Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = 1,3-cyclohexadiene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9727 KB  
Article
Chemical Profiling, Antioxidant and Antimicrobial Activities, and In Silico Evaluation of Gardenia jasminoides Essential Oil
by Mohammed Kara, Nouha Haoudi, Nor El houda Tahiri, Fatima Zahra Rhebbar, Reda El Mernissi, Amine Assouguem, Hamid Slali and Jamila Bahhou
Plants 2025, 14(7), 1055; https://doi.org/10.3390/plants14071055 - 28 Mar 2025
Cited by 2 | Viewed by 2398
Abstract
Aromatic and medicinal plants have been integral to human civilization for thousands of years, serving not only as vital components in traditional and modern medicine but also as sources of captivating fragrances that enhance our sensory experiences. The main objective of this study [...] Read more.
Aromatic and medicinal plants have been integral to human civilization for thousands of years, serving not only as vital components in traditional and modern medicine but also as sources of captivating fragrances that enhance our sensory experiences. The main objective of this study was to explore the chemical composition, antioxidant and antimicrobial properties, and in silico molecular docking attributes of Gardenia jasminoides essential oil (GJEO). The chemical compositions were determined using gas chromatography–mass spectrometry (GC-MS) analysis. The antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC) test. The antimicrobial activity was tested in vitro using three microbial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and two fungal strains (Candida albicans and Aspergillus niger). In silico analysis by molecular docking was used to determine the interaction types of topoisomerase II receptors and the most important antioxidant and antimicrobial compounds (Eugenol, Methyleugenol, and α-Terpineol ligands). The obtained results highlight the presence of 25 volatile compounds including 5 new detected compounds: Methyleugenol (15.41%), 1-Undecyne (3.4%), 2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl- (1.11%), 2,5-Cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethylethyl)- (0.4%), and 5,9-Tetradecadiyne (0.32%). The antioxidant capacity of GJEO is around 1.25 µg equivalent of ascorbic acid/mL for TAC assay and IC50 = 19.05 µL/mL for DPPH test. GJEO exhibited significant antimicrobial activity, particularly against Pseudomonas aeruginosa, with a minimum inhibitory concentration (MIC) of 16.67 µL/mL. In silico molecular docking analysis revealed strong interactions between ethyleugenol characterized by multiple bonding interactions, including Pi–Alkyl and carbon–hydrogen bonds, while α-Terpineol formed hydrogen and alkyl interactions. These results underline the potential of Gardenia jasminoides essential oil as a promising source of bioactive compounds with antioxidant and antimicrobial properties, highlighting its possible applications in pharmaceuticals and natural therapies. Full article
(This article belongs to the Special Issue Isolation and Characterization of Secondary Metabolites from Plants)
Show Figures

Figure 1

24 pages, 9532 KB  
Article
Bimetallic Mesoporous MCM-41 Nanoparticles with Ta/(Ti, V, Co, Nb) with Catalytic and Photocatalytic Properties
by Viorica Parvulescu, Gabriela Petcu, Nicoleta G. Apostol, Irina Atkinson, Simona Petrescu, Adriana Baran, Daniela C. Culita, Ramona Ene, Bogdan Trica and Elena M. Anghel
Nanomaterials 2024, 14(24), 2025; https://doi.org/10.3390/nano14242025 - 16 Dec 2024
Cited by 4 | Viewed by 1976
Abstract
Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N2 adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on [...] Read more.
Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N2 adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb. The XPS showed for the TaTi-MCM-41 sample that framework titanium is the major component. The new nanoparticles obtained were used as catalysts for oxidation with hydrogen peroxide of olefinic compounds (1,4 cyclohexadiene, cyclohexene, styrene) and photodegradation of organic pollutants (phenol, methyl orange) from water. The results showed improvementsin activity and selectivity in oxidation reactions by the addition of the second metal to the Ta-MCM-41 catalyst. The slow addition of H2O2 was also beneficial for the selectivity of epoxide products and the stability of the catalysts. The band gap energy values decreased in the presence of the second metal, and the band edge diagram evidenced positive potential for all the conduction bands of the bimetallic samples. The highestlevels of photocatalytic degradation were obtained for the samples with TaTi and TaV. Full article
Show Figures

