Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = 15O-water PET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3790 KB  
Article
Surface Engineering of PET Fabrics with TiO2 Nanoparticles for Enhanced Antibacterial and Thermal Properties in Medical Textiles
by Muhammad Zaman Khan, Azam Ali, Hadi Taghavian, Jakub Wiener, Jiri Militky and Dana Křemenáková
Textiles 2025, 5(4), 71; https://doi.org/10.3390/textiles5040071 - 18 Dec 2025
Viewed by 362
Abstract
Medical textiles have gained significant attention for their ability to prevent the transmission of infectious diseases while ensuring the safety and comfort of healthcare professionals. This study focuses on modifying the surfaces of polyethylene terephthalate (PET) fabrics with titanium dioxide (TiO2) [...] Read more.
Medical textiles have gained significant attention for their ability to prevent the transmission of infectious diseases while ensuring the safety and comfort of healthcare professionals. This study focuses on modifying the surfaces of polyethylene terephthalate (PET) fabrics with titanium dioxide (TiO2) nanoparticles (NPs) to enhance their antibacterial properties, thermophysiological comfort, and thermal insulation. The effects of varying volumes of the tetraisopropyl orthotitanate precursor on the functional properties of the coated PET fabrics were systematically investigated. The surface morphology was characterized using scanning electron microscopy (SEM). At the same time, the elemental and chemical properties were analyzed through Energy-dispersive spectroscopy (EDS), Raman spectroscopy, and Fourier-transform infrared spectroscopy (FTIR). The TiO2 NPs-coated PET fabrics demonstrated exceptional antibacterial activity against Gram-negative and Gram-positive bacteria and significantly improved thermophysiological comfort. Specifically, thermal resistance increased with a higher density of TiO2 nanoparticles, leading to a decrease in thermal conductivity. Notably, only minimal reductions were observed in relative water vapor permeability (RWVP) and air permeability (AP), indicating that the fabric’s porosity was maintained. Furthermore, the presence of the TiO2 nanolayer on the PET fabric significantly enhanced its thermal stability, providing excellent thermal insulation properties. These findings underscore the potential of TiO2 NPs-coated PET fabrics as promising candidates for advanced medical textile applications, where a balance of protection, comfort, and thermal insulation is essential. Full article
Show Figures

Figure 1

26 pages, 6955 KB  
Article
Recycling of Waste PET into Terephthalic Acid in Neutral Media Catalyzed by the Cracking Zeolite/Alumina Binder Acidic Catalyst
by Shaddad S. Alhamedi, Waheed Al-Masry, Ahmed S. Al-Fatesh, Sajjad Haider, Asif Mahmood, Lahssen El Blidi and Abdulrahman Bin Jumah
Catalysts 2025, 15(11), 1072; https://doi.org/10.3390/catal15111072 - 12 Nov 2025
Viewed by 1086
Abstract
This study addresses the critical issue of environmental pollution from plastic waste by investigating an effective chemical recycling method for polyethylene terephthalate (PET) via neutral catalytic hydrolysis. We utilized a recoverable and regenerable composite catalyst based on cracking zeolite and γ-Al2O [...] Read more.
This study addresses the critical issue of environmental pollution from plastic waste by investigating an effective chemical recycling method for polyethylene terephthalate (PET) via neutral catalytic hydrolysis. We utilized a recoverable and regenerable composite catalyst based on cracking zeolite and γ-Al2O3, which possesses both Brønsted and Lewis acidic sites that facilitate the depolymerization of PET into its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). This investigation reveals that the catalytic performance is strongly dependent on the total acid site concentration and the specific nature of these sites. A key finding is that a balanced acidic profile with a high proportion of Brønsted acid sites is crucial for enhancing PET hydrolysis attributed to a significant decrease in the activation energy of the reaction. The experiments were conducted in a stirred stainless-steel autoclave reactor, where key parameters such as temperature (210–230 °C), the PET-to-water ratio (1:2 to 1:5), and reaction time were systematically varied. Under optimal conditions of 210 °C and a 6 h reaction time, the process achieved near-complete PET depolymerization (99.5%) and a high TPA yield (90.24%). The catalyst demonstrated remarkable recyclability, maintained its activity over multiple cycles and was easily regenerated. Furthermore, the recovered TPA was of high quality, with a purity of 98.74% as confirmed by HPLC, and exhibited a melt crystallization temperature 14 °C lower than that of the commercial standard. These results not only demonstrate the efficiency and sustainability of neutral catalytic hydrolysis using zeolite/alumina composites but also provide valuable insights for designing advanced catalysts with tunable acidic properties. By demonstrating the importance of tuning acidic properties, specifically the balance between Brønsted and Lewis sites, this work lays a foundation for developing more effective catalysts that can advance circular economy goals for PET recycling. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Figure 1

