Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,538)

Search Parameters:
Keywords = 2-Dimensional materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2710 KiB  
Review
Polyphosphazene-Based Nanotherapeutics
by Sara Gutierrez-Gutierrez, Rocio Mellid-Carballal, Noemi Csaba and Marcos Garcia-Fuentes
J. Funct. Biomater. 2025, 16(8), 285; https://doi.org/10.3390/jfb16080285 (registering DOI) - 2 Aug 2025
Abstract
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide [...] Read more.
Poly(organo)phosphazenes (PPZs) are increasingly recognized as versatile biomaterials for drug delivery applications in nanomedicine. Their unique hybrid structure—featuring an inorganic backbone and highly tunable organic side chains—confers exceptional biocompatibility and adaptability. Through precise synthetic methodologies, PPZs can be engineered to exhibit a wide spectrum of functional properties, including the formation of multifunctional nanostructures tailored for specific therapeutic needs. These attributes enable PPZs to address several critical challenges associated with conventional drug delivery systems, such as poor pharmacokinetics and pharmacodynamics. By modulating solubility profiles, enhancing drug stability, enabling targeted delivery, and supporting controlled release, PPZs offer a robust platform for improving therapeutic efficacy and patient outcomes. This review explores the fundamental chemistry, biopharmaceutical characteristics, and biomedical applications of PPZs, particularly emphasizing their role in zero-dimensional nanotherapeutic systems, including various nanoparticle formulations. PPZ-based nanotherapeutics are further examined based on their drug-loading mechanisms, which include electrostatic complexation in polyelectrolytic systems, self-assembly in amphiphilic constructs, and covalent conjugation with active pharmaceutical agents. Together, these strategies underscore the potential of PPZs as a next-generation material for advanced drug delivery platforms. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

