Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = 2,5-dimethyl furan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1354 KiB  
Article
Profiling of Volatile Organic Compounds, Including Halogenated Substances, in Okinawan Red Alga Portieria hornemannii
by Kazuki Tani, Yu Sasaki, Takahiro Ishii and Yonathan Asikin
Molecules 2025, 30(12), 2534; https://doi.org/10.3390/molecules30122534 - 10 Jun 2025
Viewed by 503
Abstract
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) [...] Read more.
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) and halogenated secondary metabolites using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) at various extraction temperatures. HS-SPME-GC-MS analysis revealed 52 VOCs in Okinawan P. hornemannii, including predominant compounds α-pinenyl bromide (IUPAC name: 2-bromomethyl-6,6-dimethylbicyclo [3.1.1]hept-2-ene; halogenated monoterpene), myrcene disulfide (3-(6-methyl-2-methylidenehept-5-enylidene)dithiirane), and 5,6-dimethyl-1H-benzimidazole, the content of which in the extract increased with increasing extraction temperature from 30 to 60 °C. On the other hand, the β-myrcene (7-methyl-3-methyleneocta-1,6-diene) content, which likely contributes majorly to the distinct fresh odour of the algae, declined as the temperature increased. Furthermore, the proportion of β-myrcene obtained using SPME was significantly higher than that extracted using solvent liquid extraction (SLE) (7.20% in SPME at 30 °C vs. 0.09%, respectively). However, SLE-GC-MS provided a different P. hornemannii volatile profile, allowing for the acquisition of more furan-, alcohol-, ester-, and carboxylic acid-containing compounds. These data provide valuable information, such as a systematic analytical framework for volatiles profiling in the marine macroalgae P. hornemannii, with potential applicability in the development of food and fragrance products. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

14 pages, 4453 KiB  
Article
Research on Taste and Aroma Characteristics of Dahongpao Tea with Different Grades
by Xiaomin Pang, Jishuang Zou, Pengyao Miao, Weiting Cheng, Zewei Zhou, Xiaoli Jia, Haibin Wang, Yuanping Li, Qi Zhang and Jianghua Ye
Chemosensors 2025, 13(4), 134; https://doi.org/10.3390/chemosensors13040134 - 7 Apr 2025
Viewed by 691
Abstract
This study aimed to thoroughly investigate the quality differences and influencing factors of Dahongpao tea of different grades. Through sensory evaluation, electronic nose analysis, electronic tongue analysis, biochemical component analysis, and HS-SPME-GC-MS, the taste and aroma characteristics of Dahongpao samples of different grades [...] Read more.
This study aimed to thoroughly investigate the quality differences and influencing factors of Dahongpao tea of different grades. Through sensory evaluation, electronic nose analysis, electronic tongue analysis, biochemical component analysis, and HS-SPME-GC-MS, the taste and aroma characteristics of Dahongpao samples of different grades (superfine, first, and second grades) were comprehensively studied. The results showed that there were significant differences in sensory quality, aroma components, and taste components among Dahongpao of different grades. Superfine Dahongpao has a rich aroma and mellow taste, containing a higher content of esters and aromatic hydrocarbons such as benzaldehyde (2-hydroxy-5-methoxy), hexyl benzoate, and cyclohexanecarboxylic acid 2,3-dichlorophenyl ester, which endow it with fruity, floral, and woody characteristics. In contrast, first- and second-grade Dahongpao contain more alkanes, pyrazines, and furans such as benzene (1-ethyl-1-propenyl), dodecane (2,6,10-trimethyl), and pyrazine (2,6-dimethyl), which impart floral, roasted, and nutty flavors. Moreover, superfine Dahongpao has a more bitter and astringent taste, but the bitterness and astringency dissipate more quickly, while the taste of first- and second-grade Dahongpao is relatively bland. These differences provide a scientific basis for the grade classification of Dahongpao tea and offer references for improving tea quality and standardized production. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Figure 1

