Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,537)

Search Parameters:
Keywords = 2D-IR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1666 KB  
Article
Unveiling Silver Catalysis to Access 5-Substituted Tetrazole Through [3+2]Cycloaddition Reaction, Utilizing Novel Silver Supramolecular Coordination Polymer-Based Catalyst: A New Green Horizon
by Mohamed M. El-bendary, Abdullah Akhdhar, Bambar Davaasuren, Abdullah S. Al-Bogami and Tamer S. Saleh
Catalysts 2025, 15(10), 969; https://doi.org/10.3390/catal15100969 - 10 Oct 2025
Abstract
A novel Ag(I) coordination polymer, [Ag2(bipy)(btca)]n, (SCP 1) was synthesized using 4,4′-bipyridyl (bipy) and 1,2,4,5-benzene-tetracarboxylic acid (H4BTC). Characterization by FT-IR, 1H/13C NMR, and single-crystal X-ray diffraction confirmed its 3D network structure. The [...] Read more.
A novel Ag(I) coordination polymer, [Ag2(bipy)(btca)]n, (SCP 1) was synthesized using 4,4′-bipyridyl (bipy) and 1,2,4,5-benzene-tetracarboxylic acid (H4BTC). Characterization by FT-IR, 1H/13C NMR, and single-crystal X-ray diffraction confirmed its 3D network structure. The structure of SCP 1 consists of two chains arranged in …ABAB… fashion. Chain A is one-dimensional, containing [Ag(4,4′-bipy)]n chain, while chain B is free, containing uncoordinated 1,2,4,5-benzene tetracarboxylate and water molecules. The stacking and argentophilic interactions extend the chain A of [Ag(4,4′-bipy)]n into a two-dimensional layer. In contrast, chain B of uncoordinated 1,2,4,5-benzene tetracarboxylate and water molecules form a 1-D chain through extensive hydrogen bonds between water molecules and BTC ions and between water molecules themselves. Chains A and B are connected through extensive hydrogen bonds, generating a three-dimensional network structure. This Silver I supramolecular coordination polymer (SCP 1) demonstrated high catalytic activity as a recyclable heterogeneous catalyst for the synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition of NaN3 and terminal nitriles under solvent-free conditions in a Q-tube pressure reactor (yields: 94–99%). A mechanistic proposal involving cooperative Lewis acidic Ag(I) sites and Brønsted acidic -COOH groups facilitates the cycloaddition and protonation steps. SCP 1 catalyst exhibits reusability up to 4 cycles without significant loss of activity. The structural stability of the SCP 1 catalyst was assessed based on PXRD and FTIR analyses of the catalyst after usage, confirming its integrity during the recycling process. Full article
24 pages, 7207 KB  
Article
YOLO–LaserGalvo: A Vision–Laser-Ranging System for High-Precision Welding Torch Localization
by Jiajun Li, Tianlun Wang and Wei Wei
Sensors 2025, 25(20), 6279; https://doi.org/10.3390/s25206279 - 10 Oct 2025
Abstract
A novel closed loop visual positioning system, termed YOLO–LaserGalvo (YLGS), is proposed for precise localization of welding torch tips in industrial welding automation. The proposed system integrates a monocular camera, an infrared laser distance sensor with a galvanometer scanner, and a customized deep [...] Read more.
A novel closed loop visual positioning system, termed YOLO–LaserGalvo (YLGS), is proposed for precise localization of welding torch tips in industrial welding automation. The proposed system integrates a monocular camera, an infrared laser distance sensor with a galvanometer scanner, and a customized deep learning detector based on an improved YOLOv11 model. In operation, the vision subsystem first detects the approximate image location of the torch tip using the YOLOv11-based model. Guided by this detection, the galvanometer steers the IR laser beam to that point and measures the distance to the torch tip. The distance feedback is then fused with the vision coordinates to compute the precise 3D position of the torch tip in real-time. Under complex illumination, the proposed YLGS system exhibits superior robustness compared with color-marker and ArUco baselines. Experimental evaluation shows that the system outperforms traditional color-marker and ArUco-based methods in terms of accuracy, robustness, and processing speed. This marker-free method provides high-precision torch positioning without requiring structured lighting or artificial markers. Its pedagogical implications in engineering education are also discussed. Potential future work includes extending the method to full 6-DOF pose estimation and integrating additional sensors for enhanced performance. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

