3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Impregnation of Flax Yarns
2.3. Preparation of Dual-Resin Prepreg Filaments
2.4. Three-Dimensional Printing of CFRCs
2.5. Rheological Property
2.6. Differential Scanning Calorimetry (DSC)
2.7. Dynamic Mechanical Analysis (DMA)
2.8. Micro-Morphology Characterization
2.9. Fiber Volume Fraction and Void Content
2.10. Mechanical Properties
3. Results and Discussion
3.1. Rheological Properties of Elium and Epoxy Resins
3.2. Thermal Properties of Elium and Epoxy
3.3. Thermo-Mechanical and Tensile Properties of Pre-Impregnated Flax Filaments
3.4. Micro-Morphology Analysis for Filaments
3.4.1. Pre-Impregnated Flax Filaments
3.4.2. Dual-Resin Prepreg Filaments
3.5. Fiber Volume Fraction and Void Content of 3D-Printed Composites
3.6. Tensile and Flexural Properties of 3D-Printed Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFRCs | Continuous fiber-reinforced composites |
PLA | Polylactic acid |
HZ | Heating zone |
TC | Temperature controller |
El-FY | Elium-impregnated flax yarn |
Ep-FY | Epoxy-impregnated flax yarns |
PLA-El-FY | PLA-coated El-FY |
PLA-Ep-FY | PLA-coated El-FY |
PElFCs | Composite samples printed using PLA-El-FY |
PEpFCs | Composite samples printed using PLA-Ep-FY |
DSC | Differential Scanning Calorimetry |
DMA | Dynamic mechanical analysis |
SEM | Scanning electron microscopy |
References
- Obande, W.; Brádaigh, C.M.Ó.; Ray, D. Continuous fibre-reinforced thermoplastic acrylic-matrix composites prepared by liquid resin infusion—A review. Compos. Part B-Eng. 2021, 215, 108771. [Google Scholar] [CrossRef]
- Das, S.; Yokozeki, T. A brief review of modified conductive carbon/glass fibre reinforced composites for structural applications: Lightning strike protection, electromagnetic shielding, and strain sensing. Compos. Part C-Open. 2021, 5, 100162. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, W.; Li, B.; Zhu, J.; Wang, C.; Song, G.; Wu, G.; Yang, X.; Huang, Y.; Ma, L. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review. Compos. Part B-Eng. 2022, 233, 109639. [Google Scholar] [CrossRef]
- Obande, W.; Mamalis, D.; Ray, D.; Yang, L.; Bradaigh, C.M.O. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic- and thermoset-based composites. Mater. Des. 2019, 175, 107828. [Google Scholar] [CrossRef]
- Awais, H.; Nawab, Y.; Amjad, A.; Anjang, A.; Md Akil, H.; Zainol Abidin, M.S. Environmental benign natural fibre reinforced thermoplastic composites: A review. Compos. Part C-Open. 2021, 4, 100082. [Google Scholar] [CrossRef]
- Pegoretti, A. Towards sustainable structural composites: A review on the recycling of continuous-fiber-reinforced thermoplastics. Adv. Ind. Eng. Poly. Res. 2021, 4, 105–115. [Google Scholar] [CrossRef]