19 pages, 3458 KiB  
Article
Experimental and Numerical Analyses of Diameter Reduction via Laser Turning with Respect to Laser Parameters
by Emin O. Bastekeli, Haci A. Tasdemir, Adil Yucel and Buse Ortac Bastekeli
J. Manuf. Mater. Process. 2025, 9(8), 258; https://doi.org/10.3390/jmmp9080258 (registering DOI) - 1 Aug 2025
Abstract
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber [...] Read more.
In this study, a novel direct laser beam turning (DLBT) approach is proposed for the precision machining of AISI 308L austenitic stainless steel, which eliminates the need for cutting tools and thereby eradicates tool wear and vibration-induced surface irregularities. A nanosecond-pulsed Nd:YAG fiber laser (λ = 1064 nm, spot size = 0.05 mm) was used, and Ø1.6 mm × 20 mm cylindrical rods were processed under ambient conditions without auxiliary cooling. The experimental framework systematically evaluated the influence of scanning speed, pulse frequency, and the number of laser passes on dimensional accuracy and material removal efficiency. The results indicate that a maximum diameter reduction of 0.271 mm was achieved at a scanning speed of 3200 mm/s and 50 kHz, whereas 0.195 mm was attained at 6400 mm/s and 200 kHz. A robust second-order polynomial correlation (R2 = 0.99) was established between diameter reduction and the number of passes, revealing the high predictability of the process. Crucially, when the scanning speed was doubled, the effective fluence was halved, considerably influencing the ablation characteristics. Despite the low fluence, evidence of material evaporation at elevated frequencies due to the incubation effect underscores the complex photothermal dynamics governing the process. This work constitutes the first comprehensive quantification of pass-dependent diameter modulation in DLBT and introduces a transformative, noncontact micromachining strategy for hard-to-machine alloys. The demonstrated precision, repeatability, and thermal control position DLBT as a promising candidate for next-generation manufacturing of high-performance miniaturized components. Full article
13 pages, 647 KiB  
Article
Reference Values for Liver Stiffness in Newborns by Gestational Age, Sex, and Weight Using Three Different Elastography Methods
by Ángel Lancharro Zapata, Alejandra Aguado del Hoyo, María del Carmen Sánchez Gómez de Orgaz, Maria del Pilar Pintado Recarte, Pablo González Navarro, Perceval Velosillo González, Carlos Marín Rodríguez, Yolanda Ruíz Martín, Manuel Sanchez-Luna, Miguel A. Ortega, Coral Bravo Arribas and Juan Antonio León Luís
J. Clin. Med. 2025, 14(15), 5418; https://doi.org/10.3390/jcm14155418 (registering DOI) - 1 Aug 2025
Abstract
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex [...] Read more.
Objective: To determine reference values of liver stiffness during the first week of extrauterine life in healthy newborns, according to gestational age, sex, and birth weight, using three elastography techniques: point shear wave elastography (pSWE) and two-dimensional shear wave elastography (2D-SWE) with convex and linear probes. Materials and Methods: This was a cross-sectional observational study conducted at a single center on a hospital-based cohort of 287 newborns between 24 and 42 weeks of gestation, admitted between January 2023 and May 2024. Cases with liver disease, significant neonatal morbidity, or technically invalid studies were excluded. Hepatic elastography was performed during the first week of life using pSWE and 2D-SWE with both convex and linear probes. Clinical and technical neonatal variables were recorded. Liver stiffness values were analyzed in relation to gestational age, birth weight, and sex. Linear regression models were applied to assess associations, considering p-values < 0.05 as statistically significant. Results: After applying exclusion criteria, valid liver stiffness measurements were obtained in 208 cases with pSWE, 224 with 2D-SWE (convex probe), and 222 with 2D-SWE (linear probe). A statistically significant inverse association between liver stiffness and gestational age (p < 0.03) was observed across all techniques except for 2D-SWE with the linear probe. Only 2D-SWE with the convex probe showed a significant association with birth weight. No significant differences were observed based on neonatal sex. The 2D-SWE technique with the convex probe demonstrated significantly shorter examination times compared to pSWE (p < 0.001). Conclusions: Neonatal liver stiffness measured by pSWE and 2D-SWE with a convex probe shows an inverse correlation with gestational age, potentially reflecting the structural and functional maturation of the liver. These techniques are safe, reliable, and provide useful information for distinguishing normal findings in preterm neonates from early hepatic pathology. The values obtained represent a valuable reference for clinical hepatic assessment in the neonatal period. Full article
(This article belongs to the Special Issue Multiparametric Ultrasound Techniques for Liver Disease Assessments)
Show Figures

Figure 1

22 pages, 9122 KiB  
Article
Computational Mechanics of Polymeric Materials PEEK and PEKK Compared to Ti Implants for Marginal Bone Loss Around Oral Implants
by Mohammad Afazal, Saba Afreen, Vaibhav Anand and Arnab Chanda
Prosthesis 2025, 7(4), 93; https://doi.org/10.3390/prosthesis7040093 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative [...] Read more.
Background/Objectives: Dental practitioners widely use dental implants to treat traumatic cases. Titanium implants are currently the most popular choice among dental practitioners and surgeons. The discovery of newer polymeric materials is also influencing the interest of dental professionals in alternative options. A comparative study between existing titanium implants and newer polymeric materials can enhance professionals’ ability to select the most suitable implant for a patient’s treatment. This study aimed to investigate material property advantages of high-performance thermoplastic biopolymers such as PEEK and PEKK, as compared to the time-tested titanium implants, and to find the most suitable and economically fit implant material. Methods: Three distinct implant material properties were assigned—PEEK, PEKK, and commercially pure titanium (CP Ti-55)—to dental implants measuring 5.5 mm by 9 mm, along with two distinct titanium (TI6AL4V) abutments. Twelve three-dimensional (3D) models of bone blocks, representing the mandibular right molar area with Osseo-integrated implants were created. The implant, abutment, and screw were assumed to be linear; elastic, isotropic, and orthotropic properties were attributed to the cancellous and cortical bone. Twelve model sets underwent a three-dimensional finite element analysis to evaluate von Mises stress and total deformation under 250 N vertical and oblique (30 degree) loads on the top surface of each abutment. Results: The study revealed that the time-tested titanium implant outperforms PEEK and PEKK in terms of marginal bone preservation, while PEEK outperforms PEKK. Conclusions: This study will assist dental practitioners in selecting implants from a variety of available materials and will aid researchers in their future research. Full article
Show Figures