33 pages, 2592 KB  
Article
Synthesis of New Phenothiazine/3-cyanoquinoline and Phenothiazine/3-aminothieno[2,3-b]pyridine(-quinoline) Heterodimers
by Victor V. Dotsenko, Vladislav K. Kindop, Vyacheslav K. Kindop, Eva S. Daus, Igor V. Yudaev, Yuliia V. Daus, Alexander V. Bespalov, Dmitrii S. Buryi, Darya Yu. Lukina, Nicolai A. Aksenov and Inna V. Aksenova
Int. J. Mol. Sci. 2025, 26(19), 9798; https://doi.org/10.3390/ijms26199798 - 8 Oct 2025
Abstract
The aim of this work was to prepare new heterodimeric molecules containing pharmacophoric fragments of 3-cyanoquinoline/3-aminothieno[2,3-b]pyridine/3-aminothieno[2,3-b]quinoline on one side and phenothiazine on the other. The products were synthesized via selective S-alkylation of readily available 2-thioxo-3-cyanopyridines or -quinolines with N-(chloroacetyl)phenothiazines, followed by base-promoted Thorpe–Ziegler [...] Read more.
The aim of this work was to prepare new heterodimeric molecules containing pharmacophoric fragments of 3-cyanoquinoline/3-aminothieno[2,3-b]pyridine/3-aminothieno[2,3-b]quinoline on one side and phenothiazine on the other. The products were synthesized via selective S-alkylation of readily available 2-thioxo-3-cyanopyridines or -quinolines with N-(chloroacetyl)phenothiazines, followed by base-promoted Thorpe–Ziegler isomerization of the resulting N-[(3-cyanopyridin-2-ylthio)acetyl]phenothiazines. We found that both the S-alkylation and the Thorpe–Ziegler cyclization reactions, when conducted with KOH under heating, were accompanied to a significant extent by a side reaction involving the elimination of phenothiazine. Optimization of the conditions (0–5 °C, anhydrous N,N-dimethylacetamide and NaH or t-BuONa as non-nucleophilic bases) minimized the side reaction and increased the yields of the target heterodimers. The structures of the products were confirmed by IR spectroscopy, 1H, and 13C DEPTQ NMR studies. It was demonstrated that the synthesized 3-aminothieno[2,3-b]pyridines can be acylated with chloroacetyl chloride in hot chloroform. The resulting chloroacetamide derivative reacts with potassium thiocyanate in DMF to form the corresponding 2-iminothiazolidin-4-one; in this process, phenothiazine elimination does not occur, and the Gruner–Gewald rearrangement product was not observed. The structural features and spectral characteristics of the synthesized 2-iminothiazolidin-4-one derivative were investigated by quantum chemical methods at the B3LYP-D4/def2-TZVP level. A range of drug-relevant properties was also evaluated using in silico methods, and ADMET parameters were calculated. A molecular docking study identified a number of potential protein targets for the new heterodimers, indicating the promise of these compounds for the development of novel antitumor agents. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 923 KB  
Article
Metabolic and Endocrine Alterations in Underweight and Normal-Weight Women with Functional Hypothalamic Amenorrhea
by Karolina Kowalczyk, Iga Szymańska, Olga Zawistowska, Julia Bieńkowska, Agnieszka Drosdzol-Cop and Paweł Madej
J. Clin. Med. 2025, 14(19), 7082; https://doi.org/10.3390/jcm14197082 - 7 Oct 2025
Viewed by 192
Abstract
Background: Functional hypothalamic amenorrhea (FHA) is a form of chronic anovulation associated with hypoestrogenism. Weight loss, excessive exercise, stress and long-lasting hypoestrogenism lead to infertility and bone loss. FHA also leads to metabolic changes that increase cardiovascular risk in women who otherwise [...] Read more.
Background: Functional hypothalamic amenorrhea (FHA) is a form of chronic anovulation associated with hypoestrogenism. Weight loss, excessive exercise, stress and long-lasting hypoestrogenism lead to infertility and bone loss. FHA also leads to metabolic changes that increase cardiovascular risk in women who otherwise appear metabolically healthy. Methods: This was a case–control study assessing metabolic and endocrine alterations in patients with FHA, stratified by BMI into underweight (BMI < 18.5) and normal-weight (BMI 18.5–24.99) categories. Results: Women diagnosed with FHA had significantly higher levels of total (193 ± 41.96 vs. 181 ± 28.23 mg/dL; p = 0.037) and LDL cholesterol (67 ± 34.89 vs. 63 ± 24.78 mg/dL; p = 0.018) compared with healthy controls. HDL cholesterol levels did not differ between groups; however, normal-weight participants in the study group had higher HDL cholesterol than underweight participants (p = 0.007). FHA patients had significantly lower HOMA-IR (p = 0.001), lower prolactin (p < 0.001), and higher cortisol levels (p = 0.036). Conclusions: Metabolic and endocrine alterations in FHA patients are modulated both by the condition per se and by BMI. FHA influences total and LDL cholesterol, prolactin, and cortisol levels, while BMI primarily affects HDL cholesterol. Both FHA and BMI have a statistically significant impact on HOMA-IR, but neither influences triglycerides or TSH levels. Our findings indicate that the recovery and prevention of metabolic complications require psychological support and consistent weight management. Full article
(This article belongs to the Special Issue Recent Developments in Gynecological Endocrinology)
Show Figures

