Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = 3’-hydroxy-5,6,7,4’-tetramethoxyflavone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 653 KiB  
Article
Phytochemical Study of the Plant Centaurea bruguieriana (DC.) Hand.-Mazz. subsp. belangeriana (DC.) Bornm. of the Family Asteraceae
by Kyriakos Michail Dimitriadis, Olga Tsiftsoglou, Dimitra Hadjipavlou-Litina, Mohammad Arfan and Diamanto Lazari
Separations 2024, 11(11), 319; https://doi.org/10.3390/separations11110319 - 4 Nov 2024
Cited by 1 | Viewed by 1164
Abstract
The aim of this study is to isolate and identify the secondary metabolites of the aerial part of the plant Centaurea bruguieriana (DC.) Hand. -Mazz. subsp. belangeriana (DC.) Bornm. (Centaurea phyllocephala) (Asteraceae), and to study the biological activities of the extracts [...] Read more.
The aim of this study is to isolate and identify the secondary metabolites of the aerial part of the plant Centaurea bruguieriana (DC.) Hand. -Mazz. subsp. belangeriana (DC.) Bornm. (Centaurea phyllocephala) (Asteraceae), and to study the biological activities of the extracts and isolated compounds with in vitro tests. With the use of chromatography and spectroscopy we identified three elemanolides: 8α-O-(3,4-dihydroxy-2-methylenebutanoyloxy) dehydromelitensine (1), 8α-O-(3-hydroxy-4-acetoxy-2-methylene-butanoyloxy) dehydromelitensine (2) and methyl 6α,8α,15-trihydroxyelema-1,3,11(13)-trien-12-oate (3); two germacranolides: cnicin (4) and 4′-O-acetylcnicin (5); one eudesmanolide: malacitanolide (6); five flavonoids: cirsilineol (7), eupatorine (8), 5-hydroxy, 6,7,3′,4′-tetramethoxy-flavone (9), 3,4′,5,7-tetrahydroxy-6-methoxyflavone 3-O-β-D-glucopyranoside (10) and astragalin (11); and also p-OH-benzoic acid (12) and 3-hydroxy-2-methyl-butyrolactone (13). All the isolated compounds were evaluated in silico with the use of molinspiration, while the crude extract, the organic phase B and compounds 2, 4, 5 and 6 were tested as antioxidants and anti-inflammatories for the inhibition of lipid hyperoxide and the inhibition of lipoxygenase. Full article
Show Figures

