate-filled polypropylene (CaCO3-PP), which make it possible to obtain surgical bone models at a reasonable cost. The methodology involved selecting two filaments, among six, which showed better processability in the fused filament fabrication (FFF) process. Then, samples of the two selected materials were 3D printed, followed by characterization in terms of dimensional error, porosity, surface roughness, and mechanical strength. The results showed that both materials can be sterilized, with an increase in dimensional error and porosity after sterilization and slight changes in roughness and tensile strength. Additionally, anatomical models of mandible and femur bones were clinically validated by surgeons. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites, 5th Edition)
Show Figures

Figure 1

25 pages, 4969 KB  
Article
Sustainable Approaches for Carbon Powder-Filled ABS: A Comparative Study of Injection Moulding and Fused Filament Fabrication Technologies
by Vojtech Senkerik, Ales Mizera, Pavel Stoklasek, Lucie Svacinova, Lovre Krstulovic-Opara, Michaela Karhankova, Lukas Miskarik, Petra Bagavac and Miroslav Manas
Polymers 2025, 17(19), 2593; https://doi.org/10.3390/polym17192593 - 25 Sep 2025
Abstract
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based [...] Read more.
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based experiments were conducted using ABS reinforced with 0.5, 1.0, and 1.5 wt.% CP to explore the tensile properties of mechanically recycled ABS+CP composites. The results indicate that CP addition positively influences tensile behaviour and that the ABS+CP composite maintains both tensile strength and stiffness after repeated processing. A concentration of 1.5 wt.% CP proved to be the optimal filler amount. The results for re-injection-moulded ABS + 1.5 wt.% CP demonstrate enhancements in tensile strength of approximately 3% and elastic modulus of approximately 15%, relative to virgin ABS. Similarly, such specimens reprocessed via FFF showed an average increase of 12% in tensile strength and of 27% in elastic modulus relative to virgin ABS across all three printing orientations (X, Y, and Z). These findings suggest improved interfacial adhesion and filler dispersion upon recycling. The study confirms the practical feasibility of ABS composite recycling and highlights their potential for structural and decorative use due to their appealing granite-like appearance. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 182
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

22 pages, 10034 KB  
Article
Three-Dimensionally Printed Microstructured Hydrophobic Surfaces: Morphology and Wettability
by Loredana Tammaro, Sergio Galvagno, Giuseppe Pandolfi, Fausta Loffredo, Fulvia Villani, Anna De Girolamo Del Mauro, Pierpaolo Iovane, Sabrina Portofino, Paolo Tassini and Carmela Borriello
Polymers 2025, 17(19), 2570; https://doi.org/10.3390/polym17192570 - 23 Sep 2025
Viewed by 189
Abstract
This work presents the design and fabrication of microstructured hydrophobic surfaces via fused filament fabrication (FFF) 3D printing with polylactic acid (PLA). Three geometric patterns—triangular-based prisms (TG), truncated pyramids (TP), and truncated ellipsoidal cones (CET)—were developed to modify the surface wettability. Morphological analysis [...] Read more.
This work presents the design and fabrication of microstructured hydrophobic surfaces via fused filament fabrication (FFF) 3D printing with polylactic acid (PLA). Three geometric patterns—triangular-based prisms (TG), truncated pyramids (TP), and truncated ellipsoidal cones (CET)—were developed to modify the surface wettability. Morphological analysis revealed that the printer resolution limits the accurate reproduction of sharp CAD-defined features. Despite this, TG structures exhibited superhydrophobic behavior evaluated through static water contact angles (WCAs), reaching up to 164° along the structured direction and so representing a 100% increase relative to flat PLA surfaces (WCA = 82°). To improve print fidelity, TP and CET geometries with enlarged features were introduced, resulting in contact angles up to 128°, corresponding to a 56% increase in hydrophobicity. The truncated shapes enable the fabrication of the smallest features achievable via the FFF technique, while maintaining good resolution and obtaining higher contact angles. In addition, surface functionalization with fluoropolymer-coated SiO2 nanoparticles, confirmed by SEM and Raman spectroscopy, led to a further slight enhancement in wettability up to 18% on the structured surfaces. These findings highlight the potential of FFF-based microstructuring, combined with surface treatments, for tailoring the wetting properties of 3D-printed polymeric parts with promising applications in self-cleaning, de-icing, and anti-wetting surfaces. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Graphical abstract