Figure 1

17 pages, 3749 KB  
Article
Exploring Low Energy Excitations in the d5 Iridate Double Perovskites La2BIrO6 (B = Zn, Mg)
by Abhisek Bandyopadhyay, Dheeraj Kumar Pandey, Carlo Meneghini, Anna Efimenko, Marco Moretti Sala and Sugata Ray
Condens. Matter 2025, 10(4), 53; https://doi.org/10.3390/condmat10040053 - 6 Oct 2025
Viewed by 225
Abstract
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M [...] Read more.
We experimentally investigate the structural, magnetic, transport, and electronic properties of two d5 iridate double perovskite materials La2BIrO6 (B = Mg, Zn). Notably, despite similar crystallographic structure, the two compounds show distinctly different magnetic behaviors. The M = Mg compound shows an antiferromagnetic-like linear field-dependent isothermal magnetization below its transition temperature, whereas the M = Zn counterpart displays a clear hysteresis loop followed by a noticeable coercive field, indicative of ferromagnetic components arising from a non-collinear Ir spin arrangement. The local structure studies authenticate perceptible M/Ir antisite disorder in both systems, which complicates the magnetic exchange interaction scenario by introducing Ir-O-Ir superexchange pathways in addition to the nominal Ir-O-B-O-Ir super-superexchange interactions expected for an ideally ordered structure. While spin–orbit coupling (SOC) plays a crucial role in establishing insulating behavior for both these compounds, the rotational and tilting distortions of the IrO6 (and MO6) octahedral units further lift the ideal cubic symmetry. Finally, by measuring the Ir-L3 edge resonant inelastic X-ray scattering (RIXS) spectra for both the compounds, giving evidence of spin–orbit-derived low-energy inter-J-state (intra t2g) transitions (below ~1 eV), the charge transfer (O 2p → Ir 5d), and the crystal field (Ir t2geg) excitations, we put forward a qualitative argument for the interplay among effective SOC, non-cubic crystal field, and intersite hopping in these two compounds. Full article
(This article belongs to the Section Quantum Materials)
Show Figures

Figure 1

25 pages, 5732 KB  
Article
1-Carboxy-2-phenylethan-1-aminium Iodide 2-Azaniumyl-3-phenylpropanoate Crystals: Properties and Its Biochar-Based Application for Iodine Enrichment of Parsley
by Aitugan Sabitov, Seitzhan Turganbay, Almagul Kerimkulova, Yerlan Doszhanov, Karina Saurykova, Meiram Atamanov, Arman Zhumazhanov and Didar Bolatova
Appl. Sci. 2025, 15(19), 10752; https://doi.org/10.3390/app151910752 - 6 Oct 2025
Viewed by 186
Abstract
Iodine deficiency remains a significant nutritional problem, which stimulates the search for sustainable approaches to biofortification of vegetable crops. The aim of the work was to develop a “smart” bio-iodine fertilizer based on the organoiodide complex 1-carboxy-2-phenylethan-1-aminium iodide 2-azaniumyl-3-phenylpropanoate (PPI) and highly porous [...] Read more.
Iodine deficiency remains a significant nutritional problem, which stimulates the search for sustainable approaches to biofortification of vegetable crops. The aim of the work was to develop a “smart” bio-iodine fertilizer based on the organoiodide complex 1-carboxy-2-phenylethan-1-aminium iodide 2-azaniumyl-3-phenylpropanoate (PPI) and highly porous biochar from agro-waste, assessing its efficiency on the parsley model. PPI was synthesized and characterized (IR/UV spectroscopy, thermal analysis), and biochar was obtained by KOH activation and studied by low-temperature nitrogen adsorption (S_BET) methods, as well as standard physico-chemical characterization. The granulated composition PPI + biochar (BIOF) was tested in pot experiments in comparison with KI and control. The biomass of leaves and roots, iodine and organic nitrogen content, and antioxidant indices (ascorbic acid, total polyphenols, antioxidant activity) were assessed. BIOF provided a significant increase in yield and nutrition: leaf mass reached 86.55 g/plant versus 77.72 g/plant with KI and 65.04 g/plant in the control; root mass—up to 8.25 g/plant (p < 0.05). Iodine content in leaves and roots increased to 11.86 and 13.23 mg/kg (d.w.), respectively, while organic nitrogen levels increased simultaneously (57.37 and 36.63 mg/kg). A significant increase in the antioxidant status was noted (ascorbic acid 36.46 mg/100 g dry weight; antioxidant activity 44.48 mg GA/g; polyphenols 23.79 mg GA/g). The presented data show that the combination of PPI with activated biochar forms an effective platform for controlled supply of iodine to plants, increasing the yield and functional qualities of products; the prospects for implementation are associated with field trials and dosage optimization. Full article
Show Figures