Figure 1

22 pages, 8540 KiB  
Article
GBSOT4 Enhances the Resistance of Gossypium barbadense to Fusarium oxysporum f. sp. vasinfectum (FOV) by Regulating the Content of Flavonoid
by Zhanlian Su, Yang Jiao, Zhengwen Jiang, Pengfei Liu, Quanjia Chen, Yanying Qu and Xiaojuan Deng
Plants 2023, 12(20), 3529; https://doi.org/10.3390/plants12203529 - 11 Oct 2023
Cited by 4 | Viewed by 1636
Abstract
Sulfotransferases (SOTs) (EC 2.8.2.-) are sulfate regulatory proteins in a variety of organisms that have been previously shown to be involved in regulating a variety of physiological and biological processes, such as growth, development, adaptation to land, stomatal closure, drought tolerance, and response [...] Read more.
Sulfotransferases (SOTs) (EC 2.8.2.-) are sulfate regulatory proteins in a variety of organisms that have been previously shown to be involved in regulating a variety of physiological and biological processes, such as growth, development, adaptation to land, stomatal closure, drought tolerance, and response to pathogen infection. However, there is a lack of comprehensive identification and systematic analysis of SOT in cotton, especially in G. barbadense. In this study, we used bioinformatics methods to analyze the structural characteristics, phylogenetic relationships, gene structure, expression patterns, evolutionary relationships, selection pressure and stress response of SOT gene family members in G. barbadense. In this study, a total of 241 SOT genes were identified in four cotton species, among which 74 SOT gene members were found in G. barbadense. According to the phylogenetic tree, 241 SOT protein sequences were divided into five distinct subfamilies. We also mapped the physical locations of these genes on chromosomes and visualized the structural information of SOT genes in G. barbadense. We also predicted the cis-acting elements of the SOT gene in G. barbadense, and we identified the repetitive types and collinearity analysis of SOT genes in four cotton species. We calculated the Ka/Ks ratio between homologous gene pairs to elucidate the selective pressure between SOT genes. Transcriptome data were used to explore the expression patterns of SOT genes, and then qRT-PCR was used to detect the expression patterns of GBSOT4, GBSOT17 and GBSOT33 under FOV stress. WGCNA (weighted gene co-expression network analysis) showed that GB_A01G0479 (GBSOT4) belonged to the MEblue module, which may regulate the resistance mechanism of G. barbadense to FOV through plant hormones, signal transduction and glutathione metabolism. In addition, we conducted a VIGS (virus-induced gene silencing) experiment on GBSOT4, and the results showed that after FOV inoculation, the plants with a silenced target gene had more serious leaf wilting, drying and cracking than the control group, and the disease index of the plants with the silenced target gene was significantly higher than that of the control group. This suggests that GBSOT4 may be involved in protecting the production of G. barbadense from FOV infection. Subsequent metabolomics analysis showed that some flavonoid metabolites, such as Eupatorin-5-methylether (3′-hydroxy-5,6,7,4′-tetramethoxyflavone, were accumulated in cotton plants in response to FOV infection. Full article
Show Figures

Figure 1

13 pages, 4363 KiB  
Article
Methoxylated Flavonols and ent-Kaurane Diterpenes from the South African Helichrysum rutilans and Their Cosmetic Potential
by Olugbenga K. Popoola, Jeanine L. Marnewick, Emmanuel I. Iwuoha and Ahmed A. Hussein
Plants 2023, 12(15), 2870; https://doi.org/10.3390/plants12152870 - 4 Aug 2023
Cited by 4 | Viewed by 1664
Abstract
Chromatographic fractionation of a methanol extract of Helichrysum rutilans afforded seven known compounds. The isolated compounds were identified as 5,7,8-trihydroxy-3,6-dimethoxyflavone-8-O-2-methyl-2-butanoate (C-1), 5,7-dihydroxy-3,6,8-trimethoxyflavone (C-2), 5-hydroxy-3,6,7,8-tetramethoxyflavone (C-3), 5-hydroxy-3,6,7-trimethoxyflavone (C-4), ent-kaurenoic acid (C-5), [...] Read more.
Chromatographic fractionation of a methanol extract of Helichrysum rutilans afforded seven known compounds. The isolated compounds were identified as 5,7,8-trihydroxy-3,6-dimethoxyflavone-8-O-2-methyl-2-butanoate (C-1), 5,7-dihydroxy-3,6,8-trimethoxyflavone (C-2), 5-hydroxy-3,6,7,8-tetramethoxyflavone (C-3), 5-hydroxy-3,6,7-trimethoxyflavone (C-4), ent-kaurenoic acid (C-5), ent-kauran-18-al (C-6), and 15-α-hydroxy-(-)-ent-kaur-16-en-19-oic acid (C-7). Compounds C-1–C-4 demonstrated high antioxidant capacities on ORAC hydroxyl radical (2.114 ± 4.01; 2.413 ± 6.20; 1.924 ± 16.40; 1.917 ± 3.91) × 106; ORAC peroxyl radical (3.523 ± 3.22; 2.935 ± 0.13; 2.431 ± 8.63; 2.814 ± 5.20) × 103 µMTE/g; and FRAP (1251.45 ± 4.18; 1402.62 ± 5.77) µMAAE/g, respectively. Moderate inhibitory activities against Fe2+-induced lipid peroxidation were observed for C-1–C-4 as IC50 values of 13.123 ± 0.34, 16.421 ± 0.92, 11.64 ± 1.72, 14.90 ± 0.06 µg/mL, respectively, while their respective anti-tyrosinase activities with IC50 values of 25.735 ± 9.62, 24.062 ± 0.61, 39.03 ± 13.12, 37.67 ± 0.98 µg/mL were also observed. All compounds demonstrated TEAC values within the range of 1105–1424 µMTE/g. The result is an indication that a methanol extract of H. rutilans might possibly be a good source of natural antioxidants against ailments caused by cellular oxidative stress and as inhibitors against skin depigmentation, as well as possible raw materials needed for slowing down perishable agricultural products. This is the first report on the phytochemical and biological evaluation of H. rutilans. Full article
(This article belongs to the Special Issue Advanced Research on African Medicinal Plants)
Show Figures