23 pages, 5573 KB  
Article
Valorization of Tomato Stem Waste: Biochar as a Filler in Three-Dimensional Printed PLA Composites
by Dimitrios Gkiliopoulos, Sotirios Pemas, Stylianos Torofias, Konstantinos Triantafyllidis, Dimitrios N. Bikiaris, Zoi Terzopoulou and Eleftheria Maria Pechlivani
Polymers 2025, 17(19), 2565; https://doi.org/10.3390/polym17192565 - 23 Sep 2025
Viewed by 212
Abstract
This study explores the valorization of tomato stem waste by converting it into biochar through slow pyrolysis and incorporating it into poly(lactic acid) (PLA) composites for fused filament fabrication (FFF) 3D printing. The objective was to improve the valorization and added value of [...] Read more.
This study explores the valorization of tomato stem waste by converting it into biochar through slow pyrolysis and incorporating it into poly(lactic acid) (PLA) composites for fused filament fabrication (FFF) 3D printing. The objective was to improve the valorization and added value of tomato stem waste. Biochar derived from tomato stems was characterized for its physicochemical properties, revealing a high surface area and small particle size. PLA-based composite filaments with 5% and 7.5% biochar were manufactured via melt extrusion. The effects of biochar concentration and printing infill patterns (concentric and rectilinear) on the mechanical and thermomechanical properties of the 3D-printed composites were investigated. Results indicated that biochar slightly increased the glass transition temperature of PLA and improved the flexural properties. Dynamic mechanical analysis (DMA) showed that the storage modulus was enhanced in the glassy region for composites with 5% biochar, suggesting improved stiffness. This research demonstrates the potential of using tomato stem-derived biochar as a sustainable filler in PLA composites, contributing to the circular economy and reducing environmental impact. Full article
Show Figures

Graphical abstract

19 pages, 3628 KB  
Article
Additive Manufacturing of Bio-Based PA11 Composites with Recycled Short Carbon Fibers: Stiffness–Strength Characterization
by Christian Brauner, Thierry Bourquin, Julian Kupski, Lucian Zweifel, Mohammad Hajikazemi, Chester Houwink and Martin Eichenhofer
Polymers 2025, 17(18), 2549; https://doi.org/10.3390/polym17182549 - 20 Sep 2025
Viewed by 257
Abstract
Short carbon fiber-reinforced bio-based polyamide 11 (PA11) composites were developed in filament form for Additive Fusion Technology (AFT) 3D printing and benchmarked against injection-molded samples. Composites containing 15 and 25 weight percent (wt%) recycled carbon fibers (rCFs) were successfully extruded into 1.75 mm [...] Read more.
Short carbon fiber-reinforced bio-based polyamide 11 (PA11) composites were developed in filament form for Additive Fusion Technology (AFT) 3D printing and benchmarked against injection-molded samples. Composites containing 15 and 25 weight percent (wt%) recycled carbon fibers (rCFs) were successfully extruded into 1.75 mm diameter filaments, whereas higher fiber contents (35 wt%) led to brittle filament failure. AFT printing with subsequent consolidation produced short fiber composites with highly aligned fibers, while injection molding generated more randomly oriented microstructures. Mechanical testing revealed that AFT-printed composites in the fiber direction achieved significantly higher stiffness and comparable tensile strength to injection-molded counterparts. At 25 wt% fiber content, AFT 0° specimens reached an axial tensile modulus of 14.5 GPa, about 32% higher than injection-molded samples (11.0 GPa), with similar axial tensile strength (~123 vs. 126 MPa). However, AFT specimens displayed pronounced anisotropy: transverse (90°) properties dropped to ~2.3 GPa for transverse modulus and ~46–50 MPa transverse tensile strength, near matrix-dominated levels. Impact testing showed orientation-dependent toughness, with AFT 90° samples at 15% fiber content achieving the highest impact energy (76 kJ·m−2), while AFT 0° samples were ~30% lower than injection-molded equivalents. Dynamic mechanical analysis confirmed that AFT 0° composites maintained higher stiffness up to ~80 °C. Overall, these results demonstrate that aligned short fiber filaments enable high stiffness and strength performance comparable to injection molding, with the trade-off of anisotropy that must be carefully considered in design. This study is the first to demonstrate the feasibility of combining bio-based PA11 with recycled short carbon fibers in AFT printing, thereby extending additive manufacturing to sustainable and high-stiffness short fiber composites. Full article
(This article belongs to the Special Issue Development in Fiber-Reinforced Polymer Composites: 2nd Edition)
Show Figures