Figure 1

19 pages, 3382 KB  
Article
The Characteristic Aroma Compounds of GABA Sun-Dried Green Tea and Raw Pu-Erh Tea Determined by Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry and Relative Odor Activity Value
by Chenyang Ma, Chang Gao, Yuanda Li, Xiaohui Zhou, Guofu Fan, Di Tian, Yuan Huang, Yali Li and Hongjie Zhou
Foods 2023, 12(24), 4512; https://doi.org/10.3390/foods12244512 - 18 Dec 2023
Cited by 15 | Viewed by 3260
Abstract
We aim to improve the product quality of GABA raw Pu-erh tea during development and processing. In this study, headspace solid-phase microextraction gas chromatography–mass spectrometry technology combined with relative odor activity evaluations was used to compare the volatile compounds of GABA sun-dried green [...] Read more.
We aim to improve the product quality of GABA raw Pu-erh tea during development and processing. In this study, headspace solid-phase microextraction gas chromatography–mass spectrometry technology combined with relative odor activity evaluations was used to compare the volatile compounds of GABA sun-dried green tea and GABA raw Pu-erh tea. Sensory evaluation showed a higher aroma score of GABA raw Pu-erh tea than that of GABA sun-dried green tea, with significant differences in aroma type and purity. A total of 147 volatile compounds of 13 categories were detected, which differed in composition and quantity between the two teas. 2-Buten-1-one,1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-,(E)- and beta.-myrcene largely contributed to the aroma formation of both teas. Five volatile compounds were screened as potential markers for tea aroma. Metabolic pathway analysis showed that monoterpenoid biosynthesis may be beneficial to the formation of flowery and fruity aromas in the teas. We suggest that the findings of this study may provide important guidance for the processing and optimization of GABA tea. Full article
Show Figures

Figure 1

32 pages, 8888 KB  
Review
Exploring Hydrogen Sources in Catalytic Transfer Hydrogenation: A Review of Unsaturated Compound Reduction
by Batoul Taleb, Rabih Jahjah, David Cornu, Mikhael Bechelany, Mohamad Al Ajami, Ghenwa Kataya, Akram Hijazi and Mohammad H. El-Dakdouki
Molecules 2023, 28(22), 7541; https://doi.org/10.3390/molecules28227541 - 11 Nov 2023
Cited by 53 | Viewed by 9721
Abstract
Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a distinct molecule as [...] Read more.
Catalytic transfer hydrogenation has emerged as a pivotal chemical process with transformative potential in various industries. This review highlights the significance of catalytic transfer hydrogenation, a reaction that facilitates the transfer of hydrogen from one molecule to another, using a distinct molecule as the hydrogen source in the presence of a catalyst. Unlike conventional direct hydrogenation, catalytic transfer hydrogenation offers numerous advantages, such as enhanced safety, cost-effective hydrogen donors, byproduct recyclability, catalyst accessibility, and the potential for catalytic asymmetric transfer hydrogenation, particularly with chiral ligands. Moreover, the diverse range of hydrogen donor molecules utilized in this reaction have been explored, shedding light on their unique properties and their impact on catalytic systems and the mechanism elucidation of some reactions. Alcohols such as methanol and isopropanol are prominent hydrogen donors, demonstrating remarkable efficacy in various reductions. Formic acid offers irreversible hydrogenation, preventing the occurrence of reverse reactions, and is extensively utilized in chiral compound synthesis. Unconventional donors such as 1,4-cyclohexadiene and glycerol have shown a good efficiency in reducing unsaturated compounds, with glycerol additionally serving as a green solvent in some transformations. The compatibility of these donors with various catalysts, substrates, and reaction conditions were all discussed. Furthermore, this paper outlines future trends which include the utilization of biomass-derived hydrogen donors, the exploration of hydrogen storage materials such as metal-organic frameworks (MOFs), catalyst development for enhanced activity and recyclability, and the utilization of eco-friendly solvents such as glycerol and ionic liquids. Innovative heating methods, diverse base materials, and continued research into catalyst-hydrogen donor interactions are aimed to shape the future of catalytic transfer hydrogenation, enhancing its selectivity and efficiency across various industries and applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 3925 KB  
Article
Photochemistry of β-γ-Unsaturated Spirolactones
by Werner Fudickar, Melanie Metz, Tobias Krüger-Braunert, Alexandra Kelling, Eric Sperlich, Pablo Wessig and Torsten Linker
Photochem 2023, 3(4), 408-426; https://doi.org/10.3390/photochem3040025 - 17 Oct 2023
Cited by 5 | Viewed by 2294
Abstract
β-γ-unsaturated spirolactones are easily available by Birch reduction. We describe their photochemistry in the presence of or without carbonyl compounds. The spirolactones show a distinct absorption band at 230 nm, which is not present in other cyclohexadienes. We explain this behavior by an [...] Read more.
β-γ-unsaturated spirolactones are easily available by Birch reduction. We describe their photochemistry in the presence of or without carbonyl compounds. The spirolactones show a distinct absorption band at 230 nm, which is not present in other cyclohexadienes. We explain this behavior by an interaction of the double bonds with the carbonyl group through space, further proven by TDDFT calculations. This allows their direct excitation with UV-C light. Interestingly, we obtain only products of an oxa-di-π-methane rearrangement, hitherto unknown for lactones. This speaks for a reaction pathway starting from singlet states, confirmed by calculated relative energies of biradical intermediates. Although polymerization is the main side reaction, we were able to isolate tricyclic lactones in moderate yields in a pure form. In the presence of benzaldehyde or benzophenone, excitation with UV-B light was possible, leading to H-atom abstraction in the allylic position and formation of alcohols. With an electron-rich double bond, the Paternó–Büchi products were isolated as well. The different diastereomers were separated by column chromatography or HPLC. Their relative configurations were determined using NOESY measurements or X-ray structure analysis. Overall, β-γ-unsaturated spirolactones show a remarkably different photochemistry compared to other cyclohexadienes, affording new products in only a few steps. Full article
Show Figures

Graphical abstract

17 pages, 2248 KB  
Article
[4+2]-Cycloaddition to 5-Methylidene-Hydantoins and 5-Methylidene-2-Thiohydantoins in the Synthesis of Spiro-2-Chalcogenimidazolones
by Dmitry E. Shybanov, Maxim E. Kukushkin, Yanislav S. Hrytseniuk, Yuri K. Grishin, Vitaly A. Roznyatovsky, Viktor A. Tafeenko, Dmitry A. Skvortsov, Nikolai V. Zyk and Elena K. Beloglazkina
Int. J. Mol. Sci. 2023, 24(5), 5037; https://doi.org/10.3390/ijms24055037 - 6 Mar 2023
Cited by 11 | Viewed by 3185
Abstract
Novel hydantion and thiohydantoin-based spiro-compounds were prepared via theDiels–Alder reactions between 5-methylidene-hydantoins or 5-methylidene-2-thiohydantoins and 1,3-dienes (cyclopentadiene, cyclohexadiene, 2,3-dimethylbutadiene, isoprene). It was shown that the cycloaddition reactions proceed regioselectively and stereoselectively with the formation of exo-isomers in the reactions with cyclic dienes andthe [...] Read more.
Novel hydantion and thiohydantoin-based spiro-compounds were prepared via theDiels–Alder reactions between 5-methylidene-hydantoins or 5-methylidene-2-thiohydantoins and 1,3-dienes (cyclopentadiene, cyclohexadiene, 2,3-dimethylbutadiene, isoprene). It was shown that the cycloaddition reactions proceed regioselectively and stereoselectively with the formation of exo-isomers in the reactions with cyclic dienes andthe less sterically hindered products in the reactions with isoprene. Reactions of methylideneimidazolones with cyclopentadiene proceed viaco-heating the reactants; reactions with cyclohexadiene, 2,3-dimethylbutadiene, and isoprene require catalysis by Lewis acids. It was demonstrated that ZnI2 is an effective catalyst in the Diels–Alder reactions of methylidenethiohydantoins with non-activated dienes. The possibility of alkylation and acylation of the obtained spiro-hydantoinsat the N(1)nitrogen atoms with PhCH2Cl or Boc2O and the alkylation of the spiro-thiohydantoinsat the S atoms with MeI or PhCH2Cl in high yields have been demonstrated. The preparativetransformation of spiro-thiohydantoins into corresponding spiro-hydantoinsin mild conditions by treating with 35% aqueous H2O2 or nitrile oxide has been carried out. The obtained compounds show moderate cytotoxicity in the MTT test on MCF7, A549, HEK293T, and VA13 cell lines. Some of the tested compounds demonstrated some antibacterial effect against Escherichia coli (E. coli) BW25113 DTC-pDualrep2 but were almost inactive against E. coli BW25113 LPTD-pDualrep2. Full article
(This article belongs to the Special Issue Development and Synthesis of Biologically Active Compounds)
Show Figures

Figure 1

17 pages, 5083 KB  
Article
Reaction with ROO• and HOO• Radicals of Honokiol-Related Neolignan Antioxidants
by Nunzio Cardullo, Filippo Monti, Vera Muccilli, Riccardo Amorati and Andrea Baschieri
Molecules 2023, 28(2), 735; https://doi.org/10.3390/molecules28020735 - 11 Jan 2023
Cited by 11 | Viewed by 2537
Abstract
Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans [...] Read more.
Honokiol is a natural bisphenol neolignan present in the bark of Magnolia officinalis, whose extracts have been employed in oriental medicine to treat several disorders, showing a variety of biological properties, including antitumor activity, potentially related to radical scavenging. Six bisphenol neolignans with structural motifs related to the natural bioactive honokiol were synthesized. Their chain-breaking antioxidant activity was evaluated in the presence of peroxyl (ROO•) and hydroperoxyl (HOO•) radicals by both experimental and computational methods. Depending on the number and position of the hydroxyl and alkyl groups present on the molecules, these derivatives are more or less effective than the reference natural compound. The rate constant of the reaction with ROO• radicals for compound 7 is two orders of magnitude greater than that of honokiol. Moreover, for compounds displaying quinonic oxidized forms, we demonstrate that the addition of 1,4 cyclohexadiene, able to generate HOO• radicals, restores their antioxidant activity, because of the reducing capability of the HOO• radicals. The antioxidant activity of the oxidized compounds in combination with 1,4-cyclohexadiene is, in some cases, greater than that found for the starting compounds towards the peroxyl radicals. This synergy can be applied to maximize the performances of these new bisphenol neolignans. Full article
(This article belongs to the Special Issue Natural Antioxidants, Dyes and Their Synthetic Analogs)
Show Figures

Figure 1

19 pages, 2373 KB  
Article
Antioxidant, Cytotoxic, and DNA Damage Protection Activities of Endophytic Fungus Pestalotiopsis neglecta Isolated from Ziziphus spina-christi Medicinal Plant
by Hibah I. Almustafa and Ramy S. Yehia
Microorganisms 2023, 11(1), 117; https://doi.org/10.3390/microorganisms11010117 - 1 Jan 2023
Cited by 14 | Viewed by 4067
Abstract
Fungal endophytes are friendly microorganisms that colonize plants and are important in the interactions between plants and their environment. They generate valuable secondary metabolites that are valuable to both plants and humans. Endophytic fungi with bioactivities were isolated from the leaves of the [...] Read more.
Fungal endophytes are friendly microorganisms that colonize plants and are important in the interactions between plants and their environment. They generate valuable secondary metabolites that are valuable to both plants and humans. Endophytic fungi with bioactivities were isolated from the leaves of the medicinal plant Ziziphus spina-christi. An efficient isolate was selected and identified as Pestalotiopsis neglecta based on nucleotide sequencing of the internal transcribed spacer region (ITS 1-5.8S-ITS 2) of the 18S rRNA gene (NCBI accession number OP529850); the 564 bp had 99 to 100% similarity with P. neglecta MH860161.1, AY682935.1, KP689121.1, and MG572407.1, according to the BLASTn analysis, following preliminary phytochemical and antifungal screening. The biological activities of this fungus’ crude ethyl acetate (EtOAc) extract were assessed. With an efficient radical scavenging activity against 2,2′-diphenyl-1-picrylhydrazyl and an IC50 value of 36.6 µg mL−1, P. neglecta extract has shown its potential as an antioxidant. Moreover, it displayed notable cytotoxic effects against MCF-7 (breast carcinoma, IC50 = 22.4 µg mL−1), HeLa (cervical carcinoma, IC50 = 28.9 µg mL−1) and HepG-2 (liver carcinoma, IC50 = 28.9 µg mL−1). At 10 µg mL−1, EtOAc demonstrated significant DNA protection against hydroxyl radical-induced damage. Based on FT-IR and GC-MS spectral analysis, it was detected that the EtOAc of P. neglecta product contains multiple bioactive functional groups. Subsequently, this validated the features of major different potent compounds; tolycaine, 1H-pyrazol, 1,3,5-trimethyl-, eugenol, 2,5-cyclohexadiene-1,4-dione, 2,6-bis(1,1-dimethyl), and bis(2-ethylhexyl) phthalate. Since these compounds are biologically relevant in various aspects, and distinct biological activities of fungal extract were acceptable in vitro, this suggests that endophytic fungus P. neglecta may be a viable source of bioactive natural products. This could be a good starting point for pharmaceutical applications. Full article
(This article belongs to the Special Issue Going Further with Microbial Secondary Metabolites and Biotechnology)
Show Figures

Figure 1

13 pages, 2026 KB  
Article
Effect of Date of Sowing and Spacing of Plants on Yield and Quality of Chamomile (Matricaria chamomilla L.) Grown in an Arid Environment
by Moti Lal Mehriya, Devendra Singh, Aman Verma, Shailendra Nath Saxena, Abed Alataway, Ahmed A. Al-Othman, Ahmed Z. Dewidar and Mohamed A. Mattar
Agronomy 2022, 12(12), 2912; https://doi.org/10.3390/agronomy12122912 - 22 Nov 2022
Cited by 4 | Viewed by 4772
Abstract
Little is known about how Indian farming practices affect German chamomile (Matricaria chamomilla L.). This study examines the effects of the sowing date and spacing of plants on flower productivity, essential oil concentration, and the composition of German chamomile grown in the [...] Read more.
Little is known about how Indian farming practices affect German chamomile (Matricaria chamomilla L.). This study examines the effects of the sowing date and spacing of plants on flower productivity, essential oil concentration, and the composition of German chamomile grown in the arid zone of Rajasthan, India. In a factorial randomized block design (FRBD), the treatments consisted of four sowing dates (15 and 25 October, 5 and 15 November) and three spacings of plants (20 × 10 cm, 30 × 10 cm, and 40 × 10 cm). The dried flower yield (Kg ha−1), fresh flower yield (Kg ha−1), and number of flowers per plant of chamomile crop were significantly affected by the varying spacing of plants and the date of sowing. The highest values for dry weight, fresh weight, and number of flowers were obtained from the second date of sowing (25 October) with 40 × 10 cm geometry. Likewise, the highest values for total oil (12.44%) and essential oil (0.94%) contents were also obtained from the D2P3 combination (D2—sowing date 25 October, P3—40 × 10 cm spacing of plants). GC/MS analyses of the samples showed that p-menth-1-en-4-ol, acetate, cis-alpha-farnesene, anethole+estragol, 1,4-cyclohexadiene,1-methyl-4-(1-methylethyl)- and 3,6-dihydro-4-(4-methyl-3-pentenyl)-1,2-dithiin were the main identified compounds in the essential oil of chamomile fresh flowers. The treatments altered the quality profile of the essential oils in general. The principal components of chamomile essential oil were significantly affected by the D2P3 treatment. The findings of this study add to our understanding of how to grow high-quality chamomile flowers in arid regions. Full article
(This article belongs to the Special Issue Research Progress and Application Prospect of Medicinal Plants)
Show Figures

Figure 1

22 pages, 2003 KB  
Article
Bioactive Components and Health Potential of Endophytic Micro-Fungal Diversity in Medicinal Plants
by Sundaram Muthukrishnan, Paranivasakam Prakathi, Thangavel Sivakumar, Muthu Thiruvengadam, Bindhu Jayaprakash, Venkidasamy Baskar, Maksim Rebezov, Marina Derkho, Gokhan Zengin and Mohammad Ali Shariati
Antibiotics 2022, 11(11), 1533; https://doi.org/10.3390/antibiotics11111533 - 2 Nov 2022
Cited by 25 | Viewed by 4653
Abstract
The endophytic fungi that reside inside medicinal plants have the potential to produce various pharmaco-potential bioactive compounds. The endophytic fungi Graminicolous helminthosporium, Bipolaris australiensis and Cladosporium cladosporioides were isolated from different medicinal plants. The GC-MS analysis of intra- and extracellular products of [...] Read more.
The endophytic fungi that reside inside medicinal plants have the potential to produce various pharmaco-potential bioactive compounds. The endophytic fungi Graminicolous helminthosporium, Bipolaris australiensis and Cladosporium cladosporioides were isolated from different medicinal plants. The GC-MS analysis of intra- and extracellular products of endophytic fungi revealed the presence of various bioactive metabolites, such as Anthracene, Brallobarbital, Benzo [h] quinolone, Ethylacridine, 2-Ethylacridine, Cyclotrisiloxane, 5 methyl 2 phenylindolizine, and 1,4-Cyclohexadien-1-one, etc. The phytochemical composition analysis of endophytic fungus extracts also revealed the presence of flavonoids, phenols, saponins, carbohydrates, glycosides, and proteins. The intra- and extracellular endophytic extracts exhibited strong antibacterial and antioxidant activity, which was screened with the agar-well diffusion method and DPPH, H2O2, and nitric oxide scavenging activity, respectively. The bioactive compounds identified in the endophytic extracts from GC-MS profiling served as ligands for molecular-docking analysis to investigate the anticancer potential against non-small cell lung carcinoma receptor EGFR. Molecular docking results showed that compounds, such as Brallobarbital, and 5 methyl 2 phenylindolizine had the lowest E- min values, which suggests that these compounds could be used in anticancer drug development. Thus, the isolated endophytic fungal species can be used to produce various bioactive compounds that could be used in novel drug development from natural sources and reduce the environmental burden of synthetic chemical drugs. Full article
Show Figures

Figure 1

8 pages, 910 KB  
Communication
Contributions on Lindane Degradation by Microcystis aeruginosa PCC 7806
by Cristina Sarasa-Buisán, Jorge Guío, Carolina Castro, María Teresa Bes, María F. Fillat, María Luisa Peleato and Emma Sevilla
Water 2022, 14(8), 1219; https://doi.org/10.3390/w14081219 - 11 Apr 2022
Cited by 4 | Viewed by 2811
Abstract
Cyanobacteria are able to tolerate, and even metabolize, moderate doses of organochlorine pesticides, such as lindane (γ-hexachlorocyclohexane), one of the most persistent and widely used in recent decades. Previous work showed that Microcystis aeruginosa PCC 7806 degrades lindane and that, in the presence [...] Read more.
Cyanobacteria are able to tolerate, and even metabolize, moderate doses of organochlorine pesticides, such as lindane (γ-hexachlorocyclohexane), one of the most persistent and widely used in recent decades. Previous work showed that Microcystis aeruginosa PCC 7806 degrades lindane and that, in the presence of the pesticide, microcystin synthesis is enhanced. In this work, using in silico approaches, we have identified in M. aeruginosa putative homologues of the lin genes, involved in lindane degradation in Sphingobium japonicum UT26S. Real-time RT-PCR assays showed that the putative linC gene was induced in the presence of 7 mg/L of lindane. Additionally, prxA, encoding a peroxiredoxin, and involved in oxidative stress response, was also induced when lindane was present. Taking into account these results, M. aeruginosa PCC 7806 may degrade lindane through a metabolic pathway involving a putative 2,5-dichloro-2,5-cyclohexadiene-1,4-diol dehydrogenase encoded by a linC homologue. However, the low similarity of the other potential lin homologues suggest the existence of an alternative pathway different to that of heterotrophic microorganisms such as S. japonicum. Full article
Show Figures

Figure 1

15 pages, 1847 KB  
Article
Antifungal Activity of Essential Oils from Three Artemisia Species against Colletotrichum gloeosporioides of Mango
by Xing Huang, Tiantian Liu, Chunxiang Zhou, Yulin Huang, Xing Liu and Haibin Yuan
Antibiotics 2021, 10(11), 1331; https://doi.org/10.3390/antibiotics10111331 - 1 Nov 2021
Cited by 23 | Viewed by 4599
Abstract
Post-harvest diseases of mango reduce fruit quality and cause severe yield losses with completely unmarketable fruits. The most common diseases of mangos are anthracnose (Colletotrichum gloeosporioides). In this study, the antibacterial activities of essential oils from Artemisia scoparia, Artemisia lavandulaefolia [...] Read more.
Post-harvest diseases of mango reduce fruit quality and cause severe yield losses with completely unmarketable fruits. The most common diseases of mangos are anthracnose (Colletotrichum gloeosporioides). In this study, the antibacterial activities of essential oils from Artemisia scoparia, Artemisia lavandulaefolia, and Artemisia annua against C. gloeosporioides were tested. The results showed that the essential oil of A. scoparia was more effective by the agar diffusion method; the EC50 value was 9.32 µL/mL. The inhibition rate was 100%, at a concentration of 10 μL/mL, through the spore germination method. The morphological changes of the mycelium were observed by scanning electron microscopy (SEM), the mycelia treated with essential oils showed shrinking, deformity, fracture, and dryness through SEM. A. scoparia essential oil was inoculated in vivo and subjected to paroxysm testing under natural conditions. A. scoparia had significantly inhibitory activity, and the inhibition rate was 66.23% in vivo inoculation tests after 10 days. The inhibition rate was 92.06% in the paroxysm test under natural conditions after 15 days. Finally, A. acoparia essential oil was analyzed by gas chromatography-mass spectrometry. The main compounds were 2-ethenyl-Naphthalene (23.5%), 2,4-pentadiynyl-Benzene (11.8%), 1,2-dimethoxy-4-(2-propenyl)-Benzene (10.0%), β-Pinene (8.0%), and 1-methyl-4-(1-methylethyl)-1,4-Cyclohexadiene (6.3%). The results have revealed the potential use of A. scoparia essential oil against post-harvest fungal pathogens C. gloeosporioides. Full article
Show Figures

Figure 1

17 pages, 5018 KB  
Article
The Reactivity of Human and Equine Estrogen Quinones towards Purine Nucleosides
by Zsolt Benedek, Peter Girnt and Julianna Olah
Symmetry 2021, 13(9), 1641; https://doi.org/10.3390/sym13091641 - 6 Sep 2021
Viewed by 3172
Abstract
Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in [...] Read more.
Conjugated estrogen medicines, which are produced from the urine of pregnant mares for the purpose of menopausal hormone replacement therapy (HRT), contain the sulfate conjugates of estrone, equilin, and equilenin in varying proportions. The latter three steroid sex hormones are highly similar in molecular structure as they only differ in the degree of unsaturation of the sterane ring “B”: the cyclohexene ring in estrone (which is naturally present in both humans and horses) is replaced by more symmetrical cyclohexadiene and benzene rings in the horse-specific (“equine”) hormones equilin and equilenin, respectively. Though the structure of ring “B” has only moderate influence on the estrogenic activity desired in HRT, it might still significantly affect the reactivity in potential carcinogenic pathways. In the present theoretical study, we focus on the interaction of estrogen orthoquinones, formed upon metabolic oxidation of estrogens in breast cells with purine nucleosides. This multistep process results in a purine base loss in the DNA chain (depurination) and the formation of a “depurinating adduct” from the quinone and the base. The point mutations induced in this manner are suggested to manifest in breast cancer development in the long run. We examine six reactions between deoxyadenosine and deoxyguanosine as nucleosides and estrone-3,4-quinone, equilin-3,4-quinone, and equilenin-3,4-quinone as mutagens. We performed DFT calculations to determine the reaction mechanisms and establish a structure–reactivity relationship between the degree of unsaturation of ring “B” and the expected rate of DNA depurination. As quinones might be present in the cytosol in various protonated forms, we introduce the concept of “effective barriers” to account for the different reactivity and different concentrations of quinone derivatives. According to our results, both equine estrogens have the potential to facilitate depurination as the activation barrier of one of the elementary steps (the initial Michael addition in the case of equilenin and the rearomatization step in the case of equilin) significantly decreases compared to that of estrone. We conclude that the appearance of exogenous equine estrogen quinones due to HRT might increase the risk of depurination-induced breast cancer development compared to the exposure to endogenous estrone metabolites. Still, further studies are required to identify the rate-limiting step of depurination under intracellular conditions to reveal whether the decrease in the barriers affects the overall rate of carcinogenesis. Full article
(This article belongs to the Special Issue Symmetry, Molecular Modelling and Simulation in Biochemistry)
Show Figures

Figure 1

13 pages, 7674 KB  
Article
Hypergolic Ignition of 1,3-Cyclodienes by Fuming Nitric Acid toward the Fast and Spontaneous Formation of Carbon Nanosheets at Ambient Conditions
by Nikolaos Chalmpes, Dimitrios Moschovas, Athanasios B. Bourlinos, Konstantinos Spyrou, Konstantinos C. Vasilopoulos, Apostolos Avgeropoulos, Michael A. Karakassides and Dimitrios Gournis
Micro 2021, 1(1), 15-27; https://doi.org/10.3390/micro1010003 - 18 May 2021
Cited by 3 | Viewed by 3661
Abstract
A hypergolic system is a combination of organic fuel and oxidizer that ignites spontaneously upon contact without any external ignition source. Although their main usage pertains to rocket bipropellants, it is only recently that hypergolics have been established from our group as a [...] Read more.
A hypergolic system is a combination of organic fuel and oxidizer that ignites spontaneously upon contact without any external ignition source. Although their main usage pertains to rocket bipropellants, it is only recently that hypergolics have been established from our group as a revolutionary preparative method for the synthesis of different types of carbon nanostructures depending on the organic fuel-oxidizer pair. In an effort to further enrich this concept, the present work describes new hypergolic pairs based on 1,3-cyclohexadiene and 1,3-cyclooctadiene as the organic fuels and fuming nitric acid as the strong oxidizer. Both carbon-rich compounds (ca. 90% C) share a similar chemical structure with unsaturated cyclopentadiene that is also known to react hypergolically with fuming nitric acid. The particular pairs ignite spontaneously upon contact of the reagents at ambient conditions to produce carbon nanosheets in suitable yields and useful energy in the process. The nanosheets appear amorphous with an average thickness of ca. 2 nm and containing O and N heteroatoms in the carbon matrix. Worth noting, the carbon yield reaches the value of 25% for 1,3-cyclooctadiene, i.e., the highest reported so far from our group in this context. As far as the production of useful energy is concerned, the hot flame produced from ignition can be used for the direct thermal decomposition of ammonium dichromate into Cr2O3 (pigment and catalyst) or the expansion of expandable graphite into foam (absorbent and insulator), thus demonstrating a mini flame-pyrolysis burner at the spot. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Graphical abstract

32 pages, 12661 KB  
Review
1,3-Cyclohexadien-1-Als: Synthesis, Reactivity and Bioactivities
by Ignacio E. Tobal, Rocío Bautista, David Diez, Narciso M. Garrido and Pilar García-García
Molecules 2021, 26(6), 1772; https://doi.org/10.3390/molecules26061772 - 22 Mar 2021
Cited by 5 | Viewed by 5488
Abstract
In synthetic organic chemistry, there are very useful basic compounds known as building blocks. One of the main reactions wherein they are applied for the synthesis of complex molecules is the Diels–Alder cycloaddition. This reaction is between a diene and a dienophile. Among [...] Read more.
In synthetic organic chemistry, there are very useful basic compounds known as building blocks. One of the main reactions wherein they are applied for the synthesis of complex molecules is the Diels–Alder cycloaddition. This reaction is between a diene and a dienophile. Among the most important dienes are the cyclic dienes, as they facilitate the reaction. This review considers the synthesis and reactivity of one of these dienes with special characteristics—it is cyclic and has an electron withdrawing group. This building block has been used for the synthesis of biologically active compounds and is present in natural compounds with interesting properties. Full article
(This article belongs to the Special Issue New Synthetic Methods for Organic Compounds)
Show Figures

Graphical abstract

Back to TopTop