Figure 1

11 pages, 1780 KiB  
Communication
Methoxyflavones from Black Ginger (Kaempferia parviflora Wall. ex Baker) and their Inhibitory Effect on Melanogenesis in B16F10 Mouse Melanoma Cells
by Chen Huo, Sullim Lee, Min Jeong Yoo, Bum Soo Lee, Yoon Seo Jang, Ho Kyong Kim, Seulah Lee, Han Yong Bae and Ki Hyun Kim
Plants 2023, 12(5), 1183; https://doi.org/10.3390/plants12051183 - 5 Mar 2023
Cited by 8 | Viewed by 4892
Abstract
Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our [...] Read more.
Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography–mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (16) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4′-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4′-trimethylkaempferol (5), and 5-hydroxy-3,7,3′,4′-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4′-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure–activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts II)
Show Figures

Figure 1

17 pages, 1748 KiB  
Article
Flavonoid Constituents and Alpha-Glucosidase Inhibition of Solanum stramonifolium Jacq. Inflorescence with In Vitro and In Silico Studies
by Sukanya Dej-adisai, Oraphan Sakulkeo, Chatchai Wattanapiromsakul and Thanet Pitakbut
Molecules 2022, 27(23), 8189; https://doi.org/10.3390/molecules27238189 - 24 Nov 2022
Cited by 10 | Viewed by 2063
Abstract
Solanum stramonifolium Jacq. (Solanaceae) is widely found in South East Asia. In Thailand, it is used as vegetable and as a component in traditional recipes. The results of an alpha-glucosidase inhibitory screening test found that the crude extract of S. stramonifolium inflorescence exhibited [...] Read more.
Solanum stramonifolium Jacq. (Solanaceae) is widely found in South East Asia. In Thailand, it is used as vegetable and as a component in traditional recipes. The results of an alpha-glucosidase inhibitory screening test found that the crude extract of S. stramonifolium inflorescence exhibited the potential effect with IC50 81.27 μg/mL. The separation was performed by the increasing solvent polarity method. The ethyl acetate, ethanol, and water extracts of S. stramonifolium inflorescence showed the synergistic effect together with acarbose standard. The phytochemical investigation of these extracts was conducted by chromatographic and spectroscopic techniques. Six flavonoid compounds, myricetin 3, 4′, 5′, 7-tetramethyl ether (1), combretol (2), kaempferol (3), kaempferol 7-O-glucopyranoside (4), 5-hydroxy 3-7-4′-5′-tetramethoxyflavone-3′-O-glucopyranoside (5), and a mixture (6) of isorhamnetin 3-O-glucopyranoside (6a) and astragalin (6b) were isolated. This discovery is the first report of flavonoid-glycoside 5. Moreover, the selected flavonoids, kaempferol and astragalin, were representatives to explore the mechanism of action. Both of them performed mixed-type inhibition. The molecular docking gave a better understanding of flavonoid compounds’ ability to inhibit the alpha-glucosidase enzyme. Full article
Show Figures