- Hu, H.; Li, J.; Tian, Y.; Luo, S.; Wang, J.; Ying, W.B.; Li, F.; Chen, C.; Zhao, Y.-L.; Zhang, R.; et al. Design of High-Barrier and Environmentally Degradable FDCA-Based Copolyesters: Experimental and Theoretical Investigation. ACS Sustain. Chem. Eng. 2021, 9, 13021–13032. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Yin, Y.; Xu, J.; Jiang, Y.; Du, W. The technology and current applications of continuous fiber-reinforced thermoplastic composites. Polym. Compos. 2024, 45, 13480–13498. [Google Scholar] [CrossRef]
- Georgiopoulos, P.; Kontou, E.; Georgousis, G. Effect of silane treatment loading on the flexural properties of PLA/flax unidirectional composites. Compos. Commun. 2018, 10, 6–10. [Google Scholar] [CrossRef]
- Tao, Y.; Li, P.; Zhang, J.; Wang, S.; Shi, S.Q.; Kong, F. A review of fused filament fabrication of continuous natural fiber reinforced thermoplastic composites: Techniques and materials. Polym. Compos. 2023, 44, 8200–8222. [Google Scholar] [CrossRef]
- Chen, J.P.; Fu, K.K.; Li, Y. Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP). Compos. Part A Appl. Sci. Manuf. 2021, 140, 106160. [Google Scholar] [CrossRef]
- Shen, G.; Hu, J.; Chen, C.; Li, M.; Wang, X.; Ying, Z.; Chen, Z.; Yang, J.; Huang, Z.; Zhang, Y.; et al. In-situ crystallization process monitoring of thermoplastic composites by dielectric sensing during laser-assisted automated fiber placement. J. Manuf. Process. 2024, 124, 479–488. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, F.; Wang, J.; Wang, B.; Duan, Y.; Liang, J. Improving bending and interlayer properties of hybrid-fiber-reinforced composites through functionally graded hybrid strategy by 3D-printing manufacturing process. J. Manuf. Process. 2024, 127, 724–735. [Google Scholar] [CrossRef]
- Caminero, M.A.; Chacon, J.M.; Garcia-Moreno, I.; Rodriguez, G.P. Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos. Part B-Eng. 2018, 148, 93–103. [Google Scholar] [CrossRef]
- Chabaud, G.; Castro, M.; Denoual, C.; Le Duigou, A. Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Addit. Manuf. 2019, 26, 94–105. [Google Scholar] [CrossRef]
- Azarov, A.V.; Antonov, F.K.; Vasil’ev, V.V.; Golubev, M.V.; Krasovskii, D.S.; Razin, A.F.; Salov, V.A.; Stupnikov, V.V.; Khaziev, A.R. Development of a two-matrix composite material fabricated by 3D printing. Polym. Sci. Ser. D 2017, 10, 87–90. [Google Scholar] [CrossRef]
- Azarov, A.V.; Antonov, F.K.; Golubev, M.V.; Khaziev, A.R.; Ushanov, S.A. Composite 3D printing for the small size unmanned aerial vehicle structure. Compos. Part B-Eng. 2019, 169, 157–163. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.-K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 20358. [Google Scholar] [CrossRef]
- Yusoff, R.B.; Takagi, H.; Nakagaito, A.N. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind. Crops. Prod. 2016, 94, 562–573. [Google Scholar] [CrossRef]
- Elium® Thermoplastic Resin for Recyclable Composites. Available online: https://www.arkema.com/global/en/products/product-finder/product-range/incubator/elium_resins/ (accessed on 21 July 2025).
- Bandaru, A.K.; Pichandi, S.; Ma, H.; Panchal, M.; Gujjala, R. Effect of microcrystalline cellulose on the mechanical properties of flax reinforced methylmethacrylate and urethane acrylate composites. J. Mater. Sci. 2024, 59, 2872–2892. [Google Scholar] [CrossRef]
- Cousins, D.S.; Suzuki, Y.; Murray, R.E.; Samaniuk, J.R.; Stebner, A.P. Recycling glass fiber thermoplastic composites from wind turbine blades. J. Clean. Prod. 2019, 209, 1252–1263. [Google Scholar] [CrossRef]
- Gobikannan, T.; Portela, A.; Haldar, A.K.; Nash, N.H.; Bachour, C.; Manolakis, I.; Comer, A.J. Flexural properties and failure mechanisms of infusible thermoplastic-and thermosetting based composite materials for marine applications. Compos. Struct. 2021, 273, 114276. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Enhanced vibration damping and dynamic mechanical characteristics of composites with novel pseudo-thermoset matrix system. Compos. Struct. 2017, 179, 502–513. [Google Scholar] [CrossRef]
- Shanmugam, L.; Kazemi, M.E.; Rao, Z.Q.; Lu, D.; Wang, X.G.; Wang, B.W.; Yang, L.; Yang, J.L. Enhanced Mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes. Compos. Part B-Eng. 2019, 178, 107450. [Google Scholar] [CrossRef]
- Han, N.; Baran, I.; Zanjani, J.S.M.; Yuksel, O.; An, L.; Akkerman, R. Experimental and computational analysis of the polymerization overheating in thick glass/Elium® acrylic thermoplastic resin composites. Compos. Part B-Eng. 2020, 202, 108430. [Google Scholar] [CrossRef]
- Khalili, P.; Blinzler, B.; Kadar, R.; Blomqvist, P.; Sandinge, A.; Bisschop, R.; Liu, X.L. Ramie fabric Elium (R) composites with flame retardant coating: Flammability, smoke, viscoelastic and mechanical properties. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105986. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Subramanyam, E.S.B.; Leong, K.F.; Gerard, P. Enhanced impact energy absorption and failure characteristics of novel fully thermoplastic and hybrid composite bicycle helmet shells. Mater. Des. 2021, 209, 110003. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Joshi, S.C.; Bert, A.; Di, B.Y.; Makam, R.; Gohel, G. Flexural characteristics of novel carbon methylmethacrylate composites. Compos. Commun. 2019, 13, 129–133. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Fai, L.K.; Barsotti, R.J. Fatigue response of ultrasonically welded carbon/Elium (R) thermoplastic composites. Mater. Lett. 2020, 264, 127362. [Google Scholar] [CrossRef]
- Chebil, M.S.; Bouaoulo, G.; Gerard, P.; El Euch, S.; Issard, H.; Richaud, E. Oxidation and unzipping in ELIUM resin: Kinetic model for mass loss. Polym. Degrad. Stab. 2021, 186, 109523. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Gohel, G.; Kantipudi, J.; Leong, K.F.; Gerard, P. Manufacturing and investigating the load, energy and failure attributes of thin ply carbon/Elium® thermoplastic hollow composites under low-velocity impact. Mater. Des. 2021, 206, 109814. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Z.; Fu, K.; Yang, Z.; Li, Y. Design and fabrication of high-performance 3D printed continuous flax fibre/PLA composites. J. Manuf. Process. 2023, 99, 351–361. [Google Scholar] [CrossRef]
- WIND ENERGY Wind Energy Application Product Selections. 2022. Available online: https://www.techstorm.com/static/20220711/76229c30-e508-431f-9990-be9630f12ed7.pdf (accessed on 21 July 2025).
- Ingeo™ Biopolymer 4032D Technical Data Sheet. Available online: https://www.natureworksllc.com/~/media/Files/NatureWorks/Technical-Documents/Technical-Data-Sheets/TechnicalDataSheet_4032D_general_pdf (accessed on 25 July 2025).
- Tábi, T.; Ageyeva, T.; Kovács, J.G. Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) products: A comprehensive review. Polym. Test. 2021, 101, 107282. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Z.; Fu, K.; Li, Y. Efficient plant fibre yarn pre-treatment for 3D printed continuous flax fibre/poly(lactic) acid composites. Compos. Part B-Eng. 2021, 227, 109389. [Google Scholar] [CrossRef]
- Moharana, A.P.; Singh, S.S.; Dixit, A.R. Dynamic mechanical and viscoelastic properties of glass fiber reinforced photopolymer composite fabricated using vat-photopolymerization additive technique: Influence of filler volume fraction. J. Manuf. Process. 2024, 130, 72–86. [Google Scholar] [CrossRef]
- Ali, U.; Abd Karim, K.J.B.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Wang, F.; Wang, G.; Ning, F.; Zhang, Z. Fiber–matrix impregnation behavior during additive manufacturing of continuous carbon fiber reinforced polylactic acid composites. Addit. Manuf. 2021, 37, 101661. [Google Scholar] [CrossRef]
- Shah, D.U. Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Compos. Part A Appl. Sci. Manuf. 2016, 83, 160–168. [Google Scholar] [CrossRef]
- ASTM D7264/D7264M-21; Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2006.