Figure 1

22 pages, 2773 KB  
Article
Synthesis, Crystallographic Study and Antibacterial Activity of Ternary Copper(II) Complex with Chromone-Based Ligand and Pyridine
by Nikolina Filipović, Anamarija Stanković, Martina Medvidović-Kosanović, Dominik Goman, Stjepan Šarić, Goran Palijan and Tomislav Balić
Crystals 2025, 15(10), 870; https://doi.org/10.3390/cryst15100870 - 6 Oct 2025
Viewed by 241
Abstract
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the [...] Read more.
A new copper(II) complex was synthesized using chromone-2-carboxylic acid as the main ligand, and coordinated pyridine molecules. The complex was successfully crystallized and structurally characterized by single crystal X-ray diffraction. This revealed a mononuclear structure with a distorted square pyramidal geometry around the central Cu(II) ion. The coordination sphere comprises oxygen atoms from the chromone moiety and nitrogen atoms from pyridine, resulting in a five-coordinate complex. A comprehensive physicochemical characterization was performed using Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectroscopy, elemental (C, H, N), electrochemical (CV) and thermal analysis (TGA/DSC) to confirm the coordination environment and thermal stability of the compound. The complex exhibits distinct spectroscopic features indicative of ligand–metal charge transfer and dd transitions typical of Cu(II) species. In addition, the synthesized complex was subjected to antimicrobial screening against Gram-positive and Gram-negative bacteria. The compound showed promising antibacterial activity, particularly against Escherichia coli, indicating its potential as a bioactive coordination compound. These results contribute to the growing body of research on metal-based chromone derivatives and emphasize the importance of copper complexes for the development of new antibacterial agents with defined crystal structures. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

18 pages, 1303 KB  
Article
Bifidobacterium animalis subsp. lactis TISTR 2591 Improves Glycemic Control and Immune Response in Adults with Type 2 Diabetes Mellitus: A Randomized, Double-Blind, Placebo-Controlled Crossover Clinical Trial
by Wiritphon Khiaolaongam, Kongsak Boonyapranai, Jaruwan Sitdhipol, Punnathorn Thaveethaptaikul, Jurairat Khongrum, Pennapa Chonpathompikunlert and Sakaewan Ounjaijean
Nutrients 2025, 17(19), 3097; https://doi.org/10.3390/nu17193097 - 29 Sep 2025
Viewed by 301
Abstract
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder marked by insulin resistance, hyperglycemia, systemic inflammation, and immune imbalance. This randomized, double-blind, placebo-controlled, crossover trial investigated the effects of Bifidobacterium animalis subsp. lactis TISTR 2591 (BA-2591), a probiotic strain isolated [...] Read more.
Background/Objectives: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder marked by insulin resistance, hyperglycemia, systemic inflammation, and immune imbalance. This randomized, double-blind, placebo-controlled, crossover trial investigated the effects of Bifidobacterium animalis subsp. lactis TISTR 2591 (BA-2591), a probiotic strain isolated in Thailand, on metabolic, immunologic, and safety parameters. Methods: A total of 44 Thai adults (aged 35–65) with T2DM receiving metformin monotherapy were administered BA-2591 (1 × 109 CFU/g/day) or placebo for 6 weeks, followed by a 4-week washout and crossover. Results: Compared to placebo, BA-2591 significantly attenuated fasting blood glucose elevation (Δ = +1.143 mg/dL vs. +12.570 mg/dL; p < 0.001), minimized the increase in insulin resistance (HOMA-IR: Δ = +0.567 vs. +0.980; p = 0.006), and enhanced β-cell function (HOMA-β: Δ = +6.791% vs. −8.313%; p < 0.001). It also elevated immunoglobulin levels (IgM: +150.300 mg/dL; IgG: +261.500 mg/dL; p < 0.001), reduced LDL-C (p = 0.009), and decreased cathepsin D activity (p = 0.005), with no significant changes in IL-6, adiponectin, MDA, hs-CRP, or body composition. No severe adverse effects were reported. Conclusions: BA-2591 was safe and demonstrated modest, adjunctive benefits for fasting glycemia and immunologic profiles over 6 weeks, without changes in body weight or fat mass. These findings support BA-2591 as a potential adjunct to standard care in early T2DM; larger and longer-duration trials are needed to define its effects on longer-term outcomes. Full article
(This article belongs to the Section Nutrition and Diabetes)
Show Figures