Graphical abstract

18 pages, 5076 KB  
Article
3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System
by Yu Long, Zhongsen Zhang, Zhixiong Bi, Kunkun Fu and Yan Li
Polymers 2025, 17(18), 2515; https://doi.org/10.3390/polym17182515 - 17 Sep 2025
Viewed by 339
Abstract
Compared with traditional continuous plant fiber-reinforced thermoplastic composites, their 3D-printed counterparts offer distinct advantages in the rapid fabrication of complex geometries with integrated forming capabilities. However, the impregnation process of continuous plant fiber yarn with thermoplastic resin presents greater technical challenges compared to [...] Read more.
Compared with traditional continuous plant fiber-reinforced thermoplastic composites, their 3D-printed counterparts offer distinct advantages in the rapid fabrication of complex geometries with integrated forming capabilities. However, the impregnation process of continuous plant fiber yarn with thermoplastic resin presents greater technical challenges compared to conventional synthetic fibers (e.g., carbon or glass fibers) typically employed in continuous fiber composites, owing to the yarn’s unique twisted structure. In addition, low molding pressure during 3D printing makes resin impregnation more difficult. To address the impregnation difficulty within plant fiber yarn during 3D printing, we employed two low-viscosity resins, liquid thermoplastic resin (specifically, reactive methyl methacrylate) and thermosetting epoxy resin, to pre-impregnate flax yarns, respectively. A dual-resin prepreg filament is developed for 3D printing of flax fiber-reinforced composites, involving re-coating pre-impregnated flax yarns with polylactic acid. The experimental results indicate that liquid thermoplastic resin-impregnated composites exhibit enhanced mechanical properties, surpassing the epoxy system by 39% in tensile strength and 29% in modulus, attributed to improved impregnation and better interfacial compatibility. This preparation method demonstrates the feasibility of utilizing liquid thermoplastic resin in 3D-printed continuous plant fiber composites, offering a novel approach for producing highly impregnated continuous fiber filaments. Full article
(This article belongs to the Special Issue Design and Manufacture of Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

24 pages, 3974 KB  
Article
Formulation and Structural Optimisation of PVA-Fibre Biopolymer Composites for 3D Printing in Drug Delivery Applications
by Pattaraporn Panraksa, Pensak Jantrawut, Xin Yi Teoh, Krit Sengtakdaed, Ploynapat Pornngam, Tanpong Chaiwarit, Takron Chantadee, Kittisak Jantanasakulwong, Suruk Udomsom and Bin Zhang
Polymers 2025, 17(18), 2502; https://doi.org/10.3390/polym17182502 - 16 Sep 2025
Viewed by 915
Abstract
Additive manufacturing using fused deposition modelling (FDM) is increasingly explored for personalised drug delivery, but the lack of suitable biodegradable and printable filaments limits its pharmaceutical application. In this study, we investigated the influence of formulation and structural design on the performance of [...] Read more.
Additive manufacturing using fused deposition modelling (FDM) is increasingly explored for personalised drug delivery, but the lack of suitable biodegradable and printable filaments limits its pharmaceutical application. In this study, we investigated the influence of formulation and structural design on the performance of polyvinyl alcohol (PVA)-based filaments doped with theophylline anhydrous for 3D printing. To address the intrinsic brittleness and poor printability of PVA, cassava pulp-derived fibres—a sustainable and underutilised agricultural by-product—were incorporated together with polyethylene glycol (PEG 400), Eudragit® NE 30 D, and calcium stearate. The addition of fibres modified the mechanical properties of PVA filaments through hydrogen bonding, improving flexibility but increasing surface roughness. This drawback was mitigated by Eudragit® NE 30 D, which enhanced surface smoothness and drug distribution uniformity. The optimised composite formulation (P10F5E5T5) was successfully extruded and used to fabricate 3D-printed constructs. Release studies demonstrated that drug release could be modulated by pore geometry and construct thickness: wider pores enabled rapid Fickian diffusion, while narrower pores and thicker constructs shifted release kinetics toward anomalous transport governed by polymer swelling. These findings demonstrate, for the first time, the potential of cassava fibre as a functional additive in pharmaceutical FDM and provide a rational formulation–structure–performance framework for developing sustainable, geometry-tuneable drug delivery systems. Full article
(This article belongs to the Special Issue Progress in 3D Printing of Polymeric Materials)
Show Figures

