Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = 137Cs tracer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 19687 KiB  
Article
Intranasal Mitochondrial Transplantation Restores Mitochondrial Function and Modulates Glial–Neuronal Interactions in a Genetic Parkinson’s Disease Model of UQCRC1 Mutation
by Jui-Chih Chang, Chin-Hsien Lin, Cheng-Yi Yeh, Mei-Fang Cheng, Yi-Chieh Chen, Chi-Han Wu, Hui-Ju Chang and Chin-San Liu
Cells 2025, 14(15), 1148; https://doi.org/10.3390/cells14151148 - 25 Jul 2025
Viewed by 385
Abstract
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in [...] Read more.
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in mice, and a cellular model, this study validated the transplantation of mitochondria with or without cyclosporin A (CsA) preloading as a method to treat mitochondrial dysfunction and improve disease progression through intranasal delivery. Liver-derived mitochondria were labeled with bromodeoxyuridine (BrdU), incubated with CsA to inhibit mPTP opening, and were administered weekly via the nasal route to 6-month-old mice for six months. Both treatment groups showed significant locomotor improvements in open-field tests. PET imaging showed increased striatal tracer uptake, indicating enhanced dopamine synthesis capacity. The immunohistochemical analysis revealed increased neuron survival in the dentate gyrus, a higher number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) and striatum (ST), and a thicker granule cell layer. In SN neurons, the function of mitochondrial complex III was reinstated. Additionally, the CsA-accumulated mitochondria reduced more proinflammatory cytokine levels, yet their therapeutic effectiveness was similar to that of unmodified mitochondria. External mitochondria were detected in multiple brain areas through BrdU tracking, showing a 3.6-fold increase in the ST compared to the SN. In the ST, about 47% of TH-positive neurons incorporated exogenous mitochondria compared to 8% in the SN. Notably, GFAP-labeled striatal astrocytes (ASTs) also displayed external mitochondria, while MBP-labeled striatal oligodendrocytes (OLs) did not. On the other hand, fewer ASTs and increased OLs were noted, along with lower S100β levels, indicating reduced reactive gliosis and a more supportive environment for OLs. Intranasally, mitochondrial transplantation showed neuroprotective effects in genetic PD, validating a noninvasive therapeutic approach. This supports mitochondrial recovery and is linked to anti-inflammatory responses and glial modulation. Full article
Show Figures

Graphical abstract

21 pages, 3583 KiB  
Article
Exploring a Nitric Oxide-Releasing Celecoxib Derivative as a Potential Modulator of Bone Healing: Insights from Ex Vivo and In Vivo Imaging Experiments
by Christin Neuber, Luisa Niedenzu, Sabine Schulze, Markus Laube, Frank Hofheinz, Stefan Rammelt and Jens Pietzsch
Int. J. Mol. Sci. 2025, 26(6), 2582; https://doi.org/10.3390/ijms26062582 - 13 Mar 2025
Viewed by 722
Abstract
The inducible enzyme cyclooxygenase-2 (COX-2) and the subsequent synthesis of eicosanoids initiated by this enzyme are important molecular players in bone healing. In this pilot study, the suitability of a novel selective COX-2 inhibitor bearing a nitric oxide (NO)-releasing moiety was investigated as [...] Read more.
The inducible enzyme cyclooxygenase-2 (COX-2) and the subsequent synthesis of eicosanoids initiated by this enzyme are important molecular players in bone healing. In this pilot study, the suitability of a novel selective COX-2 inhibitor bearing a nitric oxide (NO)-releasing moiety was investigated as a modulator of healing a critical-size bone defect in rats. A 5 mm femoral defect was randomly filled with no material (negative control, NC), a mixture of collagen and autologous bone fragments (positive control, PC), or polycaprolactone-co-lactide (PCL)-scaffolds coated with two types of artificial extracellular matrix (aECM; collagen/chondroitin sulfate (Col/CS) or collagen/polysulfated hyaluronic acid (Col/sHA3)). Bone healing was monitored by a dual-tracer ([18F]FDG/[18F]fluoride) approach using PET/CT imaging in vivo. In addition, ex vivo µCT imaging as well as histological and immunohistochemical studies were performed 16 weeks post-surgery. A significant higher uptake of [18F]FDG, a surrogate marker for inflammatory infiltrate, but not of [18F]fluoride, representing bone mineralization, was observed in the implanted PCL-scaffolds coated with either Col/CS or Col/sHA3. Molecular targeting of COX-2 with NO-coxib had no significant effect on tracer uptake in any of the groups. Histological and immunohistochemical staining showed no evidence of a positive or negative influence of NO-coxib treatment on bone healing. Full article
(This article belongs to the Special Issue Advances in Bone Growth, Development and Metabolism)
Show Figures

Figure 1

16 pages, 4269 KiB  
Article
Temporal Changes in the Average Contribution of Land Uses in Sediment Yield Using the 137Cs Method and Geochemical Tracers
by Negin Ghaderi Dehkordi, Abdulvahed Khaledi Darvishan, Mohamad Reza Zare and Paolo Porto
Water 2025, 17(1), 73; https://doi.org/10.3390/w17010073 - 31 Dec 2024
Cited by 1 | Viewed by 809
Abstract
The study highlights the increasing significance of understanding sediment sources and their contributions within a watershed, particularly in relation to different land use types. As the demand for effective source apportionment grows, this research aims to quantify how various land uses—specifically rangeland, rainfed [...] Read more.
The study highlights the increasing significance of understanding sediment sources and their contributions within a watershed, particularly in relation to different land use types. As the demand for effective source apportionment grows, this research aims to quantify how various land uses—specifically rangeland, rainfed agriculture, irrigated agriculture, and orchards—contribute to sediment yield over time. To achieve this, the researchers employed geochemical tracers and 137Cs to assess sediment contributions in a small sub-basin located in western Iran. The methodology involved creating a working unit map by overlaying land use maps from 1967 and 2021 with a slope map of the region. A total of 75 and 31 soil samples were systematically collected across different land uses to ensure a representative analysis of 137Cs and geochemical methods, respectively. The study utilized specific models to calculate the average contributions of each land use type. For non-agricultural lands, a diffusion and migration model was applied, while agricultural lands were analyzed using a mass balance type II model. The FingerPro program in R software 4.2.2 facilitated the selection of suitable tracers and allowed for the determination of sediment source contributions through a multivariate mixed model algorithm. The findings revealed significant changes in sediment yield contributions over the past 60 years. In 2021, rainfed agriculture accounted for 72.26% of sediment yield, down from 85.49% six decades earlier. Conversely, irrigated agriculture showed an increase from 1.80% to 15.06%. Rangeland and orchard contributions remained relatively stable but low, at approximately 8% and 4%, respectively. The total erosion rate for the sub-basin was estimated at 526.87 t y−1, with rainfed agriculture being responsible for the majority at 450.43 t y−1. Full article
Show Figures

Graphical abstract

20 pages, 9581 KiB  
Article
Simulation and Spatio-Temporal Analysis of Soil Erosion in the Source Region of the Yellow River Using Machine Learning Method
by Jinxi Su, Rong Tang and Huilong Lin
Land 2024, 13(9), 1456; https://doi.org/10.3390/land13091456 - 7 Sep 2024
Cited by 3 | Viewed by 1853
Abstract
The source region of the Yellow River (SRYR), known as the “Chinese Water Tower”, is currently grappling with severe soil erosion, which jeopardizes the sustainability of its alpine grasslands. Large-scale soil erosion monitoring poses a significant challenge, complicating global efforts to study soil [...] Read more.
The source region of the Yellow River (SRYR), known as the “Chinese Water Tower”, is currently grappling with severe soil erosion, which jeopardizes the sustainability of its alpine grasslands. Large-scale soil erosion monitoring poses a significant challenge, complicating global efforts to study soil erosion and land cover changes. Moreover, conventional methods for assessing soil erosion do not adequately address the variety of erosion types present in the SRYR. Given these challenges, the objectives of this study were to develop a suitable assessment and prediction model for soil erosion tailored to the SRYR’s needs. By leveraging soil erosion data measured by 137Cs from 521 locations and employing the random forest (RF) algorithm, a new soil erosion model was formulated. Key findings include that: (1) The RF soil erosion model significantly outperformed the revised universal soil loss equation (RUSLE) model and revised wind erosion equation (RWEQ) model, achieving an R2 of 0.52 and an RMSE of 5.88. (2) The RF model indicated that from 2001 to 2020, the SRYR experienced an average annual soil erosion modulus (SEM) of 19.32 t·ha−1·y−1 with an annual total erosion in the SRYR of 225.18 × 106 t·y−1. Spatial analysis revealed that 78.64% of the region suffered low erosion, with erosion intensity declining from northwest to southeast. (3) The annual SEM in the SRYR demonstrated a downward trend from 2001 to 2020, with 83.43% of the study area showing improvement. Based on these findings, measures for soil erosion prevention and control in the SRYR were proposed. Future studies should refine the temporal analysis to better understand the influence of extreme climate events on soil erosion, while leveraging high-resolution data to enhance model accuracy. Insights into the drivers of soil erosion in the SRYR will support more effective policy development. Full article
Show Figures

Figure 1

15 pages, 2121 KiB  
Article
Radionuclides’ Recovery from Seawater Using FIC and FIC A Sorbents
by Nikolay A. Bezhin, Vitaliy V. Milyutin, Natalia V. Kuzmenkova, Iuliia G. Shibetskaia, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko, Victoria A. Razina and Ivan G. Tananaev
Materials 2023, 16(11), 4181; https://doi.org/10.3390/ma16114181 - 4 Jun 2023
Cited by 2 | Viewed by 1800
Abstract
To solve radioecological and oceanological problems (estimate the vertical transport, flows of particulate organic carbon, phosphorus biodynamics, submarine groundwater discharge, etc.), it is necessary to determine the natural values of the radionuclides’ activity in seawater and particulate matter. For the first time, the [...] Read more.
To solve radioecological and oceanological problems (estimate the vertical transport, flows of particulate organic carbon, phosphorus biodynamics, submarine groundwater discharge, etc.), it is necessary to determine the natural values of the radionuclides’ activity in seawater and particulate matter. For the first time, the radionuclides’ sorption from seawater was studied using sorbents based on activated carbon modified with iron(III) ferrocyanide (FIC) and based on activated carbon modified with iron(III) hydroxide (FIC A—activated FIC) obtained by FIC sorbent treatment with sodium hydroxide solution. The possibility of trace amounts of phosphorus, beryllium, and cesium recovery in laboratory conditions has been investigated. Distribution coefficients, dynamic, and total dynamic exchange capacities were determined. The physicochemical regularities (isotherm and kinetics) of sorption have been studied. The results obtained are characterized via Langmuir, Freindlich, and Dubinin–Radushkevich isotherm equations, as well as pseudo-first and pseudo-second-order kinetic models, intraparticle diffusion, and the Elovich model. Under expeditionary conditions, the sorption efficiency of 137Cs using FIC sorbent, 7Be, 32P, and 33P—using FIC A sorbent with a single-column method by adding a stable tracer, as well as the sorption efficiency of radionuclides 210Pb and 234Th with their natural content by FIC A sorbent in a two-column mode from large volumes of seawater was assessed. High values of efficiency of their recovery by the studied sorbents were achieved. Full article
Show Figures

Figure 1

15 pages, 5834 KiB  
Article
Inorganic Sorbents for Wastewater Treatment from Radioactive Contaminants
by Natalya A. Nekrasova, Vitaly V. Milyutin, Victor O. Kaptakov and Evgeny A. Kozlitin
Inorganics 2023, 11(3), 126; https://doi.org/10.3390/inorganics11030126 - 16 Mar 2023
Cited by 15 | Viewed by 3000
Abstract
The article presents the distribution coefficient (Kd) values of 137Cs and 90Sr tracer radionuclides in solutions of sodium and calcium salts for a wide range of commercially available inorganic sorbents: natural and synthetic aluminosilicates, manganese, titanium and zirconium oxyhydrates, [...] Read more.
The article presents the distribution coefficient (Kd) values of 137Cs and 90Sr tracer radionuclides in solutions of sodium and calcium salts for a wide range of commercially available inorganic sorbents: natural and synthetic aluminosilicates, manganese, titanium and zirconium oxyhydrates, titanium and zirconium phosphates, titanosilicates of alkali metals, and ferrocyanides of transition metals. The results were obtained using a standard technique developed by the authors for evaluating the efficiency of various sorption materials towards cesium and strontium radionuclides. It was shown that bentonite clays and natural and synthetic zeolites are the best for decontaminating low-salt natural water from cesium radionuclides, and ferrocyanide sorbents are the choice for decontaminating high-salt-bearing solutions. The manganese (III, IV) oxyhydrate-based MDM sorbent is the most effective for removing strontium from natural water; for seawater, the barium silicate-based SRM-Sr sorbent is the first-in-class. Results of the study provide a possibility of making a reasonable choice of sorbents for the most effective treatment of natural water and technogenic aqueous waste contaminated with cesium and strontium radionuclides. Full article
(This article belongs to the Special Issue Inorganic Sorbents in Water Treatment)
Show Figures

Graphical abstract

9 pages, 599 KiB  
Article
Dual-Tracer PET-MRI-Derived Imaging Biomarkers for Prediction of Clinically Significant Prostate Cancer
by Bernhard Grubmüller, Nicolai A. Huebner, Sazan Rasul, Paola Clauser, Nina Pötsch, Karl Hermann Grubmüller, Marcus Hacker, Sabrina Hartenbach, Shahrokh F. Shariat, Markus Hartenbach and Pascal Baltzer
Curr. Oncol. 2023, 30(2), 1683-1691; https://doi.org/10.3390/curroncol30020129 - 30 Jan 2023
Cited by 1 | Viewed by 2732
Abstract
Purpose: To investigate if imaging biomarkers derived from 3-Tesla dual-tracer [(18)F]fluoromethylcholine (FMC) and [68Ga]Ga-PSMAHBED-CC conjugate 11 (PSMA)-positron emission tomography can adequately predict clinically significant prostate cancer (csPC). Methods: We assessed 77 biopsy-proven PC patients who underwent 3T dual-tracer PET/mpMRI followed [...] Read more.
Purpose: To investigate if imaging biomarkers derived from 3-Tesla dual-tracer [(18)F]fluoromethylcholine (FMC) and [68Ga]Ga-PSMAHBED-CC conjugate 11 (PSMA)-positron emission tomography can adequately predict clinically significant prostate cancer (csPC). Methods: We assessed 77 biopsy-proven PC patients who underwent 3T dual-tracer PET/mpMRI followed by radical prostatectomy (RP) between 2014 and 2017. We performed a retrospective lesion-based analysis of all cancer foci and compared it to whole-mount histopathology of the RP specimen. The primary aim was to investigate the pretherapeutic role of the imaging biomarkers FMC- and PSMA-maximum standardized uptake values (SUVmax) for the prediction of csPC and to compare it to the mpMRI-methods and PI-RADS score. Results: Overall, we identified 104 cancer foci, 69 were clinically significant (66.3%) and 35 were clinically insignificant (33.7%). We found that the combined FMC+PSMA SUVmax were the only significant parameters (p < 0.001 and p = 0.049) for the prediction of csPC. ROC analysis showed an AUC for the prediction of csPC of 0.695 for PI-RADS scoring (95% CI 0.591 to 0.786), 0.792 for FMC SUVmax (95% CI 0.696 to 0.869), 0.852 for FMC+PSMA SUVmax (95% CI 0.764 to 0.917), and 0.852 for the multivariable CHAID model (95% CI 0.763 to 0.916). Comparing the AUCs, we found that FMC+PSMA SUVmax and the multivariable model were significantly more accurate for the prediction of csPC compared to PI-RADS scoring (p = 0.0123, p = 0.0253, respectively). Conclusions: Combined FMC+PSMA SUVmax seems to be a reliable parameter for the prediction of csPC and might overcome the limitations of PI-RADS scoring. Further prospective studies are necessary to confirm these promising preliminary results. Full article
(This article belongs to the Collection New Insights into Prostate Cancer Diagnosis and Treatment)
Show Figures

Figure 1

13 pages, 2698 KiB  
Article
Oxidation-Cyclisation of Biphenyl Thioethers to Dibenzothiophenium Salts for Ultrarapid 18F-Labelling of PET Tracers
by Fatih Sirindil, Sinead Maher, Michael Schöll, Kerstin Sander and Erik Årstad
Int. J. Mol. Sci. 2022, 23(24), 15481; https://doi.org/10.3390/ijms232415481 - 7 Dec 2022
Cited by 3 | Viewed by 2957
Abstract
18F-labelled radiotracers are in high demand and play an important role for diagnostic imaging with positron emission tomography (PET). Challenges associated with the synthesis of the labelling precursors and the incorporation of [18F]fluoride with practical activity yields at batch scale [...] Read more.
18F-labelled radiotracers are in high demand and play an important role for diagnostic imaging with positron emission tomography (PET). Challenges associated with the synthesis of the labelling precursors and the incorporation of [18F]fluoride with practical activity yields at batch scale are the main limitations for the development of new 18F-PET tracers. Herein, we report a high-yielding and robust synthetic method to access naked dibenzothiophenium salt precursors of complex PET tracers and their labelling with [18F]fluoride. C-S cross-coupling of biphenyl-2-thioacetate with aryl halides followed by sequential oxidation-cyclisation of the corresponding thioethers gives dibenzothiophenium salts in good to excellent yields. Labelling of neutral and electron-deficient substrates with [18F]fluoride is ultrarapid and occurs under mild conditions (1 min at 90 °C) with high activity yields. The method enables facile synthesis of complex and sensitive radiotracers, as exemplified by radiofluorination of three clinically relevant PET tracers [18F]UCB-J, [18F]AldoView and [18F]FNDP, and can accelerate the development and clinical translation of new 18F-radiopharmaceuticals. Full article
Show Figures

Graphical abstract

17 pages, 1414 KiB  
Article
Recent 137Cs Distribution in the Aegean Sea, Greece
by Petros Leivadaros, Christos Tsabaris, Dionisis L. Patiris, Georgios Eleftheriou, Filothei K. Pappa, Efrossyni Androulakaki, Manos Dasenakis, Evangelia Krasakopoulou and Vassilis Zervakis
J. Mar. Sci. Eng. 2022, 10(11), 1719; https://doi.org/10.3390/jmse10111719 - 10 Nov 2022
Cited by 1 | Viewed by 1898
Abstract
Recent spatial and vertical distributions of 137Cs activity concentration in the Aegean Sea are presented almost 30 years after the Chernobyl accident. The study aims to provide the current radioactivity levels of 137Cs in the Aegean Sea and to combine the [...] Read more.
Recent spatial and vertical distributions of 137Cs activity concentration in the Aegean Sea are presented almost 30 years after the Chernobyl accident. The study aims to provide the current radioactivity levels of 137Cs in the Aegean Sea and to combine the 137Cs activity concentration with typical oceanographic parameters (T, S) in order to utilize them as tracers to identify/validate the different water masses that are present in the Aegean Sea. This work was performed in the frame of the “KRIPIS” project in 2017 for continuous investigations of the deep basins from all over the Aegean Sea and includes samplings from the water column layers of seven stations. The 137Cs activity concentrations were determined via lab-based gamma ray spectroscopy after appropriate chemical pre-concentration of 137Cs, while the salinity and temperature of the water column were obtained by in-situ measurements. The activity concentration values of 137Cs varied from 1.6 to 5.5 Bq m−3. Clear distinction of the Black Sea and Levantine Waters was obtained based on the combination of temperature and salinity values with 137Cs activity concentration. Furthermore, including 137Cs as a supplementary tracer, the Transitional Subsurface Aegean Waters were identified at the Myrtoan and Antikythera Straits, combining the salinity, temperature and 137Cs activity concentration. Full article
(This article belongs to the Special Issue Environmental Radioactivity in the Ocean)
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Fabrication of Chitosan/Hydroxyethyl Cellulose/TiO2 Incorporated Mulberry Anthocyanin 3D-Printed Bilayer Films for Quality of Litchis
by Jinjie Luo, Guofeng Xia, Lizi Liu, Anping Ji and Qiang Luo
Foods 2022, 11(20), 3286; https://doi.org/10.3390/foods11203286 - 20 Oct 2022
Cited by 13 | Viewed by 2964
Abstract
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By [...] Read more.
In this study, a bilayer antibacterial chromogenic material was prepared using chitosan (CS) and hydroxyethyl cellulose (HEC) as inner substrate, mulberry anthocyanins (MA) as a natural tracer, and titanium dioxide nanoparticles (nano-TiO2)/CS:HEC as a bacteriostatic agent for the outer layer. By investigating their apparent viscosity and suitability for 3D printing links, the optimal ratio of the substrates was determined to be CS:HEC = 3:3. Viscosity of the CH was moderate. The printing process was consistent and exhibited no breakage or clogging. The printed image was highly stable and not susceptible to collapse and diffusion. Scanning electron microscopy and infrared spectroscopy indicated that intermolecular binding between the substances exhibited good compatibility. Titanium dioxide nanoparticles (nano-TiO2) were evenly distributed in the CH and no agglomeration was observed. The inner film fill rates affected the overall performance of the chromogenic material, with strong inhibitory effects against Escherichia coli and Staphylococcus aureus at different temperatures, as well as strong color stability. The experimental results indicated that the double-layer antibacterial chromogenic material can, to a certain extent, extend the shelf life of litchi fruit and determine the extent of its freshness. Therefore, from this study, we can infer that the research and development of active materials have a certain reference value. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 3194 KiB  
Article
Anthropogenic Land Use and Land Cover Change as Potential Drivers of Sediment Sources in the Upper Crocodile River, North West Province, South Africa
by Samuel Che Nde, Sammy Kipyego Bett, Manny Mathuthu and Lobina Palamuleni
Int. J. Environ. Res. Public Health 2022, 19(20), 13313; https://doi.org/10.3390/ijerph192013313 - 15 Oct 2022
Cited by 2 | Viewed by 3829
Abstract
In this study, we investigated the accelerating pace of anthropogenic land use and land cover change (LULCC) disturbance, which has generated enormous impacts on the Crocodile River. Spot images from 1996, 2009 and 2022 were used to generate the land use maps and [...] Read more.
In this study, we investigated the accelerating pace of anthropogenic land use and land cover change (LULCC) disturbance, which has generated enormous impacts on the Crocodile River. Spot images from 1996, 2009 and 2022 were used to generate the land use maps and quantify the changes. A supervised classification with the maximum likelihood classifier was used to classify the images. Sediment sources were classified into two sources, revealed by erosional characteristics in the catchment. A gamma spectrometry detector, high-purity germanium (HPGe) “Well” detector by Canberra and inductively coupled plasma mass spectrometry (ICP–MS) were used for the analysis of the samples. The results revealed that from 1996–2022, built-up areas, bare land and water bodies increased by 3.48%, 2.47% and 1.90%, respectively. All the LULCC classes increased annually from 1996–2022, except for grassland, which shrunk. The results of the radionuclides analysis showed that 210Pbex was found to be a more effective tracer than 137Cs. The mass balance model revealed that subsurface sources contributed 60%, while surface sources contributed 40%, of the sediment load in the river. This research provides valuable information necessary for integrated catchment management policies for future LULCC and soil erosion to be adopted. Full article
(This article belongs to the Special Issue Ecological Restoration of Soils and Wastewater)
Show Figures

Figure 1

18 pages, 1904 KiB  
Article
Using 137Cs and 210Pbex to Investigate the Soil Erosion Moduli of the Sandy Area of Typical Grasslands in Northern China
by Xuan Guo, Yunfeng Hu, Yunzhi Zhang and Lin Zhen
Sustainability 2022, 14(19), 12137; https://doi.org/10.3390/su141912137 - 25 Sep 2022
Cited by 5 | Viewed by 1892
Abstract
Soil erosion results in land degradation and desertification in northern China. The Xilingol League of Inner Mongolia is an important part of the “Two Barriers and Three Belts”, and has been given the main function of “a windbreak and sand-fixing belt of northern [...] Read more.
Soil erosion results in land degradation and desertification in northern China. The Xilingol League of Inner Mongolia is an important part of the “Two Barriers and Three Belts”, and has been given the main function of “a windbreak and sand-fixing belt of northern China”. Accurate measuring of soil erosion moduli, analyzing the differences in soil erosion moduli across different periods and regions, are the basis for carrying out soil conservation and evaluating the effectiveness of ecological governance. Some radioisotopes are good environmental tracers because they are closely combined with the fine particles of the surface soil and are only affected by the mechanical movement of soil particles. In this paper, Taipusi Banner and Zhengxiangbai Banner, which are in the farming–pastoral ecotone in northern China, were selected as the study area. A regional reference inventory, that is, the activity of 137Cs and 210Pbex in the sample without any soil erosion, accumulation/deposition, or any kind of manual disturbances, as well as the soil erosion moduli, were determined by 137Cs and 210Pbex composite tracing technology and multiple lines of evidence. The results are as follows: (1) The regional 137Cs reference inventory was 1928 Bq∙m−2, and the regional 210Pbex reference inventory was 10,041 Bq∙m−2. (2) On a 50-year time scale, the soil erosion moduli in the study area ranged from 140 t∙km−2∙a−1 to 1030 t∙km−2∙a−1; on a 100-year scale, the soil erosion moduli in the study area ranged from 35 t∙km−2∙a−1 to 2637 t∙km−2∙a−1; the entire study area was in a lightly eroded state. (3) Compared with two periods before and after the 1970s, the southern parts (cultivated land and grassland) experienced an increasing trend in soil erosion moduli due to land reclamation, grassland grazing, and other activities. Due to weakening wind and increasing precipitation, soil erosion moduli in the northern parts (southern margin of the Hunshandake Sandy Land) slowed down. The study also discussed the uncertainty and application potential of isotope-tracing technology in sandy land of typical grasslands in northern China. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

26 pages, 6323 KiB  
Article
137Cs Sediment Profiles as a Tracer of Marine Sedimentation Processes in a Semi-Enclosed Bay Affected by Anthropogenic Releases—Example of Kaštela Bay (Adriatic Sea, Croatia)
by Ivanka Lovrenčić Mikelić, Neven Cukrov, Višnja Oreščanin, Krunoslav Škaro and Delko Barišić
Water 2022, 14(17), 2655; https://doi.org/10.3390/w14172655 - 28 Aug 2022
Cited by 2 | Viewed by 2401
Abstract
Kaštela Bay was taken as a model to study sedimentation processes using the vertical sediment profiles of 137Cs massic activities. The aim was to distinguish the sedimentation conditions in different parts of the Bay and to partly determine the pathways of terrigenous [...] Read more.
Kaštela Bay was taken as a model to study sedimentation processes using the vertical sediment profiles of 137Cs massic activities. The aim was to distinguish the sedimentation conditions in different parts of the Bay and to partly determine the pathways of terrigenous input into the Bay. The purpose was to demonstrate that 137Cs profiles are applicable in differentiating sedimentation processes. It was found that mostly continuous, undisturbed sedimentation takes place in the central and south parts of the Bay; the sedimentation conditions in the west part of the Bay are more complicated. The west part is characterised by the extremely slow sedimentation of the coarse-grained sediment or even by erosion and selective resuspension of the fine-grained particles followed by resedimentation in other parts of the Bay. It was also observed that the upper 10 cm of the sediment is the most exposed to homogenisation. The strong influence of the Jadro River and anthropogenic activities in the east part of the Bay are reflected in the higher 137Cs activities, strong sediment mixing, and increased sediment input. This study shows that the 137Cs profiles can provide comprehensive insights for the whole study region when a sophisticated sampling layout is deployed. The results of the study are applicable to other aquatic environments with comparable processes and sedimentary environments. Full article
Show Figures

Figure 1

19 pages, 5162 KiB  
Article
Hydrochemistry of Medium-Size Pristine Rivers in Boreal and Subarctic Zone: Disentangling Effect of Landscape Parameters across a Permafrost, Climate, and Vegetation Gradient
by Oleg S. Pokrovsky, Artem G. Lim, Ivan V. Krickov, Mikhail A. Korets, Liudmila S. Shirokova and Sergey N. Vorobyev
Water 2022, 14(14), 2250; https://doi.org/10.3390/w14142250 - 18 Jul 2022
Cited by 4 | Viewed by 2828
Abstract
We studied two medium size pristine rivers (Taz and Ket) of boreal and subarctic zone, western Siberia, for a better understanding of the environmental factors controlling major and trace element transport in riverine systems. Our main objective was to test the impact of [...] Read more.
We studied two medium size pristine rivers (Taz and Ket) of boreal and subarctic zone, western Siberia, for a better understanding of the environmental factors controlling major and trace element transport in riverine systems. Our main objective was to test the impact of climate and land cover parameters (permafrost, vegetation, water coverage, soil organic carbon, and lithology) on carbon, major and trace element concentration in the main stem and tributaries of each river separately and when considering them together, across contrasting climate/permafrost zones. In the permafrost-bearing Taz River (main stem and 17 tributaries), sizable control of vegetation on element concentration was revealed. In particular, light coniferous and broadleaf mixed forest controlled DOC, and some nutrients (NO2, NO3, Mn, Fe, Mo, Cd, Ba), deciduous needle-leaf forest positively correlated with macronutrients (PO4, Ptot, Si, Mg, P, Ca) and Sr, and dark needle-leaf forest impacted Ntot, Al, and Rb. Organic C stock in the upper 30–100 cm soil positively correlated with Be, Mn, Co, Mo, Cd, Sb, and Bi. In the Ket River basin (large right tributary of the Ob River) and its 26 tributaries, we revealed a correlation between the phytomass stock at the watershed and alkaline-earth metals and U concentration in the river water. This control was weakly pronounced during high-water period (spring flood) and mostly occurred during summer low water period. Pairwise correlations between elements in both river systems demonstrated two group of solutes—(1) positively correlated with DIC (Si, alkalis (Li, Na), alkaline-earth metals (Mg, Ca, Sr, Ba), and U), this link originated from groundwater feeding of the river when the labile elements were leached from soluble minerals such as carbonates; and (2) elements positively correlated with DOC (trivalent, tetravalent, and other hydrolysates, Se and Cs). This group reflected mobilization from upper silicate mineral soil profile and plant litter, which was strongly facilitated by element colloidal status, notably for low-mobile geochemical tracers. The observed DOC vs DIC control on riverine transport of low-soluble and highly mobile elements, respectively, is also consistent with former observations in both river and lake waters of the WSL as well as in soil waters and permafrost ice. A principal component analysis demonstrated three main factors potentially controlling the major and TE concentrations. The first factor, responsible for 26% of overall variation, included aluminum and other low mobile trivalent and tetravalent hydrolysates, Be, Cr, Nb, and elements strongly complexed with DOM such as Cu and Se. This factor presumably reflected the presence of organo-mineral colloids, and it was positively affected by the proportion of forest and organic C in soils of the watershed. The second factor (14% variation) likely represented a combined effect of productive litter in larch forest growing on carbonate-rich rocks and groundwater feeding of the rivers and acted on labile Na, Mg, Si, Ca, P, and Fe(II), but also DOC, micronutrients (Zn, Rb, Ba), and phytomass at the watershed. Via applying a substituting space for time approach for south-north gradient of studied river basins, we predict that climate warming in northern rivers may double or triple the concentration of DIC, Ca, Sr, U, but also increase the concentration of DOC, POC, and nutrients. Full article
Show Figures

Figure 1

23 pages, 10745 KiB  
Article
Geological History of the Great Altai: Implications for Mineral Exploration
by Boris A. D’yachkov, Marina A. Mizernaya, Sergey V. Khromykh, Ainel Y. Bissatova, Tatiana A. Oitseva, Anastassiya P. Miroshnikova, Olga V. Frolova, Oxana N. Kuzmina, Natalya A. Zimanovskaya, Anna P. Pyatkova, Karina Zikirova, Olga V. Ageyeva and Yertay T. Yeskaliyev
Minerals 2022, 12(6), 744; https://doi.org/10.3390/min12060744 - 10 Jun 2022
Cited by 14 | Viewed by 5217
Abstract
The Great Altai region, located at the boundary of Russia, Mongolia, China, and Kazakhstan, belongs to the system of the Central Asian Orogenic Belt. It has undergone a long complex geological and metallogenic history. Extremely rich resources of base, precious, and rare metals [...] Read more.
The Great Altai region, located at the boundary of Russia, Mongolia, China, and Kazakhstan, belongs to the system of the Central Asian Orogenic Belt. It has undergone a long complex geological and metallogenic history. Extremely rich resources of base, precious, and rare metals (Fe, Cu, Pb, Zn, Ag, Au, Li, Cs, Ta, Nb, REE, etc.) maintain developed mining and metallurgical industry, especially in East Kazakhstan, which is the key metallogenic province. The East Kazakhstan province comprises the Rudny Altai, Kalba-Narym, West-Kalba, and Zharma-Saur metallogenic belts, each having its typical mineralization profiles and deposits. The reconstructed geodynamic and metallogenic history of the Great Altai province, along with the revealed relationships between tectonic settings and mineralization patterns, allowed us to formulate a number of geodynamic, structural, lithostratigraphic, magmatic, mineralogical, and geochemical criteria for exploration and appraisal of mineral potential in Eastern Kazakhstan. Geodynamic criteria are based on the origin of different mineralization types in certain geodynamic settings during the Late Paleozoic–Early Mesozoic orogenic cycle. Structural criteria mean that the location of base-metal deposits in Rudny Altai, gold deposits in the West Kalba belt, rare and base metals in the Kalba-Narym and Zharma-Saur zones is controlled by faults of different sizes. Lithostratigraphic criteria consist of the relation of orebodies with certain types of sedimentary or volcanic-sedimentary rocks. Magmatic criteria are due to the relation between mineralization types and igneous lithologies. Mineralogical and geochemical criteria include typical minerals and elements that can serve as tracers of mineralization. The joint use of all these criteria will open new avenues in prospecting and exploration at a more advanced level. Full article
Show Figures

Figure 1

Back to TopTop