Graphical abstract

10 pages, 503 KB  
Systematic Review
Systematic Review of Post-Viral Delayed Inflammation Associated with Hyaluronic Acid Dermal Fillers
by Lorena Bhatia, Saja Al Rekabi, Audra Janovskienė, Inesa Stonkutė, Dainius Razukevičius and Justina Stučinskaitė-Maračinskienė
Medicina 2025, 61(10), 1764; https://doi.org/10.3390/medicina61101764 - 29 Sep 2025
Viewed by 509
Abstract
Background: Hyaluronic acid (HA) dermal fillers are among the most widely used injectable materials in esthetic medicine. They are generally safe, but delayed inflammatory reactions (DIRs) have been observed, particularly after viral infections or vaccinations. Such events have raised questions about the [...] Read more.
Background: Hyaluronic acid (HA) dermal fillers are among the most widely used injectable materials in esthetic medicine. They are generally safe, but delayed inflammatory reactions (DIRs) have been observed, particularly after viral infections or vaccinations. Such events have raised questions about the role of immune activation in filler-related complications. Objective: This review examined the available literature on DIRs to HA fillers that occurred in the context of viral illness or immunization, with attention to how these reactions present and how they are managed. Methods: A systematic search was carried out in PubMed, ScienceDirect, ClinicalKey, and Google Scholar between October and November 2024. Only human case reports and case series were included. The protocol was registered in PROSPERO (CRD420251030918), and study quality was assessed using the Newcastle–Ottawa Scale. Results: Six publications met inclusion criteria: four case series and two case reports, describing 25 women between 22 and 65 years of age. Patients developed swelling, erythema, angioedema, or, in severe cases, marked facial edema after HA filler injections, with symptom onset ranging from several hours to several weeks following viral exposure. Corticosteroids and hyaluronidase were the most common treatments, though milder cases sometimes resolved without intervention. Study quality varied, with some reports providing limited detail on patient characteristics and follow-up. Conclusions: DIRs associated with viral infections or vaccinations remain uncommon but clinically relevant complications of HA filler use. Limited case-based evidence indicates potential effectiveness of corticosteroids and hyaluronidase, though management practices remain inconsistent. Larger prospective studies are needed to clarify underlying mechanisms and to establish standardized guidelines for treatment. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

15 pages, 2671 KB  
Article
Mechanisms of Thermal Color Change in Brown Elbaite–Fluorelbaite Tourmaline: Insights from Trace Elements and Spectral Signatures
by Kun Li and Suwei Yue
Minerals 2025, 15(10), 1032; https://doi.org/10.3390/min15101032 - 29 Sep 2025
Viewed by 217
Abstract
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma [...] Read more.
This study investigates the mechanism behind the heat-induced color change (brown to yellowish green) in Mn- and Fe-rich elbaite tourmaline under reducing atmosphere at 500 °C. A combination of analytical techniques including gemological characterization, electron microprobe analysis (EMPA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and ultraviolet–visible (UV-Vis) spectroscopy was employed. Chemical analysis confirmed the samples as intermediate members of the elbaite–fluorelbaite series, with an average formula of X(Na0.660.26 Ca0.08) Σ1.00Y(Li1.29Al1.10Mn0.31 Fe2+0.15Ti0.01Zn0.01) Σ2.87 ZAl6T[Si6O18] (BO3)3V(OH)3.00W(OH0.51F0.49) Σ1.00, enriched in Mn (17,346–20,669 μg/g) and Fe (8396–10,750 μg/g). Heat treatment enhanced transparency and induced strong pleochroism (yellowish green parallel c-axis, brown perpendicular c-axis). UV-Vis spectroscopy identified the brown color origin in the parallel c-axis direction: absorption bands at 730 nm (Fe2+ dd transition, 5T2g5Eg), 540 nm (Fe2+→Fe3+ intervalence charge transfer, IVCT), and 415 nm (Fe2+→Ti4+ IVCT + possible Mn2+ contribution). Post-treatment, the 540 nm band vanished, creating a green transmission window and causing the color shift parallel the c-axis. The spectra perpendicular to the c-axis remained largely unchanged. The disappearance of the 540 nm band, attributed to the reduction of Fe3+ to Fe2+ eliminating the Fe2+–Fe3+ pair interaction required for IVCT, is the primary color change mechanism. The parallel c-axis section of the samples shows brown and yellow-green dichroism after heat treatment. A decrease in the IR intensity at 4170 cm−1 indicates a reduced Fe3+ concentration. The weakening or disappearance of the 4721 cm−1 absorption band of the infrared spectrum and the near-infrared 976 nm absorption band of the ultraviolet–visible spectrum provides diagnostic indicators for identifying heat treatment in similar brown elbaite–fluorelbaite. Full article
Show Figures