Graphical abstract

26 pages, 3077 KB  
Review
A Point-Line-Area Paradigm: 3D Printing for Next-Generation Health Monitoring Sensors
by Mei Ming, Xiaohong Yin, Yinchen Luo, Bin Zhang and Qian Xue
Sensors 2025, 25(18), 5777; https://doi.org/10.3390/s25185777 - 16 Sep 2025
Viewed by 302
Abstract
Three-dimensional printing technology is fundamentally reshaping the design and fabrication of health monitoring sensors. While it holds great promise for achieving miniaturization, multi-material integration, and personalized customization, the lack of a clear selection framework hinders the optimal matching of printing technologies to specific [...] Read more.
Three-dimensional printing technology is fundamentally reshaping the design and fabrication of health monitoring sensors. While it holds great promise for achieving miniaturization, multi-material integration, and personalized customization, the lack of a clear selection framework hinders the optimal matching of printing technologies to specific sensor requirements. This review presents a classification framework based on existing standards and specifically designed to address sensor-related requirements, categorizing 3D printing technologies into point-based, line-based, and area-based modalities according to their fundamental fabrication unit. This framework directly bridges the capabilities of each modality, such as nanoscale resolution, multi-material versatility, and high-throughput production, with the critical demands of modern health monitoring sensors. We systematically demonstrate how this approach guides technology selection: Point-based methods (e.g., stereolithography, inkjet) enable micron-scale features for ultra-sensitive detection; line-based techniques (e.g., Direct Ink Writing, Fused Filament Fabrication) excel in multi-material integration for creating complex functional devices such as sweat-sensing patches; and area-based approaches (e.g., Digital Light Processing) facilitate rapid production of sensor arrays and intricate structures for applications like continuous glucose monitoring. The point–line–area paradigm offers a powerful heuristic for designing and manufacturing next-generation health monitoring sensors. We also discuss strategies to overcome existing challenges, including material biocompatibility and cross-scale manufacturing, through the integration of AI-driven design and stimuli-responsive materials. This framework not only clarifies the current research landscape but also accelerates the development of intelligent, personalized, and sustainable health monitoring systems. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 4948 KB  
Article
Investigation of an Innovative Blade with an Internal Channel and Tangential Slots for Enhanced Thrust Generation Using the Coanda Effect
by Fanel Dorel Scheaua, Almat Mukhamedrahim Ramazanuly and Ionut Cristian Scurtu
Appl. Sci. 2025, 15(18), 10117; https://doi.org/10.3390/app151810117 - 16 Sep 2025
Viewed by 341
Abstract
This study presents the design, numerical analysis, and experimental validation of an innovative wind turbine blade incorporating an internal flow channel and tangential slots to harness the Coanda effect for enhanced aerodynamic performance. The primary objective is to improve thrust generation and lift [...] Read more.
This study presents the design, numerical analysis, and experimental validation of an innovative wind turbine blade incorporating an internal flow channel and tangential slots to harness the Coanda effect for enhanced aerodynamic performance. The primary objective is to improve thrust generation and lift while reducing drag, thereby increasing the efficiency of wind turbines and potential aerial propulsion systems. A three-dimensional blade model was developed in COMPAS-3D and fabricated using PET-G filament through 3D printing, enabling precise realization of the internal geometry. Computational fluid dynamics (CFD) simulations, conducted in ANSYS Fluent using a refined mesh and the k—ω SST turbulence model, revealed that the proposed blade design significantly improves pressure distribution and airflow attachment along the blade surface. Compared to a conventional blade under identical wind conditions (12 m/s), the innovative blade achieved a 12% increase in power coefficient, lift force of 33 N and drag force of 60 N, validating the efficacy of the Coanda-based flow control. Wind tunnel experiments confirmed the numerical predictions, with close agreement in thrust and lift measurements. The blade demonstrated consistent performance across varying wind velocities, highlighting its applicability in renewable energy systems and passive flow control for aerial platforms. The findings establish a practical, scalable approach to aerodynamic optimization using structural enhancements, contributing to the development of next-generation wind energy technologies and efficient propulsion systems. Full article
Show Figures