19 pages, 9067 KiB  
Review
The Aroma of Non-Fermented and Fermented Dry-Cured Meat Products: Savory and Toasted Odors
by Lei Li, Carmela Belloch and Mónica Flores
Foods 2025, 14(5), 881; https://doi.org/10.3390/foods14050881 - 5 Mar 2025
Viewed by 1445
Abstract
Volatile chemicals containing nitrogen and sulfur as key odors in dry-cured meat products have extremely low odor thresholds. These compounds play an important part in the overall uniqueness and characteristic flavor of dry-cured meat products, contributing to savory and toasted aroma sensations, respectively. [...] Read more.
Volatile chemicals containing nitrogen and sulfur as key odors in dry-cured meat products have extremely low odor thresholds. These compounds play an important part in the overall uniqueness and characteristic flavor of dry-cured meat products, contributing to savory and toasted aroma sensations, respectively. In this review, we define the different volatiles and aroma compounds related to the flavor of dry-cured meat products. Moreover, the main differences regarding volatiles, aromas, and flavor profiles from non-fermented and fermented dry-cured meat products are summarized. Comparisons using the same volatile extraction techniques revealed that dry loins contained the most sulfur- and nitrogen-containing compounds, while complex flavor and aroma compounds in fermented sausages were greatly impacted by the fermentation process. The screening and quantification of savory and toasted odors showed that methionol, dimethyl sulfide, and 2-methyl-3-(methylthio)furan were mainly reported in non-fermented products, whereas pyrazines were mainly detected in fermented meat products. Finally, the different mechanisms in the generation of savory and toasted aromas, including chemical reactions and biochemical reactions by microorganisms (bacteria, yeast, and molds), are discussed. These discussions will help to better understand the complex flavor of dry-cured meat products. Full article
Show Figures

Figure 1

13 pages, 3412 KiB  
Article
Furan-Indole-Chromenone-Based Organic Photocatalyst for α-Arylation of Enol Acetate and Free Radical Polymerization Under LED Irradiation
by Aurélien Galibert-Guijarro, Adel Noon, Joumana Toufaily, Tayssir Hamieh, Eric Besson, Stéphane Gastaldi, Jacques Lalevée and Laurence Feray
Molecules 2025, 30(2), 265; https://doi.org/10.3390/molecules30020265 - 11 Jan 2025
Viewed by 1230
Abstract
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate [...] Read more.
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative (FIC) as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of bis-(4-tert-butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials FIC*/FIC●− (+2.64 V vs. SCE) and FIC●+/FIC* (−2.41 V vs. SCE) offered by this photocatalyst are revealed. The chemical mechanisms that govern the radical chemistry are discussed by means of different techniques, including fluorescence-quenching experiments, UV-visible absorption and fluorescence spectroscopy, and cyclic voltammetry analysis. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