Graphical abstract

29 pages, 1613 KiB  
Article
Characterization of Constituents with Potential Anti-Inflammatory Activity in Chinese Lonicera Species by UHPLC-HRMS Based Metabolite Profiling
by Eva-Maria Pferschy-Wenzig, Sabine Ortmann, Atanas G. Atanasov, Klara Hellauer, Jürgen Hartler, Olaf Kunert, Markus Gold-Binder, Angela Ladurner, Elke H. Heiß, Simone Latkolik, Yi-Min Zhao, Pia Raab, Marlene Monschein, Nina Trummer, Bola Samuel, Sara Crockett, Jian-Hua Miao, Gerhard G. Thallinger, Valery Bochkov, Verena M. Dirsch and Rudolf Baueradd Show full author list remove Hide full author list
Metabolites 2022, 12(4), 288; https://doi.org/10.3390/metabo12040288 - 25 Mar 2022
Cited by 6 | Viewed by 3796
Abstract
This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular [...] Read more.
This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3′,4′,5′-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection. Full article
(This article belongs to the Special Issue Bioactive Metabolites from Natural Sources)
Show Figures

Graphical abstract

19 pages, 2552 KiB  
Article
Improvement of Damage in Human Dermal Fibroblasts by 3,5,7-Trimethoxyflavone from Black Ginger (Kaempferia parviflora)
by Sullim Lee, Taesu Jang, Ki Hyun Kim and Ki Sung Kang
Antioxidants 2022, 11(2), 425; https://doi.org/10.3390/antiox11020425 - 19 Feb 2022
Cited by 23 | Viewed by 5114
Abstract
Reactive oxygen species (ROS) are generated during intrinsic (chronological aging) and extrinsic (photoaging) skin aging. Therefore, antioxidants that inhibit ROS production may be involved in delaying skin aging. In this study, we investigated the potential effects of compounds isolated from black ginger, Kaempferia [...] Read more.
Reactive oxygen species (ROS) are generated during intrinsic (chronological aging) and extrinsic (photoaging) skin aging. Therefore, antioxidants that inhibit ROS production may be involved in delaying skin aging. In this study, we investigated the potential effects of compounds isolated from black ginger, Kaempferia parviflora, a traditional medicinal plant, on normal human dermal fibroblasts in the context of inflammation and oxidative stress. The isolated compounds were structurally characterized as 5-hydroxy-7-methoxyflavone (1), 3,7-dimethoxy-5-hydroxyflavone (2), 5-hydroxy-3,7,3,4-tetramethoxyflavone (3), 7,4-dimethylapigenin (4), 3,7,4-trimethylkaempferol (5), and 3,5,7-trimethoxyflavone (6), using nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography–mass spectrometry (LC/MS) analyses. These flavonoids were first evaluated for their ability to suppress extracellular matrix degradation in normal human dermal fibroblasts. Of these, 3,5,7-trimethoxyflavone (6) significantly inhibited the tumor necrosis factor (TNF)-α-induced high expression and secretion of matrix metalloproteinase (MMP)-1 by cells. We further found that 3,5,7-trimethoxyflavone suppressed the excessive increase in ROS, mitogen-activated protein kinases (MAPKs), Akt, and cyclooxygenase-2 (COX-2)and increased heme oxygenase (HO)-1 expression. The expression of pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, and IL-8, was also suppressed by 3,5,7-trimethoxyflavone (6). Taken together, our results indicate that 3,5,7-trimethoxyflavone (6) isolated from K. parviflora is a potential candidate for ameliorating skin damage. Full article
Show Figures