Figure 1

12 pages, 2667 KB  
Article
Optimized Sonochemical Exfoliation of Bulk 6H-SiC for the Synthesis of Multi-Layered SiC Nanosheets
by Eric Fernando Vázquez-Vázquez, Yazmín Mariela Hernández-Rodríguez, Omar Solorza-Feria and Oscar Eduardo Cigarroa-Mayorga
Nanomaterials 2025, 15(19), 1480; https://doi.org/10.3390/nano15191480 - 27 Sep 2025
Viewed by 217
Abstract
In this study, a novel and rapid top-down synthesis method for the successful synthesis of few-layered 2D SiC is reported. Since the theoretical prediction of planar and stable 2D SiC with a direct bandgap, only a few experimental methods have overcome the challenging [...] Read more.
In this study, a novel and rapid top-down synthesis method for the successful synthesis of few-layered 2D SiC is reported. Since the theoretical prediction of planar and stable 2D SiC with a direct bandgap, only a few experimental methods have overcome the challenging covalent sp3 hybridization of its bulk structure, unlike Van der Waals layered material bonding, making the synthesis of few-layered or mono-layered SiC more difficult due to the highly time- and energy-consuming methods. Moreover, correctly choosing between the more than 250 SiC polytypes increases the complexity of successful approaches to its 2D synthesis. This work reports, for the first time, multi-layered 2D SiC obtained using the wet ultrasonic probe sonochemical exfoliation method, reducing both the experimental synthesis time and energy consumption. Raman spectra showed the size-dependent correlation of the longitudinal optical (LO) mode, and IR showed the bond modification between bulk and nanostructured SiC. These results demonstrate a scalable and facile route for 2D SiC production; therefore, a wide variety of applications can be explored experimentally rather than theoretically, and methods such as the deposition of ScAlN layers onto SiN can be simplified in further studies. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