20 pages, 5129 KiB  
Article
Characterization of the Interaction of a Novel Anticancer Molecule with PMMA, PCL, and PLGA Polymers via Computational Chemistry
by Edwar D. Montenegro, Jamylle M. Nunes, Igor F. S. Ramos, Renata G. Almeida, Eufrânio N. da Silva Júnior, Márcia S. Rizzo, Edson C. da Silva-Filho, Alessandra B. Ribeiro, Heurison S. Silva and Marcília P. Costa
Appl. Sci. 2025, 15(1), 468; https://doi.org/10.3390/app15010468 - 6 Jan 2025
Viewed by 1329
Abstract
The development of anticancer drugs is costly and time intensive. Computational approaches optimize the process by studying molecules such as naphthoquinones. This research explores the quantitative structure–activity relationship (QSPR) and molecular interactions among 2,2-dimethyl-3-((3-nitrophenyl)amino)-2,3-dihydronaphtho[1,2-b]furan-4,5-dione (QPhNO2), a Nor-β-Lapachone derivative with [...] Read more.
The development of anticancer drugs is costly and time intensive. Computational approaches optimize the process by studying molecules such as naphthoquinones. This research explores the quantitative structure–activity relationship (QSPR) and molecular interactions among 2,2-dimethyl-3-((3-nitrophenyl)amino)-2,3-dihydronaphtho[1,2-b]furan-4,5-dione (QPhNO2), a Nor-β-Lapachone derivative with anticancer properties, and the following polymers for nanoencapsulation: polymethyl methacrylate (PMMA), polycaprolactone (PCL), and poly-lactic-co-glycolic acid (PLGA). Spartan 14 optimized the compounds using density functional theory (DFT), while ArgusLab performed docking, and Discovery Studio analyzed post-docking results. Simulations indicated that polymers with larger energy gaps are more stable and less prone to deformation than QPhNO2, facilitating interaction with polymer chains. The binding energies for PMMA/QPhNO2, PCL/QPhNO2, and PLGA/QPhNO2 interactions were −4.607, −4.437, and −1.814 kcal/mol, respectively. Docking analysis revealed non-bonded interactions between polymers and QPhNO2. These findings highlight the role of computational methods in nanoencapsulation and molecular characterization, guiding the development of future analogs and combinations. Full article
Show Figures

Figure 1

18 pages, 4163 KiB  
Article
Study on Impact of Monomers Towards High Molecular Weight Bio-Based Poly(ethylene Furanoate) via Solid State Polymerization Technique
by Johan Stanley, Eleftheria Xanthopoulou, Margaritis Kostoglou, Lidija Fras Zemljič, Dimitra A. Lambropoulou and Dimitrios N. Bikiaris
Polymers 2024, 16(23), 3305; https://doi.org/10.3390/polym16233305 - 26 Nov 2024
Cited by 1 | Viewed by 1590
Abstract
In recent years, bio-based poly(ethylene furanoate) has gained the attention of packaging industries owing to its remarkable properties as a promising alternative to fossil-based polymers. It is necessary to synthesize high-molecular-weight polymers using effective and straightforward techniques for their commercialization. In this present [...] Read more.
In recent years, bio-based poly(ethylene furanoate) has gained the attention of packaging industries owing to its remarkable properties as a promising alternative to fossil-based polymers. It is necessary to synthesize high-molecular-weight polymers using effective and straightforward techniques for their commercialization. In this present work, poly(ethylene 2,5-furan dicarboxylate) (PEF) was produced with a high molecular weight of 0.43 dL/g using 2,5-furan dicarboxylic acid (FDCA) or its derivative Dimethyl-2,5-Furan dicarboxylate (DMFD), followed by solid-state polymerization (SSP) conducted at different temperatures and reaction times. The intrinsic viscosity ([η]), carboxyl end-group concentration (–COOH), and thermal properties of the produced polyesters were evaluated using differential scanning calorimetry (DSC). The results indicated that the SSP process improved the melting temperature and crystallinity of both the PEF samples as the reaction times and temperatures increased, as corroborated by DSC and X-ray diffraction (XRD) analyses. Additionally, both intrinsic viscosity and number-average molecular weight saw an increase with longer SSP durations and higher temperatures, while the concentration of carboxyl end groups decreased, aligning with expectations. The overall results indicate that PEF (DMFD) samples exhibited a significant increase in crystallization and molecular weight, attributed to their lower degree of crystallinity and their monomer’s high purity. Full article
(This article belongs to the Special Issue Advances in Sustainable Polymeric Materials, 3rd Edition)
Show Figures