- Long, Y.; Zhang, R.Y.; Huang, J.C.; Wang, J.G.; Jiang, Y.H.; Hu, G.H.; Yang, J.; Zhu, J. Tensile property balanced and gas barrier improved poly(lactic acid) by blending with biobased poly(butylene 2,5-furan dicarboxylate). ACS Sustain. Chem. Eng. 2017, 5, 9244–9253. [Google Scholar] [CrossRef]
- Teoh, E.L.; Chow, W.S. Transparency, ultraviolet transmittance, and miscibility of poly(lactic acid)/poly(methyl methacrylate) blends. J. Elastomers Plast. 2018, 50, 596–610. [Google Scholar] [CrossRef]
Properties | Elium® C195 | TECHSTORMTM 481/486S | PLA 4032D |
---|---|---|---|
Tensile strength (MPa) | 66 | 70–80 | 53 |
Tensile modulus (GPa) | 3.2 | 3.0–3.5 | 3.5 |
Elongation at break (%) | 2.8 | 4.0–6.0 | 6.0 |
Flexural strength (MPa) | 111 | 120–130 | / |
Flexural modulus (GPa) | 2.9 | 3.0–3.5 | / |
Glass transition temperature (°C) 1 | 114 | 140 | 60 |
Reaction temperature (°C) | 80–115 | 60–105 | / |
Reaction time (min) | 2–5 | >120 | / |
Viscosity 2 (mPa·s at 25 °C) | 100 | 200–300 | / |
Pre-Impregnated Flax Yarn Filaments | |
---|---|
Nozzle size (mm) | 0.6 (diameter) × 13 (length) |
Needle size (mm) | 0.72 (diameter) × 50 (length) |
Impregnated box length (mm) | 52 |
Heating zone 1 (°C) | 80 ± 5 |
Heating zone 2 (°C) | 120 ± 5 |
Heating zone 1 Length (mm) | 600 |
Heating zone 2 Length (mm) | 500 |
Pulling speed (cm/min) | 18 |
Samples | vf (%) | Void Content (%) | Impregnation Degree (%) | Height of Flax Yarn (μm) |
---|---|---|---|---|
PElFCs | 42.3 ± 2.6 | 3.6 ± 0.9 | 38.2 ± 1.4 | 222 ± 15 |
PEpFCs | 32.4 ± 1.6 | 5.0 ± 2.0 | 32.8 ± 1.6 | 263 ± 38 |
PLAFCs | 30.9 ± 0.4 | 12.0 ± 1.0 | 19.9 ± 2.4 | 234 ± 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Long, Y.; Zhang, Z.; Bi, Z.; Fu, K.; Li, Y. 3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System. Polymers 2025, 17, 2515. https://doi.org/10.3390/polym17182515
Long Y, Zhang Z, Bi Z, Fu K, Li Y. 3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System. Polymers. 2025; 17(18):2515. https://doi.org/10.3390/polym17182515
Chicago/Turabian StyleLong, Yu, Zhongsen Zhang, Zhixiong Bi, Kunkun Fu, and Yan Li. 2025. "3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System" Polymers 17, no. 18: 2515. https://doi.org/10.3390/polym17182515
APA StyleLong, Y., Zhang, Z., Bi, Z., Fu, K., & Li, Y. (2025). 3D-Printed Continuous Flax Fiber-Reinforced Composites Based on a Dual-Resin System. Polymers, 17(18), 2515. https://doi.org/10.3390/polym17182515