Figure 1

19 pages, 4844 KB  
Article
Electrochemical Oxidation Degradation of Methylene Blue Dye on 3D-Printed Anode Electrodes
by Claudia Cirillo, Mariagrazia Iuliano, Muhammad Shahzad, Emanuela Grazia Di Martino, Luca Gallucci, Nicola Funicello, Gerardo Iannone, Salvatore De Pasquale and Maria Sarno
Polymers 2025, 17(18), 2499; https://doi.org/10.3390/polym17182499 - 16 Sep 2025
Viewed by 298
Abstract
This study presents an innovative strategy for the electrochemical degradation of methylene blue (MB) using 3D-printed helical anode electrodes fabricated from commercially available conductive Polylactic acid/carbon black (PLA/CB) filaments. The choice of PLA/CB is particularly significant, since the amorphous PLA matrix combined with [...] Read more.
This study presents an innovative strategy for the electrochemical degradation of methylene blue (MB) using 3D-printed helical anode electrodes fabricated from commercially available conductive Polylactic acid/carbon black (PLA/CB) filaments. The choice of PLA/CB is particularly significant, since the amorphous PLA matrix combined with a percolating carbon black network provides a biodegradable, low-cost, and chemically versatile polymer composite that can be transformed from a simple prototyping filament into a functional electrochemical platform. Through a combination of chemical/electrochemical activation and electrodeposition of copper nanoparticles (Cu NPs), the polymer electrodes were successfully converted into highly efficient catalytic platforms. Beyond material functionalization, the influence of electrode geometry was systematically investigated, comparing single-, double-, and triple-spiral helical configurations. The double-spiral geometry proved the most effective, offering the best balance between active surface area and electrolyte flow dynamics. Under mild conditions (2 V, pH 6, 0.1 M NaCl), the system achieved up to 97% MB removal, while also demonstrating remarkable stability and reusability over at least ten consecutive cycles. These results highlight the synergistic role of polymer chemistry, arrangement, and metal decoration, demonstrating how 3D printing can be a useful platform for the easy production of electrodes with different geometries, even starting from simple conductive filaments reused in sustainable and scalable functional materials for advanced wastewater treatment. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Graphical abstract

23 pages, 5140 KB  
Article
Biomimetic Functional Fluorinated Oxygen-Containing Coatings on 3D-Printing Composite Polymer Items
by Georgy Rytikov, Fedor Doronin, Andrey Evdokimov, Mikhail Savel’ev, Yuriy Rudyak and Victor Nazarov
Polymers 2025, 17(18), 2490; https://doi.org/10.3390/polym17182490 - 15 Sep 2025
Viewed by 396
Abstract
We manufactured the 3D-printed prototypes with increased wear resistance using a combination of the following: biomimetic design (the shark skin was used as a natural object to follow), 3D-printing technological parameter regulation, rational choice of polymer matrix, dispersed filling ingredients and items’ surface [...] Read more.
We manufactured the 3D-printed prototypes with increased wear resistance using a combination of the following: biomimetic design (the shark skin was used as a natural object to follow), 3D-printing technological parameter regulation, rational choice of polymer matrix, dispersed filling ingredients and items’ surface gas-phase modification technique. It was established that the bulk modification of the PETG filament with montmorillonite, graphite nano-plates, and other ingredients can reduce the 3D-printed prototypes’ wear by up to eight times. The gas-phase fluorination of the product’s surface provides a decrease in the rest friction coefficient and temperature in the “indentor-3D-printed disk” contact pair. We obtained the texture models and quantified the degree of similarity between the shark skin and the 3D-printed prototypes’ surfaces. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

33 pages, 2741 KB  
Review
Lignocellulosic Agro-Forest Byproducts as Feedstock for Fused Deposition Modeling 3D Printing Filaments: A Review
by Nanci Ehman, Agustina Ponce de León, Israel N. Quintero Torres, María E. Vallejos and M. Cristina Area
Fibers 2025, 13(9), 124; https://doi.org/10.3390/fib13090124 - 11 Sep 2025
Viewed by 496
Abstract
Three-dimensional (3D) printing based on polymers reinforced with lignocellulosic components is an accessible and sustainable technology. Cellulose-based byproducts from industry, as well as crops, food, and forestry wastes, represent potential resources for additive manufacturing and have been evaluated in recent years, primarily in [...] Read more.
Three-dimensional (3D) printing based on polymers reinforced with lignocellulosic components is an accessible and sustainable technology. Cellulose-based byproducts from industry, as well as crops, food, and forestry wastes, represent potential resources for additive manufacturing and have been evaluated in recent years, primarily in combination with polymers such as PLA or ABS. During fused deposition modeling (FDM), several parameters must be considered during raw material conditioning, blending, extrusion, and 3D printing. It is essential to understand how these parameters influence the final properties and their impact on the final application. This review focuses on the latest studies of lignocellulosic byproducts for 3D printing filaments and how the parameters involved during filament production and 3D printing influence the properties of the final product. Recent studies concerning applications, technical issues, and environmental and regulatory aspects were also analyzed. Full article
Show Figures

Graphical abstract

16 pages, 1532 KB  
Article
Comparative Analysis of the Mechanical Properties of Eleven 3D Printing Filaments Under Different Printing Parameters
by Marta Mencarelli, Luca Puggelli, Bernardo Innocenti and Yary Volpe
Appl. Mech. 2025, 6(3), 70; https://doi.org/10.3390/applmech6030070 - 11 Sep 2025
Viewed by 373
Abstract
This study examines the influence of printing parameters and filament composition on the mechanical properties of 3D printed parts, building upon prior research in fused deposition modeling. Two combinations of printing parameters, 75% infill, 0° orientation, four outer shells, with either gyroid and [...] Read more.
This study examines the influence of printing parameters and filament composition on the mechanical properties of 3D printed parts, building upon prior research in fused deposition modeling. Two combinations of printing parameters, 75% infill, 0° orientation, four outer shells, with either gyroid and 3D Honeycomb infill patterns—were analyzed across eleven materials, including acrylonitrile butadiene styrene, polylactic acid, polylactic acid-based composites, polyethylene terephthalate glycol, and high-impact polystyrene. Tensile, compression, and bending tests were performed on the printed specimens to determine stiffness and elastic modulus. Each material demonstrated different levels of variability and sensitivity to printing parameters under the various loading conditions, emphasizing that no single configuration is optimal across all scenarios. For example, the gyroid pattern led to increases up to ~35% in bending modules for common thermoplastic filaments and ~30% for stone-filled polymers, while in tensile stiffness, variations between infill patterns remained below 5% for other conventional polymers. These findings underline the load-specific nature of optimal parameter combinations and the influence of material-specific characteristics, such as filler content or microstructural homogeneity. This study provides quantitative insights that can support application-driven parameter selection in additive manufacturing, offering a comparative dataset across widely used and emerging filaments. Full article
Show Figures

Figure 1

Back to TopTop