Figure 1

22 pages, 4635 KiB  
Review
Recent Trends in the Synthesis of Monomers for Furanoate Polyesters and Their Nanocomposites’ Fabrication as a Sustainable Packaging Material
by Johan Stanley, Lidija Fras Zemljič, Dimitra A. Lambropoulou and Dimitrios N. Bikiaris
Sustainability 2024, 16(19), 8632; https://doi.org/10.3390/su16198632 - 5 Oct 2024
Cited by 3 | Viewed by 2434
Abstract
Furanoate polyesters are an extremely promising new class of materials for packaging applications, particularly furanoate-based nanocomposites, which have gained a high interest level in research and development in both academia and industries. The monomers utilised for the synthesis of furanoate-based polyesters were derived [...] Read more.
Furanoate polyesters are an extremely promising new class of materials for packaging applications, particularly furanoate-based nanocomposites, which have gained a high interest level in research and development in both academia and industries. The monomers utilised for the synthesis of furanoate-based polyesters were derived from lignocellulosic biomass, which is essential for both eco-friendliness and sustainability. Also, these polyesters have a lower carbon footprint compared to fossil-based plastics, contributing to greenhouse gas reduction. The furanoate-based nanocomposites exhibit enhanced performance characteristics, such as high thermal stability, excellent mechanical strength, superior barrier resistance, and good bacteriostatic rate, making them suitable for a wide range of industrial applications, especially for food-packaging applications. This paper reviews the recent trends in the synthesis routes of monomers, such as the various catalytic activities involved in the oxidation of 5(hydroxymethyl)furfural (HMF) into 2,5-furandicarboxylic acid (FDCA) and its ester, dimethyl furan-2,5-dicarboxylate (DMFD). In addition, this review explores the fabrication of different furanoate-based nanocomposites prepared by in situ polymerization, by melt mixing or solvent evaporation methods, and by using different types of nanoparticles to enhance the overall material properties of the resulting nanocomposites. Emphasis was given to presenting the effect of these nanoparticles on the furanoate polyester’s properties. Full article
Show Figures

Figure 1

18 pages, 10096 KiB  
Article
Volatile Organic Compounds Produced by Trichoderma asperellum with Antifungal Properties against Colletotrichum acutatum
by Mauricio Nahuam Chávez-Avilés, Margarita García-Álvarez, José Luis Ávila-Oviedo, Irving Hernández-Hernández, Paula Itzel Bautista-Ortega and Lourdes Iveth Macías-Rodríguez
Microorganisms 2024, 12(10), 2007; https://doi.org/10.3390/microorganisms12102007 - 3 Oct 2024
Cited by 5 | Viewed by 1839
Abstract
Managing plant diseases caused by phytopathogenic fungi, such as anthracnose caused by Colletotrichum species, is challenging. Different methods have been used to identify compounds with antibiotic properties. Trichoderma strains are a source of novel molecules with antifungal properties, including volatile organic compounds (VOCs), [...] Read more.
Managing plant diseases caused by phytopathogenic fungi, such as anthracnose caused by Colletotrichum species, is challenging. Different methods have been used to identify compounds with antibiotic properties. Trichoderma strains are a source of novel molecules with antifungal properties, including volatile organic compounds (VOCs), whose production is influenced by the nutrient content of the medium. In this study, we assessed the VOCs produced in dual confrontation systems performed in two culture media by Trichoderma strains (T. atroviride IMI206040, T. asperellum T1 and T3, and Trichoderma sp. T2) on Colletotrichum acutatum. We analysed the VOC profiles using gas chromatography coupled with mass spectrometry. The Luria Bertani (LB) medium stimulated the production of VOCs with antifungal properties in most systems. We identified 2-pentyl furan, dimethyl disulfide, and α-phellandrene and determined their antifungal activity in vitro. The equimolar mixture of those VOCs (250 µM ea.) resulted in 14% C. acutatum diametral growth inhibition. The infective ability and disease severity caused by the mycelia exposed to the VOCs mixture were notably diminished in strawberry leaves. Application of these VOCs as biofumigants may contribute to the management of anthracnose. LB represents a feasible strategy for identifying novel VOCs produced by Trichoderma strains with antifungal properties. Full article
(This article belongs to the Special Issue Colletotrichum Pathogens in Plants)
Show Figures

Figure 1

17 pages, 8873 KiB  
Article
Effect of Isolated Scenting Process on the Aroma Quality of Osmanthus Longjing Tea
by Jianyong Zhang, Yuxiao Mao, Yongquan Xu, Zhihui Feng, Yuwan Wang, Jianxin Chen, Yun Zhao, Hongchun Cui and Junfeng Yin
Foods 2024, 13(18), 2985; https://doi.org/10.3390/foods13182985 - 20 Sep 2024
Cited by 4 | Viewed by 1518
Abstract
Scenting is an important process for the formation of aroma quality in floral Longjing tea. There are differences in the aroma quality of osmanthus Longjing teas processed by different scenting processes. The efficient isolated scenting method was employed to process a new product [...] Read more.
Scenting is an important process for the formation of aroma quality in floral Longjing tea. There are differences in the aroma quality of osmanthus Longjing teas processed by different scenting processes. The efficient isolated scenting method was employed to process a new product of osmanthus Longjing tea in this study, and this was compared with the traditional scenting method. The volatile compounds of osmanthus Longjing tea were analyzed by a GC-MS instrument. In addition, the effects of scenting time and osmanthus consumption on the aroma quality of Longjing tea were studied. The results indicated that there were 67 kinds of volatile compounds in the osmanthus Longjing tea produced by the isolated scenting process (O-ISP), osmanthus Longjing tea produced by the traditional scenting process (O-TSP), and raw Longjing tea embryo (R), including alcohols, ketones, esters, aldehydes, olefins, acids, furans, and other aroma compounds. The proportions of alcohol compounds, ester compounds, aldehyde compounds, and ketone compounds in O-ISP were higher than in O-TSP and R. When the osmanthus consumption was increased, the relative contents of volatile aroma compounds gradually increased, which included the contents of trans-3,7-linalool oxide II, dehydrolinalool, linalool oxide III (furan type), linalool oxide IV (furan type), 2,6-Dimethyl cyclohexanol, isophytol, geraniol, 1-octene-3-alcohol, cis-2-pentenol, trans-3-hexenol, β-violet alcohol, 1-pentanol, benzyl alcohol, trans-p-2-menthene-1-alcohol, nerol, hexanol, terpineol, 6-epoxy-β-ionone, 4,2-butanone, 2,3-octanedione, methyl stearate, cis-3-hexenyl wasobutyrate, and dihydroanemone lactone. When the scenting time was increased, the relative contents of aroma compounds gradually increased, which included the contents of 2-phenylethanol, trans-3,7-linalool oxide I, trans-3,7-linalool oxide II, dehydrolinalool, isophytol, geraniol, trans-3-hexenol, β-ionol, benzyl alcohol, trans-p-2-menthene-1-ol, nerol, hexanol, terpineol, dihydroβ-ionone, α-ionone, and β-ionone,6,10. The isolated scenting process could achieve better aroma quality in terms of the floral fragrance, refreshing fragrance, and tender fragrance than the traditional scenting process. The isolated scenting process was suitable for processing osmanthus Longjing tea with high aroma quality. This study was hoped to provide a theoretical base for the formation mechanism and control of quality of osmanthus Longjing tea. Full article
(This article belongs to the Special Issue Tea: Processing Techniques, Flavor Chemistry and Health Benefits)
Show Figures

Figure 1

6 pages, 911 KiB  
Short Note
(E)-1-(5-(Hydroxymethyl) furan-2-yl)-4,4-dimethylpent-1-en-3-one
by Zhongwei Wang, Luxiao Zhou, Peng He and Yukun Qin
Molbank 2024, 2024(2), M1818; https://doi.org/10.3390/M1818 - 7 May 2024
Viewed by 1991
Abstract
This study presents a novel approach in the realm of catalytic organic synthesis by integrating biomass catalytic conversion with organic synthesis techniques. Utilizing N-acetylglucosamine as the primary feedstock, the first phase of the research involves its catalytic transformation into 5-hydroxymethylfurfural (HMF). The [...] Read more.
This study presents a novel approach in the realm of catalytic organic synthesis by integrating biomass catalytic conversion with organic synthesis techniques. Utilizing N-acetylglucosamine as the primary feedstock, the first phase of the research involves its catalytic transformation into 5-hydroxymethylfurfural (HMF). The subsequent phase employs a condensation reaction between HMF and 3,3-Dimethyl-2-butanone to synthesize a new compound, (E)-1-(5-(hydroxymethyl) furan-2-yl)-4,4-dimethylpent-1-en-3-one. This two-step process not only demonstrates the feasibility of converting biomass into valuable chemical precursors but also exemplifies the synthesis of novel compounds through green chemistry principles. The successful execution of this methodology offers fresh insights and opens new avenues for advancements in catalytic organic synthesis, emphasizing sustainability and efficiency. Full article
Show Figures

Figure 1

14 pages, 2535 KiB  
Article
Effects of Reducing Sugars on Colour, Amino Acids, and Volatile Flavour Compounds in Thermally Treated Minced Chicken Carcass Hydrolysate
by Xing Zhang and Shao-Quan Liu
Foods 2024, 13(7), 991; https://doi.org/10.3390/foods13070991 - 24 Mar 2024
Cited by 2 | Viewed by 2175
Abstract
This study investigated the changes in colour, amino acids, and volatile flavour compounds in the enzymatic hydrolysates of chicken carcasses containing different types and amounts of reducing sugars (xylose, arabinose, glucose, and fructose), so as to develop a chicken-based flavouring agent. Before heat [...] Read more.
This study investigated the changes in colour, amino acids, and volatile flavour compounds in the enzymatic hydrolysates of chicken carcasses containing different types and amounts of reducing sugars (xylose, arabinose, glucose, and fructose), so as to develop a chicken-based flavouring agent. Before heat treatment at 100 °C for 60 min, the chosen reducing sugars were separately added to the chicken carcass hydrolysate at its natural pH. Pentoses decreased pH more significantly than hexoses in the chicken carcass hydrolysate. The browning degree followed the pattern of pH decline, as pentoses caused more intense browning than hexoses, with xylose dosage having the greatest effect on the colour changes (ΔE). Fructose addition notably reduced free amino acids (FAAs) and cystine contents. Furthermore, phenylalanine decreased with increasing dosages of arabinose, xylose, and fructose. Glutamic acid content decreased significantly with fructose addition but showed insignificant changes with xylose. At the same dosage, the addition of pentoses resulted in the production of more sulphur-containing volatile compounds like methional, 2-[(methylthio) methyl] furan, and dimethyl disulphide than hexoses. Methional and furfural, which provide a roasted, savoury flavour, were produced by adding more xylose. Heat treatment with xylose also removed hexanal, the main off-odourant. Full article
Show Figures

Figure 1

15 pages, 4077 KiB  
Article
Unraveling the Formation Mechanism of Egg’s Unique Flavor via Flavoromics and Lipidomics
by Zheng Zhou, Shuang Cui, Jing Che, Yuying Zhang, Dayong Zhou, Xuhui Huang and Lei Qin
Foods 2024, 13(2), 226; https://doi.org/10.3390/foods13020226 - 10 Jan 2024
Cited by 8 | Viewed by 2942
Abstract
Egg products after thermal treatment possess a unique flavor and are favored by consumers. In this study, the key aroma-active compounds of egg yolk products and their formation mechanism during thermal treatment were investigated. The volatile aroma compounds in egg yolks were monitored [...] Read more.
Egg products after thermal treatment possess a unique flavor and are favored by consumers. In this study, the key aroma-active compounds of egg yolk products and their formation mechanism during thermal treatment were investigated. The volatile aroma compounds in egg yolks were monitored using an electronic nose, gas chromatography-mass spectrometry (GC–MS) and gas chromatography–olfactometry–mass spectrometry (GC–O–MS), and the lipid molecular species were explored using ultra-high-performance liquid chromatography– mass spectrometry with a Q-Exactive HF-X Orbitrap (UPLC-Q-Exactive HF-X). A total of 68 volatile compounds were identified. Boiled eggs mainly derived their flavor from hexanal, 2-pentyl-furan, 2-butanone, 3-methyl-butanal and heptane. Meanwhile, fried eggs relied mainly on 14 compounds, the most important of which were 2-ethyl-3-methyl-pyrazine, 3-ethyl-2,5-dimethyl-pyrazine, 2-ethyl-3,5-dimethyl-pyrazine, nonanal and 2,3-diethyl-5-methyl-pyrazine, providing a baked and burnt sugar flavor. A total of 201 lipid molecules, belonging to 21 lipid subclasses, were identified in egg yolks, and 13 oxidized lipids were characterized using a molecular network. Phosphoethanolamines (PEs) containing polyunsaturated fatty acids were the primary flavor precursors contributing to the development of egg yolks’ flavor, participating in lipid oxidation reactions and the Maillard reaction and regulating the production of aldehydes and pyrazine compounds. This study provides reference and guidance for the development of egg yolk flavor products. Full article
Show Figures

Figure 1

16 pages, 3494 KiB  
Article
Exploring the Connection between the Occurrence and Intensity of “Grubby” Defect and Volatile Composition of Olive Oil
by Karolina Brkić Bubola, Igor Lukić, Marin Krapac and Olivera Koprivnjak
Foods 2023, 12(24), 4473; https://doi.org/10.3390/foods12244473 - 14 Dec 2023
Cited by 2 | Viewed by 1541
Abstract
In order to investigate the relationship between the occurrence of the “grubby” sensory defect caused by olive fruit fly (Bactrocera oleae (Rossi)) infestation and the resulting volatile composition, virgin olive oils were extracted from olives of the Leccino cultivar with 0%, 50%, [...] Read more.
In order to investigate the relationship between the occurrence of the “grubby” sensory defect caused by olive fruit fly (Bactrocera oleae (Rossi)) infestation and the resulting volatile composition, virgin olive oils were extracted from olives of the Leccino cultivar with 0%, 50%, and 100% olive fly infestations and subjected to analysis of the basic chemical quality parameters, fatty acids and volatiles, and sensory analysis by the Panel test. A 100% olive fly infestation reduced the basic chemical quality of the oil, while the fatty acid composition was not affected in any case. The overall sensory quality score and intensity of the positive sensory attributes decreased, while the intensity of the “grubby” defect increased proportionally to the degree of infestation. The occurrence and intensity of this defect were clearly causally related to the concentrations of 3-methylbutanal, 2-methylbutanal, β-ocimene, ethyl 2-methylbutyrate, dimethyl sulfoxide, 4-methyl-5H-furan-2-one, α-farnesene, 6-methyl-5-hepten-2-one, 1-octanol, E-2-nonen-1-ol, benzeneacetaldehyde, heptanal, and octanal, implying that the perception of “grubby“ comes from their joint contribution to the overall olive oil flavour. In addition to contributing to the understanding of the chemical origin of “grubby”, the results obtained could potentially be used to develop strategies to support sensory analysis in the classification of olive oil quality and the confirmation of the presence of this sensory defect in oil samples. Full article
(This article belongs to the Special Issue Advances in Research on Olive Oil Quality, Production and Consumption)
Show Figures

Figure 1

17 pages, 4603 KiB  
Article
Analysis of the Differences in Volatile Organic Compounds in Different Rice Varieties Based on GC-IMS Technology Combined with Multivariate Statistical Modelling
by Jin Chen, Ying Liu, Mi Yang, Xinmin Shi, Yuqin Mei, Juan Li, Chunqi Yang, Shihuang Pu and Jiancheng Wen
Molecules 2023, 28(22), 7566; https://doi.org/10.3390/molecules28227566 - 13 Nov 2023
Cited by 12 | Viewed by 1996
Abstract
In order to investigate the flavour characteristics of aromatic, glutinous, and nonaromatic rice, gas chromatography–ion mobility spectrometry (GC-IMS) was used to analyse the differences in volatile organic compounds (VOCs) amongst different rice varieties. The results showed that 103 signal peaks were detected in [...] Read more.
In order to investigate the flavour characteristics of aromatic, glutinous, and nonaromatic rice, gas chromatography–ion mobility spectrometry (GC-IMS) was used to analyse the differences in volatile organic compounds (VOCs) amongst different rice varieties. The results showed that 103 signal peaks were detected in these rice varieties, and 91 volatile flavour substances were identified. Amongst them, 28 aldehydes (28.89~31.17%), 24 alcohols (34.85~40.52%), 14 ketones (12.26~14.74%), 12 esters (2.30~4.15%), 5 acids (7.80~10.85%), 3 furans (0.30~0.68%), 3 terpenes (0.34~0.64%), and 2 species of ethers (0.80~1.78%) were detected. SIMCA14.1 was used to perform principal component analysis (PCA) and orthogonal partial least squares discriminant analysis, and some potential character markers (VIP > 1) were further screened out of the 91 flavour substances identified based on the variable important projections, including ethanol, 1-hexanol, hexanal, heptanal, nonanal, (E)-2-heptenal, octanal, trans-2-octenal, pentanal, acetone, 6-methyl-5-hepten-2-one, ethyl acetate, propyl acetate, acetic acid, and dimethyl sulphide. Based on the established fingerprint information, combined with principal component analysis and orthogonal partial least squares discriminant analysis, different rice varieties were also effectively classified, and the results of this study provide data references for the improvement in aromatic rice varieties. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

13 pages, 4387 KiB  
Article
Effect of Support on Oxidative Esterification of 2,5-Furandiformaldehyde to Dimethyl Furan-2,5-dicarboxylate
by Tingting Ge, Xiaorui Liu, Jie Tang, Chao Liu and Jiahui Huang
Catalysts 2023, 13(11), 1430; https://doi.org/10.3390/catal13111430 - 13 Nov 2023
Cited by 3 | Viewed by 2068
Abstract
One-step oxidative esterification of 2,5-furandiformaldehyde (DFF) derived from biomass to prepare Dimethyl Furan-2,5-dicarboxylate (FDMC) not only simplifies the catalytic process and increases the purity of the product, but also avoids the polymerization of 5-hydroxymethylfurfural (HMF) at high-temperature conditions. Gold supported on a series [...] Read more.
One-step oxidative esterification of 2,5-furandiformaldehyde (DFF) derived from biomass to prepare Dimethyl Furan-2,5-dicarboxylate (FDMC) not only simplifies the catalytic process and increases the purity of the product, but also avoids the polymerization of 5-hydroxymethylfurfural (HMF) at high-temperature conditions. Gold supported on a series of acidic oxide, alkaline oxide, and hydrotalcite was prepared using colloidal deposition to explore the effect of support on the catalytic activities. The Au/Mg3Al-HT exhibited the best catalytic activity, with 97.8% selectivity of FDMC at 99.9% conversion of DFF. This catalyst is also suitable for oxidative esterification of benzaldehyde and furfural. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and CO2 temperature programmed desorption (CO2-TPD) were performed to characterize the catalysts. The results indicated that the medium and strong basic sites in the catalysts benefited for the absorption of intermediate agents and facilitated the oxidative esterification of aldehyde groups, while neutral or acidic supports tended to produce an acetal reaction. It is worth noting that basicity on the support surface reduced the electronic state of the Au nanoparticle (Auδ−) and, thus, enhanced the catalytic selectivity of oxidative esterification. This finding demonstrated that the support plays a crucial role in oxidative esterification. Full article
Show Figures

Graphical abstract

Back to TopTop