Figure 1

19 pages, 2772 KiB  
Article
Phytochemical Investigation and Biological Activities of Lantana rhodesiensis
by Fatimata Nea, Michel Boni Bitchi, Manon Genva, Allison Ledoux, Alembert Tiabou Tchinda, Christian Damblon, Michel Frederich, Zanahi Félix Tonzibo and Marie-Laure Fauconnier
Molecules 2021, 26(4), 846; https://doi.org/10.3390/molecules26040846 - 5 Feb 2021
Cited by 19 | Viewed by 4484
Abstract
Lantana rhodesiensis Moldenke is a plant widely used to treat diseases, such as rheumatism, diabetes, and malaria in traditional medicine. To better understand the traditional uses of this plant, a phytochemical study was undertaken, revealing a higher proportion of polyphenols, including flavonoids in [...] Read more.
Lantana rhodesiensis Moldenke is a plant widely used to treat diseases, such as rheumatism, diabetes, and malaria in traditional medicine. To better understand the traditional uses of this plant, a phytochemical study was undertaken, revealing a higher proportion of polyphenols, including flavonoids in L. rhodesiensis leaf extract and moderate proportion in stem and root extracts. The antioxidant activity of the extracts was also determined using three different assays: the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, the FRAP method (Ferric-reducing antioxidant power) and the β-carotene bleaching test. The anti-malarial activity of each extract was also evaluated using asexual erythrocyte stages of Plasmodium falciparum, chloroquine-sensitive strain 3D7. The results showed that the leaf extract exhibited higher antioxidant and anti-malarial activities in comparison with the stem and root extracts, probably due to the presence of higher quantities of polyphenols including flavonoids in the leaves. A positive linear correlation was established between the phenolic compound content (total polyphenols including flavonoids and tannins; and total flavonoids) and the antioxidant activity of all extracts. Furthermore, four flavones were isolated from leaf dichloromethane and ethyl acetate fractions: a new flavone named rhodescine (5,6,3′,5′-tetrahydroxy-7,4′-dimethoxyflavone) (1), 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2), 5-hydroxy-6,7,3′,4′-tetramethoxyflavone (3), and 5,6,3′-trihydroxy-7,4′-dimethoxyflavone (4). Their structures were elucidated by 1H, 13CNMR, COSY, HSQC, HMBC, and MS-EI spectral methods. Aside from compound 2, all other molecules were described for the first time in this plant species. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products)
Show Figures

Graphical abstract

15 pages, 2682 KiB  
Article
Nano Porous Carbon Derived from Citrus Pomace for the Separation and Purification of PMFs in Citrus Processing Wastes
by Zhenqing Li, Xin Chen, Lulu Qiu, Yu Wang and Zhiqin Zhou
Nanomaterials 2020, 10(10), 1914; https://doi.org/10.3390/nano10101914 - 25 Sep 2020
Cited by 3 | Viewed by 2626
Abstract
The by-product of citrus juice processing is a huge source of bioactive compounds, especially polymethoxyflavones (PMFs) and fibers. In this study, a method for the separation and purification of PMFs from citrus pomace was established based on citrus nanoporous carbon (CNPC) enrichment. Different [...] Read more.
The by-product of citrus juice processing is a huge source of bioactive compounds, especially polymethoxyflavones (PMFs) and fibers. In this study, a method for the separation and purification of PMFs from citrus pomace was established based on citrus nanoporous carbon (CNPC) enrichment. Different biomass porous carbons were synthesized, their adsorption/desorption characteristics were evaluated, and the CNPCs from the peel of Citrus tangerina Tanaka were found to be best for the enrichment of PMFs from the crude extracts of citrus pomace. Using this method, six PMF compounds including low-abundant PMFs in citrus fruits such as 5,6,7,4′-tetramethoxyflavone and 5-hydroxy-6,7,8,3′,4′-pentamethoxyflavone can be simultaneously obtained, and the purities of these compounds were all higher than 95%, with the highest purity of nobiletin reaching 99.96%. Therefore, CNPCs have a great potential for the separation and purification of PMFs in citrus processing wastes, potentially improving the added value of citrus wastes. We also provide a method reference for disposing of citrus pomace in the future. Full article
Show Figures