Figure 1

7 pages, 254 KiB  
Editorial
Novel Polymer Gels: Synthesis, Properties, and Applications
by Amin Babaei-Ghazvini
Gels 2025, 11(8), 598; https://doi.org/10.3390/gels11080598 (registering DOI) - 1 Aug 2025
Abstract
Polymer gels are a versatile class of soft, semi-solid materials characterized by a three-dimensional cross-linked network that can absorb significant amounts of solvent [...] Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
10 pages, 1103 KiB  
Article
Shock Wave Pressure Measurement and Calibration Method Based on Bar Pressure Sensor
by Yong-Xiang Shi, Ying-Cheng Peng, Yuan-Ding Xing, Xue-Jie Jiao, Xiao-Fei Huang and Ze-Qun Ba
Sensors 2025, 25(15), 4743; https://doi.org/10.3390/s25154743 (registering DOI) - 1 Aug 2025
Abstract
In order to correctly measure the shock wave pressure generated by a near-field explosion, and while considering the limitations of the measurement and calibration method of the current bar pressure sensor, an improved shock wave pressure measurement method was designed based on a [...] Read more.
In order to correctly measure the shock wave pressure generated by a near-field explosion, and while considering the limitations of the measurement and calibration method of the current bar pressure sensor, an improved shock wave pressure measurement method was designed based on a bar pressure sensor combined with photon Doppler velocimetry (PDV) and strain measurement. By measuring the strain on the pressure bar and the particle velocity on the rear-end face, the shock wave pressure applied on the front-end face of the pressure bar was calculated based on one-dimensional stress wave theory. On the other hand, a calibration method was designed to validate the reliability of the test system. Based on the split-Hopkinson pressure bar (SHPB) loading experiment, the transmission characteristics of stress wave in the bar and the accuracy of the system test results were verified. The results indicated that the stress wave measurement results were consistent with the one-dimensional elementary theoretical calculation results of stress wave propagation in different wave-impedance materials, and the peak deviation measured by PDV and strain measurement method was less than 1.5%, which proved the accuracy of the test method and the feasibility of the calibration method. Full article
(This article belongs to the Special Issue Sensors for Characterization of Energetic Materials Effects)
Show Figures

Figure 1

16 pages, 7560 KiB  
Article
High-Performance Sodium Alginate Fiber-Reinforced Polyvinyl Alcohol Hydrogel for Artificial Cartilage
by Lingling Cui, Yifan Lu, Jun Wang, Haiqin Ding, Guodong Jia, Zhiwei Li, Guang Ji and Dangsheng Xiong
Coatings 2025, 15(8), 893; https://doi.org/10.3390/coatings15080893 (registering DOI) - 1 Aug 2025
Abstract
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were [...] Read more.
Hydrogels, especially Polyvinyl alcohols, have received extensive attention as alternative materials for articular cartilage. Aiming at the problems such as low strength and poor toughness of polyvinyl alcohol hydrogels in practical applications, an enhancement and modification strategy is proposed. Sodium alginate fibers were introduced into polyvinyl alcohol hydrogel network through physical blending and freezing/thawing methods. The prepared composite hydrogels exhibited a three-dimensional porous network structure similar to that of human articular cartilage. The mechanical and tribological properties of hydrogels have been significantly improved, due to the multiple hydrogen bonding interaction between sodium alginate fibers and polyvinyl alcohol. Most importantly, under a load of 2 N, the friction coefficient of the PVA/0.4SA hydrogel can remain stable at 0.02 when lubricated in PBS buffer for 1 h. This work provides a novel design strategy for the development of high-performance polyvinyl alcohol hydrogels. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