26 pages, 5868 KB  
Article
Silver(I)-NHC Complexes as Dual-Action Agents Against Pathogenic Acanthamoeba Trophozoites: Anti-Amoebic and Anti-Adhesion Activities
by Shaima Hkiri, Neslihan Şahin, Zübeyda Akın-Polat, Elvan Üstün, Bui Minh Thu Ly, İsmail Özdemir and David Sémeril
Int. J. Mol. Sci. 2025, 26(19), 9393; https://doi.org/10.3390/ijms26199393 - 25 Sep 2025
Viewed by 322
Abstract
A series of six silver(I) complexes, namely bromo(1-benzyl-3-cinnamyl-benzimidazol-2-ylidene)silver (I) (1a), bromo[1-(4-methylbenzyl)-3-cinnamyl-benzimidazol-2-yliden]silver(I) (1b), bromo[1-(3-methoxylbenzyl)-3-cinnamyl-benzimidazol-2-yliden]silver(I) (1c), bromo[1-(3,5-dimethoxy-benzyl)-3-cinnamyl-benzimidazol-2-ylidene]silver(I) (1d), bromo[1-(naphthalen-1-ylmethyl)-3-cinnamyl-benzimidazol-2-ylidene]silver(I) (1e) and bromo[1-(pyren-1-ylmethyl)-3-cinnamyl-benzimidazol-2-yliden]silver(I) (1f), were synthetized and characterized by microanalyses and mass spectrometry and [...] Read more.
A series of six silver(I) complexes, namely bromo(1-benzyl-3-cinnamyl-benzimidazol-2-ylidene)silver (I) (1a), bromo[1-(4-methylbenzyl)-3-cinnamyl-benzimidazol-2-yliden]silver(I) (1b), bromo[1-(3-methoxylbenzyl)-3-cinnamyl-benzimidazol-2-yliden]silver(I) (1c), bromo[1-(3,5-dimethoxy-benzyl)-3-cinnamyl-benzimidazol-2-ylidene]silver(I) (1d), bromo[1-(naphthalen-1-ylmethyl)-3-cinnamyl-benzimidazol-2-ylidene]silver(I) (1e) and bromo[1-(pyren-1-ylmethyl)-3-cinnamyl-benzimidazol-2-yliden]silver(I) (1f), were synthetized and characterized by microanalyses and mass spectrometry and characterized by FT-IR and NMR spectroscopic techniques. The in vitro effects of silver(I) complexes on trophozoites of two Acanthamoeba isolates obtained from patients with keratitis were investigated. The parasites were exposed to concentrations of 10, 100 and 1000 µM for 24, 48 and 72 h. The complexes exhibited potent, dose- and time-dependent activity. Complete inhibition was observed within 24 h at a concentration of 1000 µM. At a concentration of 100 µM, complexes 1ce exhibited reduced viability to less than 10% within 48 to 72 h. At a concentration of 10 µM, partial inhibition was observed. Preliminary morphological changes included the loss of acanthopodia, rounding, and detachment. These effects were not observed in the presence of the pre-ligands or commercially available silver compounds. Furthermore, molecular docking was utilized to analyze the molecules against Acanthamoeba castellanii CYP51, A. castellanii profilin IA, IB, and II. The highest recorded interactions were identified as −9.85 and −11.26 kcal/mol for 1e and 1f, respectively, when evaluated against the A. castellanii CYP51 structure. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 5553 KB  
Article
Transmit Power Optimization for Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems
by Yang Liu, Xiaoyue Li, Bin Wang and Yanhong Xu
IoT 2025, 6(4), 59; https://doi.org/10.3390/iot6040059 - 25 Sep 2025
Viewed by 240
Abstract
The adverse propagation environment in underground coal mine tunnels caused by enclosed spaces, rough surfaces, and dense scatterers severely degrades reliable wireless signal transmission, which further impedes the deployment of IoT applications such as gas monitors and personnel positioning terminals. However, the conventional [...] Read more.
The adverse propagation environment in underground coal mine tunnels caused by enclosed spaces, rough surfaces, and dense scatterers severely degrades reliable wireless signal transmission, which further impedes the deployment of IoT applications such as gas monitors and personnel positioning terminals. However, the conventional power enhancement solutions are infeasible for the underground coal mine scenario due to strict explosion-proof safety regulations and battery-powered IoT devices. To address this challenge, we propose singular value decomposition-based Lagrangian optimization (SVD-LOP) to minimize transmit power at the mining base station (MBS) for IRS-assisted coal mine wireless communication systems. In particular, we first establish a three-dimensional twin cluster geometry-based stochastic model (3D-TCGBSM) to accurately characterize the underground coal mine channel. On this basis, we formulate the MBS transmit power minimization problem constrained by user signal-to-noise ratio (SNR) target and IRS phase shifts. To solve this non-convex problem, we propose the SVD-LOP algorithm that performs SVD on the channel matrix to decouple the complex channel coupling and introduces the Lagrange multipliers. Furthermore, we develop a low-complexity successive convex approximation (LC-SCA) algorithm to reduce computational complexity, which constructs a convex approximation of the objective function based on a first-order Taylor expansion and enables suboptimal solutions. Simulation results demonstrate that the proposed SVD-LOP and LC-SCA algorithms achieve transmit power peaks of 20.8dBm and 21.4dBm, respectively, which are slightly lower than the 21.8dBm observed for the SDR algorithm. It is evident that these algorithms remain well below the explosion-proof safety threshold, which achieves significant power reduction. However, computational complexity analysis reveals that the proposed SVD-LOP and LC-SCA algorithms achieve O(N3) and O(N2) respectively, which offers substantial reductions compared to the SDR algorithm’s O(N7). Moreover, both proposed algorithms exhibit robust convergence across varying user SNR targets while maintaining stable performance gains under different tunnel roughness scenarios. Full article
Show Figures

Figure 1

15 pages, 746 KB  
Article
Exploring Genetic Heterogeneity in Type 2 Diabetes Subtypes
by Yanina Timasheva, Olga Kochetova, Zhanna Balkhiyarova, Diana Avzaletdinova, Gulnaz Korytina, Tatiana Kochetova and Arie Nouwen
Genes 2025, 16(10), 1131; https://doi.org/10.3390/genes16101131 - 25 Sep 2025
Viewed by 325
Abstract
Background/Objectives: Type 2 diabetes (T2D) is a clinically and genetically heterogeneous disease. In this study, we aimed to stratify patients with T2D from the Volga-Ural region of Eurasia into distinct subgroups based on clinical characteristics and to investigate the genetic underpinnings of [...] Read more.
Background/Objectives: Type 2 diabetes (T2D) is a clinically and genetically heterogeneous disease. In this study, we aimed to stratify patients with T2D from the Volga-Ural region of Eurasia into distinct subgroups based on clinical characteristics and to investigate the genetic underpinnings of these clusters. Methods: A total of 254 Tatar individuals with T2D and 361 ethnically matched controls were recruited. Clinical clustering was performed using k-means and hierarchical algorithms on five variables: age at diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), insulin resistance (HOMA-IR), and β-cell function (HOMA-B). Genetic association analysis was conducted using logistic regression under an additive model, adjusted for age and sex, and corrected for multiple comparisons using the Benjamini–Hochberg method. Results: Four distinct T2D subtypes were identified—mild age-related diabetes (MARD, n = 25), mild obesity-related diabetes (MOD, n = 72), severe insulin-resistant diabetes (SIRD, n = 66), and severe insulin-deficient diabetes (SIDD, n = 52)—each with unique clinical and comorbidity profiles. SIDD patients exhibited the highest burden of microvascular complications and lowest estimated glomerular filtration rate. Nine genetic variants showed significant associations with T2D and/or specific subtypes, including loci in genes related to neurotransmission (e.g., HTR1B, CHRM5), appetite regulation (NPY2R), insulin signaling (TCF7L2, PTEN), and other metabolic pathways. Some variants demonstrated subtype-specific associations, underscoring the genetic heterogeneity of T2D. Conclusions: Our findings support the utility of clinical clustering in uncovering biologically and clinically meaningful T2D subtypes and reveal genetic variants that may contribute to this heterogeneity. These insights may inform future precision medicine approaches for T2D diagnosis and management. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

11 pages, 2677 KB  
Article
Changes in Biomechanical Profile of an Artistic Swimming Duet over a Training Macrocycle: A Case Study
by Mário J. Costa, Sílvia Pinto and Catarina C. Santos
Appl. Sci. 2025, 15(19), 10346; https://doi.org/10.3390/app151910346 - 24 Sep 2025
Viewed by 355
Abstract
This study aimed to monitor the biomechanical development of an artistic swimming duet across a macrocycle through an individualised training approach. Two swimmers (17.5 ± 0.5 years), members of the Los Angeles 2028 National Olympic Project, were assessed in December 2023 (M1) and [...] Read more.
This study aimed to monitor the biomechanical development of an artistic swimming duet across a macrocycle through an individualised training approach. Two swimmers (17.5 ± 0.5 years), members of the Los Angeles 2028 National Olympic Project, were assessed in December 2023 (M1) and April 2024 (M2), corresponding to the beginning and the end of the macrocycle. Maximal (Fmax) and mean (Fmean) force in the prone sculling and kick pull action were measured using a 20 s tethered test. Split velocity (vSplit) was assessed in free format based on video recording. Dry-land strength included assessments of internal (IR) and external (ER) shoulder rotation strength of the dominant (D) and non-dominant (ND) limbs, and countermovement jump (CMJ) power. The standard duet choreography was analysed in competition at both time points. Percentage variation (∆%) between swimmers was calculated for M1 vs. M2. Results showed convergence (M1 vs. M2) in Fmean of the sculling (21.6% vs. 9.9%) and kick pull (45.1% vs. 29.1%), accompanied by greater similarity in vSplit (15.9% vs. 15.5%). Further convergence was observed in IRND (33.7% vs. 13.9%), ERD (11.6% vs. 4.4%) and CMJ (7.4% vs. 3.6%). The duet’s competition score increased from 168.9943 to 190.7183 points. It can be concluded that individualised training was useful for the duet to become more homogeneous in in-water strength, in-water kinematics and dryland strength, resulting in improved competitive performance. Full article
(This article belongs to the Special Issue Biomechanical Analysis for Sport Performance)
Show Figures

Figure 1

Back to TopTop