Graphical abstract

25 pages, 2252 KiB  
Article
Drug Metabolite Cluster-Based Data-Mining Method for Comprehensive Metabolism Study of 5-hydroxy-6,7,3′,4′-tetramethoxyflavone in Rats
by Yuqi Wang, Xiaodan Mei, Zihan Liu, Jie Li, Xiaoxin Zhang, Shuang Lang, Long Dai and Jiayu Zhang
Molecules 2019, 24(18), 3278; https://doi.org/10.3390/molecules24183278 - 9 Sep 2019
Cited by 11 | Viewed by 3065
Abstract
The screening of drug metabolites in biological matrixes and structural characterization based on product ion spectra is among the most important, but also the most challenging due to the significant interferences from endogenous species. Traditionally, metabolite detection is accomplished primarily on the basis [...] Read more.
The screening of drug metabolites in biological matrixes and structural characterization based on product ion spectra is among the most important, but also the most challenging due to the significant interferences from endogenous species. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of prototype drug metabolites using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). Although classical techniques are well-suited for achieving the partial characterization of prototype drug metabolites, there is a pressing need for a strategy to enable comprehensive drug metabolism depiction. Therefore, we present drug metabolite clusters (DMCs), different from, but complementary to, traditional approaches for mining the information regarding drugs and their metabolites on the basis of raw, processed, or identified tandem mass spectrometry (MS/MS) data. In this paper, we describe a DMC-based data-mining method for the metabolite identification of 5-hydroxy-6,7,3′,4′-tetramethoxyflavone (HTF), a typical hydroxylated-polymethoxyflavonoid (OH-PMF), which addressed the challenge of creating a thorough metabolic profile. Consequently, eight primary metabolism clusters, sixteen secondary metabolism clusters, and five tertiary metabolism clusters were proposed and 106 metabolites (19 potential metabolites included) were detected and identified positively and tentatively. These metabolites were presumed to generate through oxidation (mono-oxidation, di-oxidation), methylation, demethylation, methoxylation, glucuronidation, sulfation, ring cleavage, and their composite reactions. In conclusion, our study expounded drug metabolites in rats and provided a reference for further research on therapeutic material basis and the mechanism of drugs. Full article
Show Figures

Figure 1

17 pages, 2803 KiB  
Article
Simultaneous Separation and Purification of Five Polymethoxylated Flavones from “Dahongpao” Tangerine (Citrus tangerina Tanaka) Using Macroporous Adsorptive Resins Combined with Prep-HPLC
by Zhenqing Li, Ziyan Zhao and Zhiqin Zhou
Molecules 2018, 23(10), 2660; https://doi.org/10.3390/molecules23102660 - 16 Oct 2018
Cited by 26 | Viewed by 4691
Abstract
In this study, a preparative separation method was established to simultaneously isolate the polymethoxylated flavones (PMFs) from the peel of “Dahongpao” tangerine using macroporous adsorptive resins (MARs) combined with prep-HPLC. The total PMFs were enriched using MARs to remove most sugars, water-soluble pigments, [...] Read more.
In this study, a preparative separation method was established to simultaneously isolate the polymethoxylated flavones (PMFs) from the peel of “Dahongpao” tangerine using macroporous adsorptive resins (MARs) combined with prep-HPLC. The total PMFs were enriched using MARs to remove most sugars, water-soluble pigments, and flavanones, and the eluents obtained were analyzed by ultra-performance liquid chromatography (UPLC) to determine the PMF composition. The separation and purification of PMFs were carried out by using a mass spectrometry-guided prep-HPLC with a gradient elution of acetonitrile-water (v/v), simultaneously. The purity of these PMFs was determined by UPLC, and their chemical structures were confirmed by electrospray ionization mass spectrometry (ESI-MS-MS), ultraviolet (UV), and nuclear magnetic resonance (NMR). Using the present method, five PMFs, including 5,6,7,4’-tetramethoxyflavone (1), nobiletin (2), tangeretin (3), sinensetin (4), and 5-hydroxy-6,7,8,3’,4’-pentamethoxyflavone (5), can be purified simultaneously, and the purity of the compounds obtained were 95.3%, 99.7%, 99.5%, 98.9%, and 98.1%, respectively. The method reported here is simple, rapid, and efficient, and it can be used to separate PMFs from citrus fruit peels and, potentially, other plant materials. Full article
Show Figures