15 pages, 3211 KB  
Article
Exploring the Sustainable Development Strategy of Wood Flour-Based Composite Materials in Outdoor Furniture
by Huidi Zhou, Yuqi Gao and Kaili Zhang
Sustainability 2025, 17(20), 9235; https://doi.org/10.3390/su17209235 - 17 Oct 2025
Viewed by 650
Abstract
Wood flour, a landscaping byproduct, poses disposal challenges due to its poor degradability, despite its potential as a sustainable material. This study modified wood powder by synergistically incorporating fly ash and TiO2, followed by curing it with polyamide and epoxy resin [...] Read more.
Wood flour, a landscaping byproduct, poses disposal challenges due to its poor degradability, despite its potential as a sustainable material. This study modified wood powder by synergistically incorporating fly ash and TiO2, followed by curing it with polyamide and epoxy resin to produce high-performance wood powder-based composites suitable for outdoor furniture applications, it can solve the environmental problems caused by fly ash. The research findings indicated that as the TiO2 content increased, the material’s pore size diminished, structural strength improved, and it demonstrated enhanced hydrophobic properties and UV absorption capabilities. The optimal UV absorption performance was observed at a TiO2 content of 1.5%. The combination of TiO2 and fly ash led to the formation of more stable Si-O-Ti and Si-O-Si bonds, which further strengthened the material. Water contact angle and water repellency tests indicated that the 1.5% TiO2 composite showed a 12% increase in compressive strength and a water contact angle of 100.6°, indicating improved hydrophobicity. The addition of TiO2 reduced the number of free-OH groups within the matrix, thereby improving the composite’s hydrophobicity. Outdoor chairs fabricated by mixing 1.5% TiO2-modified wood powder with PET for demolding exhibited excellent structural stability while also being safe and environmentally friendly. This study proposes a feasible preparation strategy for wood powder, enhancing durability through improved mechanical strength, water repellency, and UV shielding. Furthermore, it offers valuable insights into the material modification of wood powder-based materials for the production of outdoor garden furniture. Full article
Show Figures

Figure 1

22 pages, 2535 KB  
Article
From Recycled Polyethylene Terephthalate Waste to High-Value Chemicals and Materials: A Zero-Waste Technology Approach
by Maciej Kapkowski, Sonia Kotowicz, Karina Kocot, Mateusz Korzec, Jerzy Kubacki, Maciej Zubko, Krzysztof Aniołek, Urszula Siudyga, Tomasz Siudyga and Jaroslaw Polanski
Energies 2025, 18(16), 4375; https://doi.org/10.3390/en18164375 - 17 Aug 2025
Cited by 1 | Viewed by 1546
Abstract
The presence of PET (polyethylene terephthalate) in the environment is a global problem due to soil and water microplastic contamination. There is a constant demand for new technologies that expand the possibilities of PET disposal or recycling while reducing energy consumption and anthropogenic [...] Read more.
The presence of PET (polyethylene terephthalate) in the environment is a global problem due to soil and water microplastic contamination. There is a constant demand for new technologies that expand the possibilities of PET disposal or recycling while reducing energy consumption and anthropogenic carbon footprint. In this study, we developed a comprehensive zero-waste management system for PET recycling (rPET) to cyclic ketals and terephthalic acid. The developed method is based on the hydrolysis of rPET flakes in an inert environment with the separation and purification of terephthalic acid and the dehydration of ethylene glycol. For the first time, we present the use of cheap and readily available Cr/SiO2 and Fe/SiO2 nanocatalysts for direct acetalization of ethylene glycol without organic co-solvents. The catalysts were characterized by EDXRF, XPS and TEM techniques. The 2,2-dimethyl-1,3-dioxolane (DMD), a product of ethylene glycol’s direct acetalization with acetone, was tested as a solvent for polymers with satisfactory results in the solubility of epoxy resins. The addition of unpurified terephthalic acid and residues constituting post-production waste to concrete allows for a reduction in the mass of concrete in the range of 11.3–23.4% and the material modified in this way allows for a reduction in concrete consumption. This rPET waste management methodology is consistent with the assumptions of the circular economy and allows for a significant reduction of anthropogenic CO2 emissions. Full article
Show Figures

Graphical abstract

20 pages, 4874 KB  
Article
Preparation of pH-Responsive PET TeMs by Controlled Graft Block Copolymerisation of Styrene and Methacrylic Acid for the Separation of Water–Oil Emulsions
by Indira B. Muslimova, Dias D. Omertassov, Nurdaulet Zhumanazar, Nazerke Assan, Zhanna K. Zhatkanbayeva and Ilya V. Korolkov
Polymers 2025, 17(16), 2221; https://doi.org/10.3390/polym17162221 - 14 Aug 2025
Cited by 1 | Viewed by 935
Abstract
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, [...] Read more.
To develop membranes capable of efficient and switchable emulsion separation under variable pH conditions, pH-responsive surfaces were engineered on poly(ethylene terephthalate) track-etched membranes (PET TeMs) via a two-step UV-initiated RAFT graft polymerization process. Initially, polystyrene (PS) was grafted to render the surface hydrophobic, followed by the grafting of poly(methacrylic acid) (PMAA) to introduce pH-responsive carboxyl groups. Optimized conditions (117 mM MAA, RAFT:initiator 1:10, 60 min UV exposure at 10 cm) resulted in PET TeMs-g-PS-g-PMAA surfaces exhibiting tunable wettability, with contact angles shifting from 90° at pH 2 to 65° at pH 9. Successful grafting was confirmed by FTIR, AFM, SEM, TGA, and TB dye sorption. The membranes showed high degree of rejection (up to 98%) for both direct and reverse emulsions. In direct emulsions, stable flux values (70 ± 2.8 to 60 ± 2.9 L m−2 h−1 for cetane-in-water and 195 ± 8.2 to 120 ± 6.9 L m−2 h−1 for o-xylene-in-water) were maintained over five cycles at 900 mbar, indicating excellent antifouling performance. Reverse emulsions initially exhibited higher flux, but stronger fouling; however, flux recovery reached 91% after cleaning. These findings demonstrate the potential of PET TeMs-g-PS-g-PMAA as switchable, pH-responsive membranes for robust emulsion separation. Full article
Show Figures

Figure 1

12 pages, 3059 KB  
Article
Application of Surface-Modified Natural Magnetite as a Magnetic Carrier for Microplastic Removal from Water
by Palot Srichonphaisarn, Natatsawas Soonthornwiphat, Pongsiri Julapong, Thanakornkan Limlertchareonwanit, Thidarat Meekoch, Ilhwan Park, Mylah Villacorte-Tabelin, Onchanok Juntarasakul, Somsak Saisinchai, Carlito Baltazar Tabelin and Theerayut Phengsaart
Minerals 2025, 15(4), 425; https://doi.org/10.3390/min15040425 - 18 Apr 2025
Cited by 1 | Viewed by 2163
Abstract
This study investigates the modification and application of natural, micro-scale magnetite (Fe3O4)—an iron oxide mineral and one of the most abundant iron ores in the world—as a magnetic carrier for removing six common types of microplastics (MPs) from water: [...] Read more.
This study investigates the modification and application of natural, micro-scale magnetite (Fe3O4)—an iron oxide mineral and one of the most abundant iron ores in the world—as a magnetic carrier for removing six common types of microplastics (MPs) from water: polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). Hexadecyltrimethoxysilane (HDTMS) was employed as a surfactant to modify the naturally hydrophilic magnetite, transforming it into a hydrophobic material. The characterization of magnetite treated with HDTMS for 0, 6, 12, 24, and 48 h was performed using a scanning electron microscope with energy-dispersive X-ray spectroscopy (SEM-EDS) and Fourier transform infrared spectroscopy (FT-IR). The results showed HDTMS sorption on the surface of natural magnetite, confirming successful surface modification. Carrier magnetic separation was then performed to remove PP, PE, ABS, PS, PET, and PVC using surface-modified, natural magnetite in two size fractions: +38–75 µm (fine-sized) and +75–150 µm (coarse-sized). Improved performance was observed with longer HDTMS treatment of magnetite, while greater than 90% MP removal was achieved using fine-sized, surface-modified, natural magnetite. These results suggest that surface modification enhanced the heterogenous interactions between magnetite and MPs via hydrophobic-hydrophobic interactions, leading to efficient MP removal via carrier magnetic separation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

13 pages, 1477 KB  
Article
Cultivation of Chlorella sp. in a Closed System Using Mining Wastewater and Simulated Flue Gas: Biomass Production and CO2 Fixation Potential
by Thiago J. T. Cruz, Guilherme Q. Calixto, Fabiana R. de A. Câmara, Dárlio I. A. Teixeira, Renata M. Braga and Sibele B. C. Pergher
Sustain. Chem. 2025, 6(2), 11; https://doi.org/10.3390/suschem6020011 - 31 Mar 2025
Cited by 2 | Viewed by 1916
Abstract
Chlorella sp. was cultivated in a closed system using PET bottles (5 L) and with the continuous injection of air and commercial gas (98% CO2) and in simulated conditions (15% CO2, 73% N2, and 12% O2 [...] Read more.
Chlorella sp. was cultivated in a closed system using PET bottles (5 L) and with the continuous injection of air and commercial gas (98% CO2) and in simulated conditions (15% CO2, 73% N2, and 12% O2). The culture medium was prepared using well water and mining wastewater, the cultivation period occurred in a 10-day cycle, and the cell growth curves were evaluated through cell counting using a Neubauer chamber. The cultivation was carried out under the following conditions: temperature at 22 °C to 25 °C; aeration rate with commercial and simulated CO2 gas at 0.01 vvm; and synthetic air containing 0.042% CO2. The dry biomass productivity was 0.81 g·L−1·day−1 and the maximum CO2 fixation rate was 0.90 g·L−1·day−1 when the microalgae were cultivated with a continuous flow of simulated waste gas and a culture medium composed of wastewater. The percentages of macromolecules obtained in the biomass cultivated in wastewater reached 20.95%, 26.48%, and 9.3% for lipids, proteins, and carbohydrates, respectively. Full article
Show Figures

Graphical abstract

15 pages, 6327 KB  
Article
Effect of Various Nanofillers on Piezoelectric Nanogenerator Performance of P(VDF-TrFE) Nanocomposite Thin Film
by Hafiz Muhammad Abid Yaseen and Sangkwon Park
Nanomaterials 2025, 15(5), 403; https://doi.org/10.3390/nano15050403 - 6 Mar 2025
Cited by 5 | Viewed by 1839 | Correction
Abstract
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low [...] Read more.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO2), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix. The nanocomposite films were prepared by depositing molecularly thin films of P(VDF-TrFE) and nanofiller nanoparticles (NPs) spread at the air/water interface onto the indium tin oxide-coated polyethylene terephthalate (ITO-PET) substrate, and they were characterized by measuring their microstructures, crystallinity, β-phase contents, and piezoelectric coefficients (d33) using SEM, FT-IR, XRD, and quasi-static meter, respectively. Multiple PENGs incorporating various nanofillers within the polymer matrix were developed by assembling thin film-coated substrates into a sandwich-like structure. Their piezoelectric properties, such as open-circuit output voltage (VOC) and short-circuit current (ISC), were analyzed. As a result, the PENG containing 4 wt% PZT, which was named P-PZT-4, showed the best performance of VOC of 68.5 V with the d33 value of 78.2 pC/N and β-phase content of 97%. The order of the maximum VOC values for the PENGs of nanocomposite thin films containing various nanofillers was PZT (68.5 V) > rGO (64.0 V) > ZnO (50.9 V) > TiO2 (48.1 V). When the best optimum PENG was integrated into a simple circuit comprising rectifiers and a capacitor, it demonstrated an excellent two-dimensional power density of 20.6 μW/cm2 and an energy storage capacity of 531.4 μJ within 3 min. This piezoelectric performance of PENG with the optimized nanofiller type and content was found to be superior when it was compared with those in the literature. This PENG comprising nanocomposite thin film with optimized nanofiller type and content shows a potential application for a power source for low-powered electronics such as wearable devices. Full article
Show Figures

Figure 1

10 pages, 4673 KB  
Article
Hyperpolarized Water for Coronary Artery Angiography and Whole-Heart Myocardial Perfusion Quantification
by Yupeng Zhao, Mathilde Hauge Lerche, Magnus Karlsson, Rie Beck Olin, Esben Søvsø Szocska Hansen, Malene Aastrup, Mohsen Redda, Christoffer Laustsen, Lars G. Hanson and Jan Henrik Ardenkjær-Larsen
Tomography 2024, 10(7), 1113-1122; https://doi.org/10.3390/tomography10070084 - 13 Jul 2024
Cited by 1 | Viewed by 4378
Abstract
Purpose: Water freely diffuses across cell membranes, making it suitable for measuring absolute tissue perfusion. In this study, we introduce an imaging method for conducting coronary artery angiography and quantifying myocardial perfusion across the entire heart using hyperpolarized water. Methods: 1H [...] Read more.
Purpose: Water freely diffuses across cell membranes, making it suitable for measuring absolute tissue perfusion. In this study, we introduce an imaging method for conducting coronary artery angiography and quantifying myocardial perfusion across the entire heart using hyperpolarized water. Methods: 1H was hyperpolarized using dissolution dynamic nuclear polarization (dDNP) with UV-generated radicals. Submillimeter resolution coronary artery images were acquired as 2D projections using a spoiled GRE (SPGRE) sequence gated on diastole. Dynamic perfusion images were obtained with a multi-slice SPGRE with diastole gating, covering the entire heart. Perfusion values were analyzed through histograms, and the most frequent estimated perfusion value (the mode of the distribution), was compared with the average values for 15O water PET from the literature. Results: A liquid state polarization of 10% at the time of the injection and a 30 s T1 in D2O TRIS buffer were measured. Both coronary artery and dynamic perfusion images exhibited good quality. The main and small coronary artery branches were well resolved. The most frequent estimated perfusion value is around 0.6 mL/g/min, which is lower than the average values obtained from the literature for 15O-water PET (around 1.1 and 1.5 mL/g/min). Conclusions: The study successfully demonstrated the feasibility of achieving high-resolution, motion-free coronary artery angiography and 3D whole-heart quantitative myocardial perfusion using hyperpolarized water. Full article
(This article belongs to the Section Cardiovascular Imaging)
Show Figures

Figure 1

17 pages, 2026 KB  
Article
MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA): An MRI-Based Scoring System for the Severity of Moyamoya Angiopathy
by Leonie Zerweck, Constantin Roder, Ganna Blazhenets, Peter Martus, Johannes Thurow, Patrick Haas, Arne Estler, Georg Gohla, Christer Ruff, Nadja Selo, Urs Würtemberger, Nadia Khan, Uwe Klose, Ulrike Ernemann, Philipp T. Meyer and Till-Karsten Hauser
Diagnostics 2024, 14(13), 1437; https://doi.org/10.3390/diagnostics14131437 - 5 Jul 2024
Cited by 7 | Viewed by 1872
Abstract
Before revascularization, moyamoya patients require hemodynamic evaluation. In this study, we evaluated the scoring system Prior Infarcts, Reactivity and Angiography in Moyamoya Disease (PIRAMID). We also devised a new scoring system, MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA), and [...] Read more.
Before revascularization, moyamoya patients require hemodynamic evaluation. In this study, we evaluated the scoring system Prior Infarcts, Reactivity and Angiography in Moyamoya Disease (PIRAMID). We also devised a new scoring system, MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA), and compared the scoring systems with respect to the capability to predict impaired [15O]water PET cerebral perfusion reserve capacity (CPR). We evaluated 69 MRI, 69 DSA and 38 [15O]water PET data sets. The PIRAMID system was validated by ROC curve analysis with neurological symptomatology as a dependent variable. The components of the MARS-MMA system and their weightings were determined by binary logistic regression analysis. The comparison of PIRAMID and MARS-MMA was performed by ROC curve analysis. The PIRAMID score correlated well with the symptomatology (AUC = 0.784). The MARS-MMA system, including impaired breath-hold-fMRI, the presence of the Ivy sign and arterial wall contrast enhancement, correlated slightly better with CPR impairment than the PIRAMID system (AUC = 0.859 vs. 0.827, Akaike information criterion 140 vs. 146). For simplified clinical use, we determined three MARS-MMA grades without loss of diagnostic performance (AUC = 0.855). The entirely MRI-based MARS-MMA scoring system might be a promising tool to predict the risk of stroke. Full article
(This article belongs to the Special Issue Advances in Cerebrovascular Imaging and Interventions)
Show Figures

Figure 1

12 pages, 3767 KB  
Article
Carbazolyl-Modified Neutral Ir(III) Complexes for Efficient Detection of Picric Acid in Aqueous Media
by Jiangchao Xu, Liyan Zhang, Yusheng Shi and Chun Liu
Sensors 2024, 24(13), 4074; https://doi.org/10.3390/s24134074 - 22 Jun 2024
Cited by 7 | Viewed by 1931
Abstract
Based on the electron-deficient property of picric acid (PA), two neutral Ir(III) complexes 1 and 2 modified with the electron-rich carbazolyl groups were synthesized and characterized. Both 1 and 2 exhibit aggregation-induced phosphorescence emission (AIPE) properties in THF/H2O. Among them, 2 [...] Read more.
Based on the electron-deficient property of picric acid (PA), two neutral Ir(III) complexes 1 and 2 modified with the electron-rich carbazolyl groups were synthesized and characterized. Both 1 and 2 exhibit aggregation-induced phosphorescence emission (AIPE) properties in THF/H2O. Among them, 2 is extremely sensitive for detecting PA with a limit of detection of 0.15 μM in THF/H2O. Furthermore, the selectivity for PA is significantly higher compared to other analytes, enabling the efficient detection of PA in four common water samples. The density functional theory calculations and the spectroscopic results confirm that the sensing mechanism is photo-induced electron transfer (PET). Full article
Show Figures

Graphical abstract

2 pages, 171 KB  
Abstract
Using Activated Carbon Adsorbents Obtained from Plastic Wastes from the Tunisian Beverage Industry
by Asma Nouira, Imene Bekri Abbes, Isabel Pestana Paixão Cansado, Paulo Mira Mourão and José Eduardo Castanheiro
Proceedings 2024, 105(1), 129; https://doi.org/10.3390/proceedings2024105129 - 28 May 2024
Viewed by 657
Abstract
In this study, we investigated the preparation of char and activated carbon (ACs) materials derived from water bottle waste collected from waste collection point in Tunis. The materials were synthesized using a rotary horizontal furnace on a lab/pilot scale and through chemical activation. [...] Read more.
In this study, we investigated the preparation of char and activated carbon (ACs) materials derived from water bottle waste collected from waste collection point in Tunis. The materials were synthesized using a rotary horizontal furnace on a lab/pilot scale and through chemical activation. Characterization of the carbon materials was performed using nitrogen adsorption isotherms at 77K and SEM-EDX analysis. Furthermore, we examined the effectiveness of the ACs in removing the antibiotics 4-amino-N-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide (sulfamethoxazole-C10H11N3O3S) and 5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine (trimethoprim) from aqueous solutions. The results revealed a maximum adsorption capacity of 108.17 mg g−1 (85.34%) for sulfamethoxazole and 98.11 mg g−1 (89.73%) for trimethoprim on the PET-KOH-1:1-800 °C sample. Additionally, we analyzed the adsorption kinetics, fitting the data to pseudo-first and -second-order models, and studied the equilibrium isotherms using the Langmuir and Freundlich equation models. These findings suggest significant potential for the application of ACs derived from plastic bottle waste in the treatment of wastewater containing antibiotics. Overall, our study highlights the feasibility of utilizing waste materials for the synthesis of valuable carbon-based adsorbents with promising adsorption capabilities. This research contributes to the ongoing efforts towards sustainable waste management and environmental remediation. Full article
12 pages, 4633 KB  
Review
Radiopharmaceuticals for Skeletal Muscle PET Imaging
by Joo Yeon Park, Sun Mi Park, Tae Sup Lee, Seo Young Kang, Ji-Young Kim, Hai-Jeon Yoon, Bom Sahn Kim and Byung Seok Moon
Int. J. Mol. Sci. 2024, 25(9), 4860; https://doi.org/10.3390/ijms25094860 - 29 Apr 2024
Cited by 3 | Viewed by 2898
Abstract
The skeletal muscles account for approximately 40% of the body weight and are crucial in movement, nutrient absorption, and energy metabolism. Muscle loss and decline in function cause a decrease in the quality of life of patients and the elderly, leading to complications [...] Read more.
The skeletal muscles account for approximately 40% of the body weight and are crucial in movement, nutrient absorption, and energy metabolism. Muscle loss and decline in function cause a decrease in the quality of life of patients and the elderly, leading to complications that require early diagnosis. Positron emission tomography/computed tomography (PET/CT) offers non-invasive, high-resolution visualization of tissues. It has emerged as a promising alternative to invasive diagnostic methods and is attracting attention as a tool for assessing muscle function and imaging muscle diseases. Effective imaging of muscle function and pathology relies on appropriate radiopharmaceuticals that target key aspects of muscle metabolism, such as glucose uptake, adenosine triphosphate (ATP) production, and the oxidation of fat and carbohydrates. In this review, we describe how [18F]fluoro-2-deoxy-D-glucose ([18F]FDG), [18F]fluorocholine ([18F]FCH), [11C]acetate, and [15O]water ([15O]H2O) are suitable radiopharmaceuticals for diagnostic imaging of skeletal muscles. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Diseases)
Show Figures

Figure 1

18 pages, 10794 KB  
Article
Enhancing Textile Water Repellency with Octadecyltrichlorosilane (OTS) and Hollow Silica Nanoparticles
by Mahshab Sheraz, Byul Choi and Juran Kim
Polymers 2023, 15(20), 4065; https://doi.org/10.3390/polym15204065 - 12 Oct 2023
Cited by 12 | Viewed by 5530
Abstract
Superhydrophobic coatings have attracted substantial attention owing to their potential application in various industries. Conventional textiles used in daily life are prone to staining with water and household liquids, necessitating the development of water-repellent and stain-resistant coatings. In this study, we fabricated a [...] Read more.
Superhydrophobic coatings have attracted substantial attention owing to their potential application in various industries. Conventional textiles used in daily life are prone to staining with water and household liquids, necessitating the development of water-repellent and stain-resistant coatings. In this study, we fabricated a highly water-repellent superhydrophobic PET fabric by using an eco-friendly water-based coating process. Fluorine-free octadecyltrichlorosilane (OTS) solutions with various wt.% of hollow silica (HS) nanoparticles were used to produce a superhydrophobic surface via a facile dip coating method. Our findings revealed that the incorporation of HS nanoparticles substantially increased the water contact angle, with higher concentrations resulting in enhanced water repellency and increased surface roughness. The treated fabrics had a remarkable water contact angle of 152.4° ± 0.8°, demonstrating their superhydrophobic fiber surface. In addition, the durability of these superhydrophobic properties was investigated via a laundry procedure, which showed that the fabrics maintained their water repellency even after 20 laundering cycles. EDX and XRD analyses confirmed that the morphological evaluations did not reveal any substantial structural alterations. Significantly, the fibers maintained their strength and durability throughout the testing, enduring only minor hollow SiO2 nanoparticle loss. This eco-friendly and cost-effective method holds great potential for application in apparel and other industries, offering an effective solution to resist water stains and improve performance in various contexts. Full article
Show Figures

Figure 1

14 pages, 860 KB  
Article
A System Dynamic Model for Polyethylene Terephthalate Supply Chain in the United Arab Emirates—Status, Projections, and Environmental Impacts
by Sameh Al-Shihabi and Mahmoud Barghash
Sustainability 2023, 15(17), 13119; https://doi.org/10.3390/su151713119 - 31 Aug 2023
Cited by 5 | Viewed by 4844
Abstract
Polyethylene terephthalate (PET) water bottles are widely used in the United Arab Emirates (UAE); however, their production and disposal adversely affect the environment. In collaboration with the private sector, the UAE government has taken serious steps to reduce these impacts, including (i) encouraging [...] Read more.
Polyethylene terephthalate (PET) water bottles are widely used in the United Arab Emirates (UAE); however, their production and disposal adversely affect the environment. In collaboration with the private sector, the UAE government has taken serious steps to reduce these impacts, including (i) encouraging people to stop using PET water bottles and to separate their waste, (ii) establishing material recovery facilities, (iii) constructing facilities for incineration with energy recovery, and (iv) creating business opportunities to downcycle and recycle PET water bottles. This paper models the PET supply chain (PSC) using system dynamics (SD) to simulate the current PSC in the UAE and to project its possible evolution from 2023 to 2050, taking greenhouse gas (GHG) emissions into consideration. For decision-makers, the SD model shows that PET reductions must equal population growth to maintain GHG emissions associated with the PSC for the coming years. In addition, the separation efficiency must exceed 33% of PET consumption to meet the current demand for used PET. Moreover, if PET consumption decreases by more than 1.5%, then businesses relying on used PET will face a supply shortage in the year 2050. As for environmental impacts, it is found that if downcycling and recycling capabilities are fully utilized, GHG emissions will decrease by 35%. Furthermore, if demand for recycled PET reaches 10,000 tons, this reduction will exceed 47%, reaching 177,861MtCO2e. Full article
(This article belongs to the Special Issue Sustainability in Industrial Engineering and Engineering Management)
Show Figures

Graphical abstract

Back to TopTop