28 pages, 3834 KiB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 (registering DOI) - 1 Aug 2025
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

35 pages, 2730 KiB  
Review
Deep Learning and NLP-Based Trend Analysis in Actuators and Power Electronics
by Woojun Jung and Keuntae Cho
Actuators 2025, 14(8), 379; https://doi.org/10.3390/act14080379 (registering DOI) - 1 Aug 2025
Abstract
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed [...] Read more.
Actuators and power electronics are fundamental components of modern control systems, enabling high-precision functionality, enhanced energy efficiency, and sophisticated automation. This study investigates evolving research trends and thematic developments in these areas spanning the last two decades (2005–2024). This study analyzed 1840 peer-reviewed abstracts obtained from the Web of Science database using BERTopic modeling, which integrates transformer-based sentence embeddings with UMAP for dimensionality reduction and HDBSCAN for clustering. The approach also employed class-based TF-IDF calculations, intertopic distance visualization, and hierarchical clustering to clarify topic structures. The analysis revealed a steady increase in research publications, with a marked surge post-2015. From 2005 to 2014, investigations were mainly focused on established areas including piezoelectric actuators, adaptive control, and hydraulic systems. In contrast, the 2015–2024 period saw broader diversification into new topics such as advanced materials, robotic mechanisms, resilient systems, and networked actuator control through communication protocols. The structural topic analysis indicated a shift from a unified to a more differentiated and specialized spectrum of research themes. This study offers a rigorous, data-driven outlook on the increasing complexity and diversity of actuator and power electronics research. The findings are pertinent for researchers, engineers, and policymakers aiming to advance state-of-the-art, sustainable industrial technologies. Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
Show Figures

Figure 1

20 pages, 2954 KiB  
Article
Static Analysis of Temperature-Dependent FGM Spherical Shells Under Thermo-Mechanical Loads
by Zhong Zhang, Zhiting Feng, Zhan Shi, Honglei Xie, Ying Sun, Zhenyuan Gu, Jie Xiao and Jiajing Xu
Buildings 2025, 15(15), 2709; https://doi.org/10.3390/buildings15152709 (registering DOI) - 31 Jul 2025
Abstract
Static analysis is conducted for functionally graded material (FGM) spherical shells under thermo-mechanical loads, based on the three-dimensional thermo-elasticity theory. The material properties, which vary with both the radial coordinate and temperature, introduce nonlinearity to the problem. To address this, a layer model [...] Read more.
Static analysis is conducted for functionally graded material (FGM) spherical shells under thermo-mechanical loads, based on the three-dimensional thermo-elasticity theory. The material properties, which vary with both the radial coordinate and temperature, introduce nonlinearity to the problem. To address this, a layer model is proposed, wherein the shell is discretized into numerous concentric spherical layers, each possessing uniform material properties. Within this framework, the nonlinear heat conduction equations are first solved iteratively. The resulting temperature field is then applied to the thermo-elastic equations, which are subsequently solved using a combined state space and transfer matrix method to obtain displacement and stress solutions. Comparison with existing literature results demonstrates good agreement. Finally, a parametric study is presented to investigate the effects of material temperature dependence and gradient index on the thermo-mechanical behaviors of the FGM spherical shells. Full article
Show Figures

Figure 1

25 pages, 2982 KiB  
Review
Residual Stresses in Metal Manufacturing: A Bibliometric Review
by Diego Vergara, Pablo Fernández-Arias, Edwan Anderson Ariza-Echeverri and Antonio del Bosque
Materials 2025, 18(15), 3612; https://doi.org/10.3390/ma18153612 (registering DOI) - 31 Jul 2025
Abstract
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 [...] Read more.
The growing complexity of modern manufacturing has intensified the need for precise control of residual stresses to ensure structural reliability, dimensional stability, and material performance. This study conducts a bibliometric review using data from Scopus and Web of Science, covering publications from 2019 to 2024. Residual stress research in metal manufacturing has gained prominence, particularly in relation to welding, additive manufacturing, and machining—processes that induce significant stress gradients affecting mechanical behavior and service life. Emerging trends focus on simulation-based prediction methods, such as the finite element method, heat treatment optimization, and stress-induced defect prevention. Key thematic clusters include process-induced microstructural changes, mechanical property enhancement, and the integration of modeling with experimental validation. By analyzing the evolution of research output, global collaboration networks, and process-specific contributions, this review provides a comprehensive overview of current challenges and identifies strategic directions for future research in residual stress management in advanced metal manufacturing. Full article
Show Figures

Figure 1

37 pages, 7777 KiB  
Review
Cement-Based Electrochemical Systems for Structural Energy Storage: Progress and Prospects
by Haifeng Huang, Shuhao Zhang, Yizhe Wang, Yipu Guo, Chao Zhang and Fulin Qu
Materials 2025, 18(15), 3601; https://doi.org/10.3390/ma18153601 (registering DOI) - 31 Jul 2025
Abstract
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material [...] Read more.
Cement-based batteries (CBBs) are an emerging category of multifunctional materials that combine structural load-bearing capacity with integrated electrochemical energy storage, enabling the development of self-powered infrastructure. Although previous reviews have explored selected aspects of CBB technology, a comprehensive synthesis encompassing system architectures, material strategies, and performance metrics remains insufficient. In this review, CBB systems are categorized into two representative configurations: probe-type galvanic cells and layered monolithic structures. Their structural characteristics and electrochemical behaviors are critically compared. Strategies to enhance performance include improving ionic conductivity through alkaline pore solutions, facilitating electron transport using carbon-based conductive networks, and incorporating redox-active materials such as zinc–manganese dioxide and nickel–iron couples. Early CBB prototypes demonstrated limited energy densities due to high internal resistance and inefficient utilization of active components. Recent advancements in electrode architecture, including nickel-coated carbon fiber meshes and three-dimensional nickel foam scaffolds, have achieved stable rechargeability across multiple cycles with energy densities surpassing 11 Wh/m2. These findings demonstrate the practical potential of CBBs for both energy storage and additional functionalities, such as strain sensing enabled by conductive cement matrices. This review establishes a critical basis for future development of CBBs as multifunctional structural components in infrastructure applications. Full article
Show Figures

Figure 1

11 pages, 1401 KiB  
Communication
Graphene-Enhanced FePO4 Composites with Superior Electrochemical Performance for Lithium-Ion Batteries
by Jinde Yu, Shuchun Hu, Yaohan Zhang, Yin Liu, Wenjuan Ren, Aipeng Zhu, Yanqi Feng, Zhe Wang, Dunan Rao, Yuqin Yang, Heng Zhang, Runhan Liu and Shunying Chang
Materials 2025, 18(15), 3604; https://doi.org/10.3390/ma18153604 (registering DOI) - 31 Jul 2025
Viewed by 37
Abstract
In this study, we successfully synthesized olivine-type FePO4 via an in situ oxidation method and further developed two composite cathode materials (o-FePO4-1/GR-1 and o-FePO4-1/GR-2) by incorporating graphene. The composites were characterized using scanning electron microscopy (SEM), X-ray diffraction [...] Read more.
In this study, we successfully synthesized olivine-type FePO4 via an in situ oxidation method and further developed two composite cathode materials (o-FePO4-1/GR-1 and o-FePO4-1/GR-2) by incorporating graphene. The composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS), revealing a three-dimensional porous layered structure with an enhanced surface area and strong interaction between FePO4 nanoparticles and graphene layers. Electrochemical tests demonstrated that the composite electrodes exhibited significantly improved performance compared to pristine FePO4, with discharge capacities of 147 mAh g−1 at 1C and 163 mAh g−1 at 0.1C for o-FePO4-1/GR-2, approaching the level of LiFePO4. The incorporation of graphene effectively enhanced the electrochemical reaction kinetics, highlighting the innovation of our method in developing high-performance cathode materials for lithium-ion batteries. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 49
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

Back to TopTop