Figure 1

11 pages, 2764 KiB  
Article
Screening and Identification for Immunological Active Components from Andrographis Herba Using Macrophage Biospecific Extraction Coupled with UPLC/Q-TOF-MS
by Yaqi Wang, Jiaojiao Jiao, Yuanzhen Yang, Ming Yang and Qin Zheng
Molecules 2018, 23(5), 1047; https://doi.org/10.3390/molecules23051047 - 30 Apr 2018
Cited by 20 | Viewed by 4394
Abstract
The method of cell biospecific extraction coupled with UPLC/Q-TOF-MS has been developed as a tool for the screening and identification of potential immunological active components from Andrographis Herba (AH). In our study, a macrophage cell line (RAW264.7) was used to extract cell-combining compounds [...] Read more.
The method of cell biospecific extraction coupled with UPLC/Q-TOF-MS has been developed as a tool for the screening and identification of potential immunological active components from Andrographis Herba (AH). In our study, a macrophage cell line (RAW264.7) was used to extract cell-combining compounds from the ethanol extract of AH. The cell binding system was then analyzed and identified by UPLC/Q-TOF-MS analysis. Finally, nine compounds, which could combine with macrophages, in an ethanol extract of AH were detected by comparing basic peak intensity (BPI) profiles of macrophages before and after treatment with AH. Then they were identified as Andrographidine E (1), Andrographidine D (2), Neoandrographolide (3), Dehydroandrographolide (4), 5, 7, 2′, 3′-tetramethoxyflavone (5), β-sitosterol (7), 5-hydroxy-7, 2′, 3′-trimethoxyflavone (8) and 5-hydroxy-7, 8, 2′, 3′-tetramethoxyflavone (9), which could classified into five flavonoids, three diterpene lactones, and one sterol. Their structures were recognized by their characteristic fragment ions and fragmentations pattern of diterpene lactones and flavonoids. Additionally, the activity of compounds 3, 4, and 7 was tested in vitro. Results showed that these three compounds could decrease the release of NO (p < 0.01) in macrophages remarkably. Moreover, 3, 4, and 7 showed satisfactory dose-effect relationships and their IC50 values were 9.03, 18.18, and 13.76 μg/mL, respectively. This study is the first reported work on the screening of immunological active components from AH. The potential immunological activity of flavonoids from AH has not been reported previously. Full article
(This article belongs to the Special Issue Green Analytical Chemistry)
Show Figures

Figure 1

16 pages, 3547 KiB  
Article
Flavonoids-Rich Orthosiphon stamineus Extract as New Candidate for Angiotensin I-Converting Enzyme Inhibition: A Molecular Docking Study
by Armaghan Shafaei, Md Shamsuddin Sultan Khan, Abdalrahim F. A. Aisha, Amin Malik Shah Abdul Majid, Mohammad Razak Hamdan, Mohd Nizam Mordi and Zhari Ismail
Molecules 2016, 21(11), 1500; https://doi.org/10.3390/molecules21111500 - 9 Nov 2016
Cited by 27 | Viewed by 8917
Abstract
This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3′-hydroxy-5,6,7,4′-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action [...] Read more.
This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3′-hydroxy-5,6,7,4′-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure–activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX: BioSolveIT’s LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues)
Show Figures

Figure 1

15 pages, 779 KiB  
Article
Biflavans, Flavonoids, and a Dihydrochalcone from the Stem Wood of Muntingia calabura and Their Inhibitory Activities on Neutrophil Pro-Inflammatory Responses
by Wen-Lung Kuo, Hsiang-Ruei Liao and Jih-Jung Chen
Molecules 2014, 19(12), 20521-20535; https://doi.org/10.3390/molecules191220521 - 8 Dec 2014
Cited by 24 | Viewed by 7889
Abstract
Muntingia calabura (Tiliaceae) is commercially used in healthcare for the improvement of hypertension, myocardial infarction, spasm, and inflammatory conditions. Its fruits can be processed into jam and the leaves can be used for making tea. In the work reported herein a new biflavan, [...] Read more.
Muntingia calabura (Tiliaceae) is commercially used in healthcare for the improvement of hypertension, myocardial infarction, spasm, and inflammatory conditions. Its fruits can be processed into jam and the leaves can be used for making tea. In the work reported herein a new biflavan, (M),(2S),(2''S)-,(P),(2S),(2''S)-7,8,3',4',5',7'',8'',3''',4''',5'''-decamethoxy-5,5'' biflavan (1), a new flavone, 4'-hydroxy-7,8,3',5'-tetramethoxyflavone (2), and a new dihydrochalcone, (R)-2',β-dihydroxy-3',4'-dimethoxydihydrochalcone (3), have been isolated from the stem wood of M. calabura, together with 12 known compounds (415). The structures of these new compounds were elucidated by the interpretations of extensive spectroscopic data. Among the isolated compounds, 5-hydroxy-7-methoxyflavone (5), quercetin (6), and (2S)-7-hydroxyflavanone (10) exhibited potent inhibition of fMLP-induced superoxide anion generation by human neutrophils, with IC50 values of 1.77 ± 0.70, 3.82 ± 0.46, and 4.92 ± 1.71 μM, respectively. Full article
(This article belongs to the Collection Bioactive Compounds)
Show Figures

Graphical abstract

10 pages, 342 KiB  
Article
Antiangiogenic Polyketides from Peperomia dindygulensis Miq.
by Qi-Wei Wang, De-Hong Yu, Meng-Gan Lin, Mei Zhao, Wen-Jun Zhu, Qin Lu, Gui-Xiu Li, Chao Wang, Yi-Fang Yang, Xue-Mei Qin, Chao Fang, Hong-Zhuan Chen and Guo-Hong Yang
Molecules 2012, 17(4), 4474-4483; https://doi.org/10.3390/molecules17044474 - 13 Apr 2012
Cited by 31 | Viewed by 9662
Abstract
Two new polyketides: 2Z-(heptadec-12-enyl)-4-hydroxy-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one (1) and 2-(heptadec-12-enyl)-5-hydroxy-5,6,7,8-tetrahydrochromen- 4-one (2), together with eleven known compounds: 4-hydroxy-2-[(3,4-methylenedioxy- phenyl)tridecanoyl] cyclohexane-1,3-dione (3), oleiferinone (4), 4-hydroxy-2-[(3,4- methylenedioxyphenyl)undecanoyl]cyclohexane-1,3-dione (5), 4-hydroxy-2-[(11-phenyl- undecanoyl)cyclohexane-1,3-dione (6 [...] Read more.
Two new polyketides: 2Z-(heptadec-12-enyl)-4-hydroxy-3,4,7,8-tetrahydro-2H-chromen-5(6H)-one (1) and 2-(heptadec-12-enyl)-5-hydroxy-5,6,7,8-tetrahydrochromen- 4-one (2), together with eleven known compounds: 4-hydroxy-2-[(3,4-methylenedioxy- phenyl)tridecanoyl] cyclohexane-1,3-dione (3), oleiferinone (4), 4-hydroxy-2-[(3,4- methylenedioxyphenyl)undecanoyl]cyclohexane-1,3-dione (5), 4-hydroxy-2-[(11-phenyl- undecanoyl)cyclohexane-1,3-dione (6), proctorione C (7), surinone C (8), 5-hydroxy- 7,8,4'-trimethoxyflavone (9), 5-hydroxy-7,8,3',4'-tetramethoxyflavone (10), 5-hydroxy- 7,3',4'-trimethoxyflavone (11), 5,8-dihydroxy-7,3',4'-trimethoxyflavone (12) and cepharanone B (13) were isolated from the whole plant of Peperomia dindygulensis Miq. Their structures were elucidated by spectroscopic methods, including 2D-NMR techniques. Compounds 2, 3, 5 and 8 inhibited human umbilical vein endothelial cell (HUVEC) proliferation and compounds 5 and 8 sharply suppressed HUVEC tube formation. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop